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SUMMARY

In the last years, we have witnessed a tremendous growth of the Internet, especially in terms of the amount of
data being transmitted through the networks and new protocols being implemented. This poses a challenge
for network administrators, who need adequate traffic classification tools for network management, e.g. to
implement Quality of Service (QoS) requirements. In this paper, we employ real traffic traces to assess the
usefulness of Domain Name System (DNS) information for traffic classification. We show that by inspecting
DNS packets, it is possible to immediately classify a highly significant portion of the traffic. We present
DNS-Class: an innovative, fast, and reliable flow-based classifier that on average yields 99.2% of True
Positives with <0.1% of False Positives. We argue that DNS-Class represents an important development in
the field of traffic classification, and that it can be a major element of a modular traffic classification system.
Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Internet traffic classification—or identification—is the act of matching IP packets to the applications
that generated them. It is important for network infrastructures that implement Quality of Service
(QoS) requirements. Traffic classifiers are the constitutive building blocks of e.g. traffic shapers,
packet filters, and network monitors. For example, if VOIP traffic needs to be prioritized in a
network, a traffic classifier would identify the IP packets with voice data—thus enabling the network
administrator to route or queue them according to a special set of rules.

In a widely-known survey on traffic classification [1], the authors trace the beginnings of this
field back to the year 1994, although first major publications appeared a decade later. In the past, a
popular approach to identifying traffic was to examine the transport protocol port number, but the
advent of Peer-to-Peer (P2P) traffic rendered this technique generally inadequate [2]. Nowadays, the
two popular methods are Deep Packet Inspection (DPI) (pattern matching on packet payloads) and
statistical classification (Machine Learning (ML) on flow features), but they have some limitations.
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For example, statistical approaches need several IP packets to compute the flow features, whereas
DPI needs access to packet payloads and generally cannot classify encrypted flows.

The goal of this work is to show that there is a significant portion of traffic passing through
Internet gateways—namely, flows with domain names—that can be immediately classified, simply
by looking at the first packet header and at the domain name. Moreover, by reliably sieving these
flows out, our algorithm leaves the traffic that mostly is either P2P or Gaming. We also show
interesting dependencies between IP flows and DNS traffic, demonstrating an innovative perspective
for flow-based traffic analysis.

In this paper, we present DNS-Class: a novel method for classifying IP flows by inspecting DNS
traffic transmitted in a computer network. First, our algorithm passively collects the information
in DNS packets to find the domain names behind connection peers (e.g. www.facebook.com).
Second, by running text classification on these names, DNS-Class reveals the generating application
(e.g. HTTP). Combining this information with port numbers can further improve the classification
performance, even though we consider that port numbers are unreliable.

The novelty of our method is explained in the fact we believe this is the first classifier employing
DNS domain names as traffic features. One of the main strengths of DNS-Class is its ability to
correctly classify an IP flow by only inspecting its first packet. We argue that this represents a
significant step ahead with respect to the state of the art methods, which require several packets
before being able to perform any classification.

The remainder of this paper is organized as follows. In Section 2 we comment on related
works and refer the reader to required theoretical background. In Section 3 we present our DNS-
Class algorithm. In Section 4 we analyze our traffic datasets and in Section 5 we use them to
experimentally evaluate the algorithm. Finally, we discuss the results in Section 6 and give our
conclusions in Section 7.

2. RELATED WORKS

To the best of our knowledge, there are no previous works on classifying Internet traffic using DNS,
in a spirit that would be similar to e.g. statistical classification of flows.

In [3] however, D. Plonka and P. Barford present a system similar to DNS-Class, but with a
different goal of profiling traffic and hosts. The algorithm matches domain names to flows and lets
for two kinds of analysis: according to the presence of flow name (named/unnamed) and according
to the domain name (hierarchical analysis). The system also uses the domain names to attribute hosts
to 3 categories of “Torrent”, “Talk”, and “Game”. The authors give an analysis of cross-dependence
between DNS and IP traffic, for two different networks. Comparing with our work, the paper adopts
a vague set of traffic classes, which does not fit real applications or protocols. There is no ground-
truth in the datasets used for experiments, hence the results were not validated. The authors do not
employ an ML approach, and instead use a static set of hand-made patterns to match domain names
with traffic profiles, which poses an operational limitation.

In [4], I. Bermudez et al. present “DN-Hunter”, a traffic analysis system exploiting the same
idea of assigning DNS domain names to traffic flows as in DNS-Class. The authors give a detailed
description of their DNS sniffer, and an analysis of DNS traffic limited to the scope of DN-Hunter.
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IMMEDIATE CLASSIFICATION OF IP FLOWS 3

WWW NTP Jabber BitTorrent
nk.pl:80/TCP pool.ntp.org:123/UDP talk.google.com:5222/TCP exodus.desync.com:6969/TCP
photos.nasza-klasa.pl:80/TCP clock.fmt.he.net:123/UDP talkx.l.google.com:5222/TCP tracker.openbittorrent.com:80/UDP
www.playmobile.pl:80/TCP ntp1.dlink.com:123/UDP chat.facebook.com:5222/TCP router.utorrent.com:6881/UDP
gg.hit.gemius.pl:80/TCP time.nist.gov:123/UDP xmpp.nktalk.pl:5222/TCP tracker.publicbt.com:80/UDP
www.facebook.com:80/TCP time-a.netgear.com:123/UDP talk.l.google.com:5222/TCP fr33dom.h33t.com:3310/TCP

Table I. Examples of input to Flow Classification stage: the top-5 flow names, with port numbers and
transport protocol names. Polish domains are specific to the dataset. The BITTORRENT protocol uses

dynamic port numbers, but its domain names can reveal the generating application.

However, the paper is devoted to uncovering the global Content Delivery Network (CDN) structure
and describing related network phenomena—the DNS method is only a tool, which is neither used
nor evaluated as a traffic classification method. Apart of interesting insights on the CDN industry,
the authors present a technique that automatically extracts keywords from domain names related to
transport protocol port numbers (sections 4.3 and 5.5 in that paper). This roughly corresponds to
our Flow Classification described in Section 3.2, but the output is ambiguous, i.e. produces many
keywords.

In a 2013 paper [5], P. Fiadino et al. present “HTTPTag”: an on-line HTTP classification system,
able to identify web-based applications and services. HTTPTag runs pattern matching on domain
names extracted from HTTP headers, using a set of hand-made regular expressions. The authors
claim that, using 380 regular expressions corresponding to 280 services, they are able to “classify
more than 70% of the overall HTTP traffic volume caused by more than 88% of the web users in an
operational 3G network”. While their work has an alternative source of features and different goals
than DNS-Class, it introduces the significance of domain names in classifying network traffic. Our
work proposes a system that is more general (e.g. which applies to HTTPS too) and learns from
data, without the need of manual training.

We do not present details on the theoretical background required to understand this paper. Instead,
we refer the reader to [6] for foundations on ML, particularly to Chapters 1, 5.11, and 9.6. For a
practical introduction to text classification, see Chapter 6 in [7]. For necessary background on DNS,
see Chapter 7.1 in [8]. For further introduction to traffic classification, see [1], [9], or [10] for recent
works.

3. THE DNS-CLASS ALGORITHM

The DNS-Class algorithm operates on traffic flows and consists of two stages: DNS Search and Flow
Classification. The first stage assigns domain names to flows; the second runs text classification on
domain names extended with port numbers and transport protocol names. See Table I for examples
of input data. Below we give the taxonomy used throughout this paper.

We define as flow the set of packets belonging to the same connection neglecting their direction,
i.e. packets having the same 5-tuple of 〈IPsrc, Portsrc, IPdst, Portdst, Proto〉, with the source src
and destination dst optionally swapped. The IP , Port, and Proto terms stand for IPv4 address,
transport protocol port number, and transport protocol name, respectively.
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Figure 1. The DNS Search algorithm. Incoming packets are inspected for DNS information, grouped into
flows, and flows are tagged with names. The algorithm discovered that the client 10.3.1.2 received earlier
a DNS reply for the server 173.194.65.104 with the name of clients1.google.com, so it tagged
the matching TCP connection with this domain name. The RESOLVER database holds names for client-server

pairs; the same server address can appear under different names, depending on the client.

We also introduce an important notion of named flows: the flows for which the peer sending
the first packet queried the DNS system. In such case, the remote host name is the flow name. On
the contrary, if querying the DNS was not needed, then the flow is an anonymous flow. Note that
querying DNS does not always involve physical communication with a DNS server, due to local
caching of DNS information.

In the context of traffic classification, we employ the term application—with synonyms of
protocol and class—in a broad meaning: a group of one or more computer programs (protocols)
that generate (transport) Internet traffic. The information on the real application that generated a
particular flow is called the ground-truth.

3.1. DNS Search

The architectural view of DNS Search is depicted in Figure 1. Its first element, DNS PACKET

INSPECTOR, examines packets in DNS flows and updates the RESOLVER database with information
on domain names for client-server pairs. The FLOW TAGGER queries this database each time a
new flow starts and assigns DNS names, if possible. As the result of DNS Search, a set of flows is
obtained, in which some elements have a domain name assigned.

The DNS Search algorithm exploits the fact that Internet connections are often anticipated by
DNS query and response packets (which is shown in Section 4). For example, a web browser will
resolve clients1.google.com to 173.194.65.104 before attempting a TCP connection
to the corresponding web server. By intercepting the DNS response packet, an intermediary router
can uncover the original domain name entered by the user into the web browser location bar.

In greater detail, DNS PACKET INSPECTOR dissects packets according to RFC1035 [11]. At its
input, it takes successful replies to queries of A and MX types. The destination address in the IP
header becomes client address (Clientaddr: the host that asked for the domain name), and each
address found in the DNS Answer becomes server address (Serveraddr: the host that the client
can connect to). The first element transmitted in the DNS Questions list is the domain name; it is
stored in the RESOLVER database under an index of 〈Clientaddr, Serveraddr〉, for each Serveraddr.
This information will be cached for the next 10 hours of traffic—unless updated earlier by another
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IMMEDIATE CLASSIFICATION OF IP FLOWS 5

Figure 2. The DNS-Class algorithm. The input flow data is rewritten, converted into Vector Space Model x,
and classified using support vector classification. The CONVERTER holds 1-1 associations between textual
features vw and their integer counterparts vk. The MODEL is constructed during system training and keeps

weight vectors for each protocol.

DNS packet with the same RESOLVER index—which roughly imitates the caching mechanism
usually found in the DNS resolvers running on the client machines. We chose the value of 10 hours
arbitrarily; smaller values should work as well (see Section 6 in [4]).

The FLOW TAGGER is run for every TCP and UDP flow, but only on the arrival of the first packet.
It queries the RESOLVER database for the domain name under 〈IPsrc, IPdst〉 index and assigns it to
the flow (for the entire flow lifetime). If this fails, it tries the opposite direction, i.e. 〈IPdst, IPsrc〉.
If this fails too, no name is attached to the flow and it is left anonymous, depicted as NO DNS in
Figure 1. Note that implementing a similar mechanism using reverse DNS lookup would fail: in
[4], the authors proved experimentally that issuing a reverse lookup on the server IP of a randomly
chosen named flow either returns a different domain name (62% of flows), or yields no answer at
all (29% of flows).

The DNS Search algorithm is designed to be implemented on single machine, e.g. on a
gateway router. However, the DNS PACKET INSPECTOR and FLOW TAGGER can be decoupled and
implemented on two separate machines—e.g. intercepting DNS information on a local recursive
DNS server, and tagging flows on a router—with small modifications to the algorithm.

3.2. Flow Classification

As the input to the classification stage of DNS-Class, we take the set of named flows. Figure
2 presents the classification of an exemplary flow: a TCP connection between 10.3.1.2 and
173.194.65.104 on port 443, having a domain name of clients1.google.com assigned.
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First, flow information is transformed into a textual form by concatenating the flow name, port
number, and transport protocol name (using separating characters). DNS-Class can also operate
without flow features—i.e. can classify solely by the domain name—which is demonstrated in
section 5.2 pt 2. For the port number, we use the destination port of the first packet in a flow.

The text form is split by dots and dashes into a tuple of tokens T (T is limited to the last 6 tokens
by default). Digits are replaced with the capital “N” character, except for the port number. The
goal of this step is extracting keywords from domain names. We also tried word segmentation in
long domain names as described in [12], but without meaningful effect on the overall classification
performance.

The tuple of tokens T is converted into a set of text features F , by extracting all word unigrams
and bigrams. The algorithm has a CONVERTER database, which is used as an invertible function C
that maps these unigrams and bigrams to integers, as shown in Equations 1 and 2:

C(vw) = vk, (1)

C−1(vk) = vw, (2)

where vw ∈W , the set of all known unigrams and bigrams, and vk ∈ K, K = {1, 2, . . . , n}. Note
that |W | = |K| = n. The set W is constructed during the training of DNS-Class and held constant
during classification, and so is K. In case a given unigram or bigram vw cannot be found in the
database, the corresponding vk is 0, i.e.

C(vw) = 0 vw /∈W, (3)

which means that the text feature vw is dropped and not considered in next algorithm steps.
In the VECTORIZATION step, the set of text features F is converted into a sparse feature vector

x of size n, in which each dimension corresponds to a text feature. In other words, a Vector Space
Model (VSM) representation of the text input is constructed [13]: x = (x1, x2, . . . , xn), where

xj =

{
1 j ∈ F ′

0 j /∈ F ′
∀j ∈ K, (4)

and F ′ is the set of text features F converted to integers using function C. We also tried another
values for xj—including the popular tf-idf metric [13]—but we experienced no major impact on the
overall system performance.

For the CLASSIFICATION step, we employ direct multi-class support vector classification by
Crammer and Singer [14] with a linear kernel, as implemented in LIBLINEAR [15, 16] and
LIBSHORTTEXT [17]. In this step, the MODEL database is queried for weight vectors wp, for each
target class p:

wp = (w(1)
p , w(2)

p , . . . , w(n)
p ), (5)
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IMMEDIATE CLASSIFICATION OF IP FLOWS 7

where each w
(j)
p term corresponds to the weight of text feature j ∈ K, and p ∈ P , P =

{1, 2, . . . ,m}: the set of all network protocols to be recognized by the classification system. Let

α(x, p) = wT
p x, (6)

be the decision value for protocol p given feature vector x, then the decision function is

argmax
p

α(x, p), (7)

which predicts the protocol behind x. In other words, in the CLASSIFICATION step, we search for
the protocol p that maximizes Equation 6 for given feature vector x.

During training of DNS-Class, weight vectors wp are initialized using training instances of text,
according to Equations 8 and 9:

min
{wp},{ξi}

1
2

∑
p‖wp‖2 + C

∑
i ξi

s.t. α(xi, yi)− α(xi, p) ≥ γi(p)− ξi ∀p, i
(8)

γi(p) =

{
0 yi = p

1 yi 6= p
, (9)

where i is the number of text instance, C ∈ R>0 is the regularization parameter, ξi ∈ R≥0 are slack
variables, and yi ∈ P is the true protocol behind feature vector xi—that is, the ground-truth label.
Roughly speaking, the goal of the optimization described by Equation 8 is to have high w(j)

p values
for features that are specific to protocol p, and low values for features that are common for all
protocols. We refer the reader to the cited papers for further details on our classification algorithm,
especially to [15] and [17].

In the last step (DECISION), the protocol p selected according to Equation 7 is translated into
corresponding textual representation. For example, in Figure 2, p = 1 stands for WWW.

3.3. Rationale

DNS-Class is a specialized traffic classifier that targets named flows and DNS traffic passing through
Internet gateways. This usually corresponds to a significant portion of the whole traffic, as specified
in [4], where Bermudez et al. claim that for HTTP and TLS flows, the portion of named flows
usually exceeds 90% in most of their highly representative datasets. Given that HTTP is nowadays
considered to be the dominant protocol in residential customer traffic [18], the actual portion of
named flows transmitted through ordinary Internet gateways can be even higher than what our study
shows.

In Figure 3, we present one of possible scenarios for DNS-Class: traffic traveling through a
gateway is classified in a modular system. Each module is responsible for handling only one part of
the traffic, according to several criteria. If an input flow cannot be classified, it is handed over to the
next module in the “chain” of classifiers. In such scenario, the goal of DNS-Class is classifying only
the named flows and DNS, leaving the anonymous flows for other modules. For example, DNS-
Class can be augmented with statistical classifiers, fine-grained methods [19], or even with other
specialized classifiers like Skype-Hunter [20]. Note that our work introduces a reliable criterion for
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8 P. FOREMSKI, C. CALLEGARI, M. PAGANO

Figure 3. Modular traffic classifier. We propose an algorithm that targets one-third of network traffic in the
investigated ISP network. DNS-Class immediately classifies named flows, leaving anonymous flows for

other classifiers.

distinguishing traffic flows that DNS-Class can classify: the presence of a domain name attached to
the flow.

DNS-Class has interesting advantages over existing methods. In particular, our algorithm
immediately classifies network flows, requiring just the IP header of the first packet and the
information extracted from DNS query-response conversations. Comparing with statistical traffic
classifiers, our algorithm is quicker, because it does not wait until enough flow data is collected to
compute the statistics. Comparing with DPI, DNS-Class does not inspect the payload of the packets
(except for DNS packets), which makes it resistant to Transport Layer Security (TLS) encryption.
We thus believe that DNS-Class represents a novel and important development in the field of traffic
classification.

4. DATASETS AND TRAFFIC ANALYSIS

In this section, we analyze the traffic datasets that we used for validating DNS-Class, and which
will be used in the next section for presenting the practice of applying DNS-Class to real network
traffic. We also share our findings on how Internet protocols depend on DNS.

4.1. Traffic traces

We collected the network traffic during May-June 2012 and January 2013 at a Polish ISP company
in Upper Silesia that serves residential customers. In both cases, packet capture was run for around
one week on the same Point-to-Point over Ethernet (PPPoE) server that handled a few hundred users.
The maximum amount of captured packet data was limited due to storage constraints; the Ethernet
and PPPoE headers were removed too. Table II summarizes the datasets, and Figure 4 presents one
exemplary day of traffic in the ASNET1 dataset.
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Figure 4. One day of traffic in ASNET1. Total network bandwidth usage of client downloads and uploads,
for TCP and UDP. The data were collected June 1-2, 2012 and represents 4-minute averages.

Dataset Start Duration Src. IP Dst. IP Packets Bytes Avg. Util Avg. Flows
(/5 min.) Payload

Asnet1 2012-05-26 17:40 216h 1,828 K 1,530 K 2,525 M 1,633 G 18.0 Mbps 7.7 K 92 B

Asnet2 2013-01-24 16:26 168h 2,503 K 2,846 K 2,766 M 1,812 G 25.7 Mbps 12.0 K 84 B

Table II. Datasets used for experimental validation. The ASNET2 dataset was captured 8 months after
ASNET1, with smaller packet size limit and shorter capture duration, but it contains more traffic. Both

datasets contain real traffic of the same population of a few hundred residential ISP customers.

We established the ground-truth using DPI, as implemented in the LIBPROTOIDENT library
version 2.0.7†, published by the University of Waikato [21]. We embedded this library in our
software toolkit FLOWCALC, which converts PCAP files into flow-level summaries in the ARFF
file format‡. We made several corrections to the DPI results by analyzing the traffic traces manually,
according to our knowledge. For instance, we noticed several flows on ports 6969, 2710, and 3310
being erroneously classified as HTTP NONSTANDARD instead of BITTORRENT; another problem
was an over-matching rule for the TEREDO protocol.

We adopted definitions of traffic classes from LIBPROTOIDENT, ignoring the transport protocol
name and encryption level: e.g. KASPERSKY instead of KASPERSKY TCP and KASPERSKY UDP,
and WWW instead of HTTP and HTTPS. We also used the MAIL class as an aggregate for POP3,
SMTP, and IMAP. For our experiments with the CAIDA port-based classifier in Section 5.2 pt 1,
we translated the traffic classes used by that classifier.

Next, we sanitized the datasets by removing incomplete TCP sessions, and by dropping the traffic
that is specific for Local Area Network (LAN) environments—e.g. DHCP, NETBIOS, and SSDP.
Finally, we ran our DNS Search algorithm described in Section 3.1 to discover the domain names
of the network flows in our datasets.

†Subversion revision number 154
‡See http://mutrics.iitis.pl/flowcalc
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10 P. FOREMSKI, C. CALLEGARI, M. PAGANO

4.2. Traffic characteristics

In order to show how different applications depend on DNS, we divide the set of all network
protocols into three groups: 1) traditional client-server protocols (e.g. browsing, e-mail, streaming),
2) P2P and Gaming traffic, and 3) other. The last group consists of DNS traffic and the flows for
which our ground-truth method failed. Table III (pp. 17) presents results of traffic analysis, and is
the basis for this section. For the sake of brevity, we report only on the ASNET1 dataset, leaving the
ASNET2 dataset for temporal stability evaluation in Section 5.2 pt 5. For examples of flow names
and port numbers, see Table I.

For validating DNS-Class, we need flows with both the ground-truth label and the domain name—
this was the case for 26% of flows in ASNET1. DNS-Class also identifies DNS packets directly in
the DNS Search algorithm, so in total our algorithm targets 37% of all flows in ASNET1. As can
be seen in Table IIIa, network protocols differ in how much they depend on DNS. In next sections
we will only consider the protocols for which at least 10% of flows have a domain name (in order
to have enough training data), except for BITTORRENT and SKYPE, which were included for their
popularity in the traffic classification literature.

For the ASNET1 dataset, we found that:

1. 27% of flows have a domain name. We believe the real portion of named flows is higher,
because our DNS Search algorithm is imperfect and the ASNET1 dataset has limited amount
of packet payload.

(a) Flows of traditional client-server protocols vary in their dependence on DNS, but
generally this class of flows often incurs DNS queries: 78% of traditional flows have
a domain name. Comparing to the work by Bermudez et al. [4], this is smaller—but
similar (see Table 2 in that paper).

(b) P2P applications and computer games almost never employ DNS for communication: on
average, only 0.2% of their flows have a domain name. These protocols do not need DNS
for communication between peers. For example, BitTorrent trackers point to seeders
and leechers by their IP addresses; similarly, game servers also list the players by IP
addresses, and the exchange of game information occurs directly between the peers.

2. 50% of bytes and 44% of packets travel in named flows. The average size of named flows is
two times higher than the size of anonymous flows (200 KB vs. 110 KB).

(a) For traditional protocols, 74% of bytes and 73% of packets are transmitted in named
flows.

(b) For P2P and Gaming traffic, this is 0.0018% and 0.02% for bytes and packets,
respectively.

3. If a flow has a domain name, it is almost certainly not P2P nor Gaming. Only 0.4% of named
flows are P2P or games, which confirms results of Plonka and Barford [3].

(a) This phenomenon can be practically applied as a quick method for ensuring that a flow
does not belong to a P2P application or a computer game.

(b) Conversely, if a flow does not have a domain name—and at the same time it is not a
DNS flow—then it is either P2P or Gaming with a probability of >77%.
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IMMEDIATE CLASSIFICATION OF IP FLOWS 11

5. EXPERIMENTAL EVALUATION

In this section, we present the practice of using DNS-Class in a real network, in different setups. We
also compare DNS-Class to an established traffic classification method.

The experiments presented in this section were designed to evaluate the robustness of DNS-
Class and to assert that combining domain names with port numbers is meaningful. The results are
presented in Table IV (pp. 18), which is the main table for this section.

5.1. Methodology

For each experiment with DNS-Class, we begin by tuning the algorithm parameters according to
the experiment description. Then we evaluate the classification performance and robustness: in
experiments 2-4 we employ 10-fold cross-validation on ASNET1 [6], and in experiment 5 we train
on ASNET1 and test on ASNET2.

For given protocol p, we measure the classification performance according to two complementary
metrics of True Positives (%TPp) and False Positives (%FPp):

%TPp =
|TPp|
|Fp|

· 100%, %FPp =
|FPp|
|F ′p|

· 100%, (10)

where TPp is the set of true positives for protocol p, Fp is the set of testing flows that belong to
p, FPp is the set of false positives for p, and F ′p is the set of testing flows that do not belong to p.
The set of true positives for protocol p consists of the flows that were properly attributed to p during
classification. On the contrary, FPp consists of the flows improperly attributed to p. The testing
flows are the flows from the dataset that were used for testing the classifier.

For measuring the overall classification performance, we simply adopt the average for all
protocols:

%TP =

∑
p%TPp

|P |
, %FP =

∑
p%FPp

|P |
. (11)

Another option would be to compute the weighted average according to the number of flows in each
class. However, the result would be heavily biased towards the WWW class, which holds the vast
majority of flows.

5.2. Experiments

1) Traditional port number classifier (Figures 5 and 6): We begun our experiments by evaluating
a traditional port number classifier on our datasets. We chose the CAIDA Coral Reef suite version
3.9.1 [22] as an established port-based classifier. Because this classifier does not need training, we
used all flows from the ASNET1 dataset for testing.

First, we evaluated the classifier on all protocols in groups (1) and (2) defined in Section 4. The
algorithm exhibited very good results for some traffic classes, but in most cases it failed: the %TP
metric was 33%, as visible in Figure 5. The figure also presents the %TP metric for packets and
bytes, computed similarly. In order to enable direct comparison with DNS-Class, we also evaluated
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Figure 5. Performance of the standard Coral Reef port number classifier, for all flows in groups (1) and (2)
(see Table III). The %TP metric is 33%, 29%, and 28%—for flows, packets, and bytes, respectively.

Figure 6. Performance of the same classifier as in Figure 5, but evaluated only on the named flows of selected
protocols. %TP is 52%, 47%, and 45%—for flows, packets, and bytes, respectively.

the port classifier on our target traffic, i.e. on named flows. The performance improved, but still was
quite low: %TP of 52%, as visible in Figure 6.

2) Classification by domain name (Table IVa): In experiment 2, we run the algorithm on sole
DNS domain features, i.e. we classified the traffic just by the domain name, neglecting the transport
protocol and the port number. Using the options of our software, we forced the algorithm to ignore
the last two tokens in the input data (see Section 3.2). We trained and tested the system using
the ASNET1 dataset. Results are presented in Table IVa, with %TP and %FP of 82% and 1%,
respectively.

The three most common errors made by the algorithm were: classifying poczta.in-

teria.pl:995/TCP as WWW (instead of MAIL), classifying tracker.openbittor-

rent.com:80/UDP as WWW (instead of BITTORRENT), and classifying talkx.l.goo-

gle.com:443/TCP as JABBER (instead of WWW).
3) Classification by port number (Table IVb): Conversely, in experiment 3, classification relied

only on the port number and on the transport protocol name, i.e. we ignored the domain name.
Again, using the software options of DNS-Class, we skipped all the tokens but the last two. Using
the same dataset for training and testing, we obtained the results presented in Table IVb, with %TP
and %FP of 92% and 2%, respectively.

For this experiment, the most common errors were connected with the KASPERSKY protocol, e.g.
erroneously classifying ksn2-12.kaspersky-labs.com:443/TCP as WWW.

4) Classification by domain name and port number (Table IVc): Finally, in experiment 4 we
evaluated the full DNS-Class algorithm, i.e. classification by domain name, port number, and
transport protocol name. This is the main experiment that presents full capabilities of our algorithm.
Again, we used the ASNET1 dataset for training and testing, but we run DNS-Class on full textual
representations of flows, exemplified in Table I. On average, we obtained %TP of 99% and %FP of
<0.1%, which is displayed in greater detail in Table IVc.
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The most common source of errors were due to the SHOUTCAST and RTMP protocols. Textual
representations of their flows—for instance, petelo.streams.bassdrive.com:80/TCP
and brightcove-32.fcod.llnwd.net:443/TCP—were incorrectly classified as WWW.
Interestingly, we also found errors in the ground-truth: e.g. textual inputs like www.facebook.-
com:80/TCP, imppl.tradedoubler.com:80/TCP, and plus.google.com:80/TCP

were incorrectly attributed to the BITTORRENT protocol instead of WWW.
5) Temporal stability (Table IVd): In experiment 5, we evaluated the temporal stability of DNS-

Class, i.e. whether a classification model can be used in the same network after a longer period of
time. We created the model using ASNET1, but for testing we took the ASNET2 dataset, collected
after 8 months. We obtained %TP and %FP of 98% and <0.1%, respectively. Detailed results are
given in Table IVd.

Majority of errors were due to the FLASHPLAYER protocol: DNS-Class failed for inputs
like telegraph.justin.tv:443/TCP and qfpgameservermad05.miniclip.com-

:4000/TCP, incorrectly classifying them as WWW. Again, we noticed some errors in the ground-
truth labels, e.g. php.hdcmct.com:2710/TCP attributed to WWW instead of BITTORRENT,
and www.facebook.com:443/TCP attributed to BITTORRENT instead of WWW.

6. DISCUSSION

Our experiments with DNS-Class showed that:
1. Traditional port number classifier is unreliable for the traffic targeted by DNS-Class. We

evaluated CoralReef port number classifier on named flows, and the experiment showed it
could not replace DNS-Class, due to poor performance (%TP of 52%).

(a) Classifying only by port number is unreliable also in the general case of all flows
(i.e. named and anonymous flows). This was demonstrated in several papers on traffic
classification (e.g. [2]), and in our experiment 1 (see Figure 5). The classifier worked
properly for traditional protocols (e.g. NTP), but failed for newer P2P protocols (e.g.
BITTORRENT).

(b) The %TP metric for port number classification was better in the case of narrowing the
traffic to named flows only (Figure 6). For example, %TP improved for RTMP and
BITTORRENT. This represents an increase in performance at the cost of smaller traffic
scope.

2. It is possible to classify some protocols using domain names only. Experiment 2 (Table IVa)
demonstrated that in 7 out of 13 traffic classes, it was possible to identify the protocol behind
network flows, with %TP above 90%.

(a) The WWW class collected majority of wrong classifications (%FP of 14.3%). This is
due to popularity of this class, and because the set of words in website domains stands
for a huge portion of tokens that DNS-Class can find in domain names of other protocols.

(b) We noticed poor performance for FTP and FLASHPLAYER classes (%TP below 50%),
and moderate results for JABBER, MAIL, RTMP, and BITTORRENT (%TP below 90%).
Probably, domain names of these protocols contain small number of tokens that could
distinguish them from the WWW class.
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(c) There exist domains that are used for delivering more than one service at the same time—
for example, poczta.interia.pl: an e-mail service delivered through traditional
SMTP/POP3 protocols, and through a web interface over HTTPS.

3. Port number is an important traffic feature for named flows. Experiment 3 (Table IVb) proved
that in DNS-Class, port numbers can be used for successful classification in many cases, with
%TP and %FP of 92.1% and 1.5%, respectively.

(a) DNS-Class employs a machine-learning algorithm—instead of relying on a static
database, as in the CoralReef port number classifier—hence it learns the port numbers
from the traffic in the dataset. The system was also able to properly classify named flows
of P2P protocols: BITTORRENT (%TP of 99.3%) and SKYPE (%TP of 94.6%), with no
false positives.

(b) Again, the WWW class collected majority of errors (%FP of 19.0%), but this time due
to the fact that several other protocols use the port numbers of 80 and 443 (traditionally
linked with HTTP and HTTPS), for example: KASPERSKY, FLASHPLAYER, and
SHOUCAST.

4. Full DNS-Class algorithm is reliable. In experiment 4 (Table IVc), DNS-Class obtained %TP
of 99.2% and %FP of <0.1%. This result proves our argument that it is possible to classify a
significant portion of Internet flows using just the first packet and the flow name.

(a) Combining port numbers with domain names improved the classification performance
for each evaluated protocol.

(b) The WWW class collected majority of errors due to the reasons already given in points
2a and 3b above, but with a much lower %FP of <0.1%.

(c) DNS-Class proved to be better than our ground-truth method in a few cases, as
highlighted in Section 5.2, experiments 4 and 5.

5. DNS-Class is stable over time. In experiment 5 (Table IVd) we demonstrated that one can use
the same model for classifying traffic after 8 months since training. Our algorithm achieved
%TP of 97.7%, but still with %FP below 0.1%.

(a) The overall system performance was worse than for a fresh model, but still acceptable.
The performance was lower because several new services—and several new domain
names—appeared on the Internet.

7. CONCLUSIONS

In this paper, we demonstrated a practical system that immediately classifies a highly significant
portion of Internet traffic, using DNS information and first packets of IP flows. In Section 3, we
described an algorithm for tagging flows with domain names, and an algorithm for classifying these
flows. We analyzed the dependency of network protocols on DNS in Section 4, showing e.g. that
1) it is possible to find the domain name for 27% of flows, 50% of bytes, and 44% of packets in
the investigated ISP network, and 2) that P2P and Gaming applications almost never employ DNS.
Finally, in Section 5 we demonstrated the robustness of DNS-Class by evaluating it on two traces of
real traffic, obtaining very good performance results.
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A potential operational limitation of DNS-Class is obtaining the training data. We searched for
DNS data using heuristics (Section 3.1), but more accurate methods can be employed, e.g. using a
single application traffic sniffer to capture the DNS packets directly [23]. Another issue is unknown
detection, i.e. detecting applications that were not present in the training data. We leave this for
future work, with a preliminary idea to introduce thresholds on the number of non-zero elements in
the feature vector wp, and on the value of the decision function (Eq. 7). Extending our work to IPv6
and other transport protocols should be straightforward.

We conclude that DNS is useful for traffic classification. We presented an important and
innovative approach to IP flow analysis in the context of traffic classification. Our work can be
a motivation to employ DNS information as a traffic feature and to enrich flow exporting formats
like Netflow or IPFIX with flow domain names. Finally, in Section 3.3 we gave our vision for DNS-
Class that explains its importance for the field of traffic classification.
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a)

Protocol
All traffic Traffic with domain name

Named flows Selected?
Flows Packets (K) Bytes (M) Flows Packets (K) Bytes (M)

(1)

WWW 4,956,030 1,384,874 1,107,301 3,943,929 1,027,737 821,322 79.58% yes
Kaspersky 43,340 485 16 16,391 193 7.3 37.82% yes

NTP 34,160 102 4.7 10,241 47 2.1 29.98% yes
STUN 20,786 540 276 4,646 35 1.8 22.35% yes

Mail 20,293 8,590 5,558 14,391 7,950 5,455 70.92% yes
SIP 18,498 374 127 78 69 22 0.42% -

Teredo 12,504 923 59 0 0 0 0.00% -
SSH 9,424 1,348 837 973 1,017 799 10.32% yes

Jabber 4,752 558 62 4,530 539 61 95.33% yes
SQL 4,752 3,196 1,086 9 62 33 0.19% -

Teamviewer 1,185 1,683 231 72 13 4.3 6.08% -
FlashPlayer 1,039 142 48 329 10 2.0 31.67% yes

RTMP 821 18,073 13,330 373 3,283 2,193 45.43% yes
FTP 209 294 243 182 254 211 87.08% yes

Shoutcast 160 4,335 2,481 142 4,085 2,304 88.75% yes

(2)

BitTorrent 5,034,169 434,230 294,422 14,720 111 5.3 0.29% yes
Kademlia 1,222,167 4,273 284 0 0 0 0.00% -

eMule 290,101 98,558 71,112 0 0 0 0.00% -
Steam 179,910 2,872 955 88 10 0.9 0.05% -
Skype 172,171 66,861 26,221 236 1.5 0.10 0.14% yes

Ares 10,990 2,407 271 0 0 0 0.00% -
XboxLive 6,564 2,148 288 7 2.7 0.08 0.11% -

HalfLife 3,832 57 2.7 2 0.01 0.001 0.05% -
Roblox 364 25,595 5,297 0 0 0 0.00% -

(3)
DNS 1,817,572 9,620 581 0 0 0 0.00% yes

Unknown 1,717,714 374,586 136,876 209,127 28,867 8,651 12.17% -
Total: 15,583,507 2,446,723 1,667,969 4,220,466 1,074,286 841,076

b) c)
Protocol group Traffic with domain name Result of DNS

search
Distribution of flows

Flows Packets Bytes Traditional (1) P2P & G. (2) Other (3)
Traditional (1) 77.93% 73.33% 73.56% Success 94.69% 0.36% 4.96%

P2P & Games (2) 0.22% 0.02% <0.01% Failure 9.96% 60.77% 29.27%
Other (3) 5.92% 7.51% 6.29% All traffic: 32.91% 43.18% 22.69%
All traffic: 27.08% 43.91% 50.42%

Table III. Results of traffic analysis in the ASNET1 dataset. Table IIIa lists all significant protocols in each
group—traditional client-server (1), P2P & Games (2), and Other (3)—and gives numerical values on the
traffic and its dependency on DNS. The last column indicates which protocols were chosen for experimental
validation. Table IIIb analyses how many flows, packets, and bytes in each group have a domain name. Table
IIIc shows the distribution of flows among the groups, depending on the result of the DNS Search algorithm.
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a)
FPlayer FTP Jabber Kasp. Mail NTP RTMP SSH STUN Shcast Skype Torrent WWW %TP %FP

FPlayer 39.8% 60.2% 39.8% <0.1%
FTP 45.6% 54.4% 45.6% <0.1%

Jabber 66.5% 33.5% 66.5% <0.1%
Kasp. 100.0% 100.0% 0.0%
Mail 79.7% 20.3% 79.7% <0.1%
NTP 99.9% 0.1% 99.9% <0.1%

RTMP 71.3% 28.7% 71.3% <0.1%
SSH 99.9% 0.1% 99.9% <0.1%

STUN 98.0% 2.0% 98.0% <0.1%
Shcast 93.8% 6.2% 93.8% <0.1%
Skype 99.2% 0.8% 99.2% <0.1%
Torrent 68.1% 31.9% 68.1% <0.1%
WWW <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% 99.9% 99.9% 14.3%

Average: 81.7% 1.1%
b)

FPlayer FTP Jabber Kasp. Mail NTP RTMP SSH STUN Shcast Skype Torrent WWW %TP %FP
FPlayer 87.5% <0.1% 12.5% 87.5% 0.0%

FTP 99.9% <0.1% 99.9% <0.1%
Jabber 100.0% 100.0% 0.0%
Kasp. 25.3% 74.7% 25.3% 0.0%
Mail <0.1% 99.9% 99.9% 0.0%
NTP 100.0% 100.0% 0.0%

RTMP 96.3% 3.7% 96.3% 0.0%
SSH 100.0% 100.0% 0.0%

STUN 0.4% 99.6% 99.6% <0.1%
Shcast 0.6% 94.2% 5.2% 94.2% <0.1%
Skype 5.4% 94.6% 94.6% 0.0%
Torrent <0.1% 0.1% 99.3% 0.5% 99.3% 0.0%
WWW <0.1% <0.1% 99.9% 99.9% 19.0%

Average: 92.1% 1.5%
c)

FPlayer FTP Jabber Kasp. Mail NTP RTMP SSH STUN Shcast Skype Torrent WWW %TP %FP
FPlayer 97.4% 2.6% 97.4% <0.1%

FTP 99.9% <0.1% 99.9% 0.0%
Jabber 100.0% 100.0% 0.0%
Kasp. 100.0% 100.0% 0.0%
Mail 100.0% 100.0% <0.1%
NTP 100.0% 100.0% 0.0%

RTMP 98.7% 1.3% 98.7% <0.1%
SSH 100.0% 100.0% 0.0%

STUN 100.0% 100.0% <0.1%
Shcast 94.7% 5.3% 94.7% <0.1%
Skype 99.2% 0.8% 99.2% 0.0%
Torrent <0.1% 99.5% 0.5% 99.5% <0.1%
WWW <0.1% <0.1% <0.1% <0.1% 99.9% 99.9% 0.1%

Average: 99.2% <0.1%
d)

FPlayer FTP Jabber Kasp. Mail NTP RTMP SSH STUN Shcast Skype Torrent WWW %TP %FP
FPlayer 78.0% 3.6% 0.3% 18.1% 78.0% <0.1%

FTP 96.2% 3.8% 96.2% <0.1%
Jabber 100.0% 100.0% <0.1%
Kasp. 100.0% 100.0% 0.0%
Mail 100.0% 100.0% <0.1%
NTP 100.0% 100.0% 0.0%

RTMP 98.4% 1.6% 98.4% <0.1%
SSH 100.0% 100.0% 0.0%

STUN 100.0% 100.0% <0.1%
Shcast 1.0% 1.6% 97.5% 97.5% 0.0%
Skype 100.0% 100.0% 0.0%
Torrent <0.1% 99.6% 0.3% 99.6% <0.1%
WWW <0.1% <0.1% <0.1% 99.9% 99.9% 0.3%

Average: 97.7% <0.1%

Table IV. Results of experimental validation (10-fold cross-validation). The tables present confusion
matrices and performance metrics for the experiments 2-5 described in Section 5.2: a) domain name
classification, b) port number classification, c) full DNS-Class, and d) performance after 8 months since

training.
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