Email: 

Stanowisko: 

adiunkt
Zespół badawczy

Pokój: 

1

Telefon: 

+48 32 2317319 w.201

Zainteresowania: 

Przetwarzanie obrazów i szeregów czasowych, uczenie maszynowe, duże modele językowe.

Horizontal Tabs

Publikacje

Submitted

2025

2. Cholewa, M., M. Romaszewski, and P. Głomb, "Data structure better than labels? Unsupervised heuristics for SVM hyperparameter estimation", Bulletin of the Polish Academy of Sciences Technical Sciences, 2025.  (1.37 MB)
4. Gupta, M. K., M. Romaszewski, and P. Gawron, "Potential of quantum machine learning for processing multispectral Earth observation data", Bulletin of the Polish Academy of Sciences Technical Sciences, vol. 73, issue 5, 08/2025.
5. Sekuła, P., M. Romaszewski, P. Głomb, M. Cholewa, and Ł. Pawela, "Quantum-aware Transformer model for state classification", International Conference on Computational Science 2025, 2025.
6. Romaszewski, M., P. Sekuła, P. Głomb, M. Cholewa, and K. Kołodziej, "Through the Thicket: A Study of Number-Oriented LLMS Derived from Random Forest Models", Journal of Artificial Intelligence and Soft Computing Research, vol. 15, issue 3, 03/2025.

2024

12. Romaszewski, M., and P. Sekuła, "Poster: Explainable classification of multimodal time series using LLMs", 5th Polish Conference on Artificial Intelligence (PP-RAI 2024), Warsaw, Poland, 04/2024.

2023

2022

17. Książek, K., P. Głomb, M. Romaszewski, M. Cholewa, B. Grabowski, and K. Buza, "Improving Autoencoder Training Performance for Hyperspectral Unmixing with Network Reinitialisation", 21st International Conference on Image Analysis and Processing, vol. 13231, Lecce, Italy, Springer, Cham, 05/2022.

2021

2020

20. Głomb, P., and M. Romaszewski, "Anomaly detection in hyperspectral remote sensing images", Hyperspectral Remote Sensing: Theory & Applications: Elsevier, 2020.
24. Książek, K., M. Romaszewski, P. Głomb, B. Grabowski, and M. Cholewa, "Blood Stain Classification with Hyperspectral Imaging and Deep Neural Networks", Sensors, vol. 20, issue Recent Advances in Multi- and Hyperspectral Image Analysis, 11/2020.

2019

25. Grabowski, B., P. Głomb, M. Romaszewski, and M. Ostaszewski, "Unsupervised deep learning approach to hyperspectral anomaly detection", PP-RAI'2019, Wrocław, Poland, Wroclaw University of Science and Technology, 2019.

Strony

Historia zmian

Data aktualizacji: 05/07/2024 - 09:03; autor zmian: Michał Romaszewski (michal@iitis.pl)