Matyas Koniorczyk, Wigner Research Centre for Physics
Data:
06/02/2023 - 11:00
Abstrakt:
W ramach wystąpienia krótko podsumowany zostanie stan techniki optymalizacji z wykorzystaniem QUBO (ang. Quadratic Unconstrained Binary Optimization). Podsumowanie zawierać będzie przegląd najważniejszych wyników badań operacji klasycznych, najnowsze osiągnięcia rozwoju solwerów klasycznych. Przedstawione zostanie również subiektywne spojrzenie na linię kwantową, ze szczególnym uwzględnieniem komputerów firmy DWave.
W ramach seminarium poprowadzona zostanie druga część wykładu z zakresu automatów klasycznych i kwantowych. Po przedstawieniu kilku przykładów DFA wraz z dyskusją ich ograniczeń, wprowadzamy ich warianty probabilistyczny i kwantowy. Przedstawiamy reprezentatywny algorytm dla każdego z tych wariantów, a następnie dyskusję na temat zalet kwantowych w ustawieniach automatów skończonych. Krótko omawiamy ostatnie implementacje algorytmów QFA na rzeczywistym sprzęcie kwantowym.
Rozpoczynamy od omówienia problemów obliczeniowych i algorytmów. Definiujemy ogólną postać problemów decyzyjnych, a następnie wprowadzamy deterministyczny automat skończony (DFA) jako podstawowy decydent. Po przedstawieniu kilku przykładów DFA wraz z dyskusją ich ograniczeń, wprowadzamy ich warianty probabilistyczny i kwantowy. Przedstawiamy reprezentatywny algorytm dla każdego z tych wariantów, a następnie dyskusję na temat zalet kwantowych w ustawieniach automatów skończonych. Krótko omawiamy ostatnie implementacje algorytmów QFA na rzeczywistym sprzęcie kwantowym.
Tematyka referatu dotyczy innowacyjnego podejścia w przygotowaniu danych stosowanych do trenowania konwolucyjnych sieci neuronowych w zakresie segmentacji kolorowych obrazów. Problem doboru danych trenujących oraz pozyskania ich wystarczającej ilości, niezbędnej do uzyskania modelu o jak najwyższej precyzji predykcyjnej, jest istotnym zagadnieniem w tematyce sieci neuronowych. Nieprawidłowe podejście do niego może sprawić, że nawet najlepiej przygotowana architektura sieci, nie będzie w stanie wygenerować modelu, który będzie działał z satysfakcjonującą dokładnością.
Gilbert zaproponował iteracyjny algorytm wyznaczania odległości między danym punktem a zbiorem wypukłym. Stosujemy algorytm Gilberta z kilkoma modyfikacjami i uproszczeniami, aby uzyskać górne ograniczenie na odległość Hilberta-Schmidta między danym stanem a zbiorem stanów separowalnych. Chociaż odległość Hilberta-Schmidta nie jest właściwą miarą splątania, to jednak może być stosowana jako bardzo dobry wskaźnik ilości splątania.
Katarzyna Gawlak, Wydział Transportu i Inżynierii Lotniczej, Politechnika Śląska
Data:
03/03/2022 - 11:00
Abstrakt:
Innowacyjność i poszukiwanie nowych rozwiązań jest kluczowym elementem ciągłego doskonalenia systemów zarządzania bezpieczeństwem przewoźników kolejowych. Z tego względu wspieranie posiadanych systemów rozwiązaniami informatycznymi daje szerokie i zupełnie nowe możliwości prezentacji i analizy danych gromadzonych w różnych obszarach funkcjonowania spółek kolejowych. Taka sytuacja ma miejsce między innymi w przypadku informacji dotyczących zdarzeń i wydarzeń zaistniałych na sieci kolejowej.
Konrad Jałowiecki, Uniwersytet Śląski w Katowicach
Data:
13/11/2019 - 13:00
Abstrakt:
Przedstawiamy w jaki sposób można znaleźć niskoenergetyczne spektrum dla małych (N < 50) szkieł spinowych o dowolnej strukturze, używając nowoczesnych GPU lub podobnej heterogenicznej architektury. Prezentowany algorytm wykonuje pełny przegląd po wszystkich możliwych konfiguracjach układu, w celu wybrania l << 2N stanów o najniższej energii, wraz z odpowiadającymi im energiami.
Kacper Pilarczyk, Akademia Górniczo-Hutnicza w Krakowie
Data:
21/10/2019 - 13:00
Abstrakt:
Rosnące wymagania stawiane systemom obliczeniowym katalizują prace nad niekonwencjonalnymi układami przetwarzającymi informację. Obserwuje się ciągły wzrost zainteresowania alternatywnymi – względem klasycznych rozwiązań opartych na krzemie – gałęziami elektroniki, które mogłyby znaleźć zastosowanie w budowie biosensorów, wyświetlaczy cienkowarstwowych, pamięci molekularnych, materiałów inteligentnych, etc.
W ostatnich dekadach możemy zauważyć wzmożone zainteresowanie różnymi technikami uczenia maszynowego, stosowanymi do rozwiązywania problemów z wszystkich dziedzin życia. Tak duża popularność jest spowodowana faktem, że metody uczenia maszynowego potrafią radzić sobie z problemami, które są trudne do rozwiązania w konwencjonalny sposób, z powodu nieznajomości reguł nimi rządzącymi. Ze względu na właściwości uczenia się i uogólniania wiedzy, metody te są w stanie rozwiązać wiele problemów. Techniki sztucznej inteligencji osiągają wysoką wydajność w różnych dziedzinach nauki.
Piotr Bełdowski, Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy
Data:
17/09/2019 - 13:00
Abstrakt:
Płyn stawowy obecny w naturalnych stawach składa się w ponad 70% wody, ale wykazuje niezwykłe właściwości smarujące, które są częściowo wynikiem interakcji między kwasem hialuronowym i zwykłymi fosfolipidami. W trakcie seminarium przedstawiony zostanie aktualny stan wiedzy na temat mechanizmu smarowania w chrząstce stawowej. Następnie zaprezentowane zostaną wyniki symulacji dynamiki molekularnej, eksperymentalne pomiary interakcji kwasu hialuronowego i fosfolipidów. Wyniki te omówione zostaną w odniesieniu do mechanizmu smarowania w układzie chrząstki stawowej.