Praca doktorska

Probabilistyczne aspekty programowania,
kwantowego

Jarosaw Adam Miszczak

Promotor: Prof. dr hab in. Jerzy Klamka

Instytut Informatyki Teoretycznej i Stosowanej
Polskiej Akademii Nauk

Marzec 2008

Doctoral thesis

Probabilistic aspects of quantum programming

Jarosaw Adam Miszczak

Supervisor: Prof. dr hab in. Jerzy Klamka

The Institute of Theoretical and Applied Informatics
Polish Academy of Sciences

March 2008

Contents

[Abstract]

|Acknowledgements|

(1 Introduction|

[1.2.1 Progress in quantum programming|

(1.2.2 Limitations of quantum programming|
[1.2.3 New methods for developing quantum algorithms| . . .

1.3 Motivation and goals| L.

I S N TS T R

[1.5 Organizgation of this thesis|
2 Models of quantum computation|

2.1 Computability]

2.2 Turing machine|o oL

[2.2.1 Classical Turing machine|
[2.2.2 Nondeterministic and probabilistic computation|. . . .
[2.2.3 Quantum Turing machinel
[2.2.4 Quantum complexity|.

P3

(Quantum computational networks|

2.4.2 Quantum RAM modell
[2.4.3 Quantum pseudocode|

[2.4.4 Quantum programming environment|

vil

X

v

CONTENTS

2.5 Furtherreading L.

|3 Quantum programming languages|
I;i.l llll[!!!l!lg!i!!lll ----------------------------

3.2 Requirements for quantum programming language|

[3.3 Imperative quantum programming|
3.3.1 Quantum Computation Languagel.
3.3.2 LanQ|

|3.4 Functional quantum programming|
3.4.1 QPLand cQPL].

3.5 Summary|

[3.6 Further reading|

|4 Application in quantum game theory]|

4.1 Introduction|. oo

|4.1.2 Classical version of Parrondo’s game|
4.2 Quantum games|
4.2.1 Quantum Prisoner’s dilemma)
4.3 Quantum implementation of Parrondo’s game|

4.4 Summarry|

|5 Operating on quantum data types|
b1 Motivationl
5.2 Quantum data types|
[5.3 Initialisation of quantum registers|.
[p.3.1 Generating unitary matrix|.
[9.4 Sorting integers on quantum computer|
5.4.1 Radix sort algorithm|
[5.4.2 Quantum radix sort algorithm|
5.5 Time and space complexity|

6 Conclusions|

|IA Experimental quantum programming language kulkal

|A.3 Data types and subprocedures|.

|A.4 Interpreter implementation|

CONTENTS

B Mathematics of quantum information| 93
IB.1 Structure of quantum theory| 93
[B.1.1 Operations| 96

[B.1.2 Composite systems| 97

B.2 Examples 97
[B.2.1 Quantum registers| 98

[B.2.2 Deutsch’s algorithm| 98

[B.2.3 Quantum teleportation| 99

[B.2.4 Quantum channels and quantum errors| 101
(C_Notationl 103
|[Lists of Figures| 105
|[List of Listings| 107
[List of Tabled 110

Bibliography 119

Abstract

Quantum information theory allows us to use quantum mechanics resources
for processing and sending information. Since the rules of quantum mechan-
ics are in many aspects counterintuitive, the development of new quantum
algorithms and protocols is complicated. At the moment only a few algo-
rithms exist which can be executed on a quantum computer with significant
improvement in speed or memory usage.

The main goal of this thesis is to describe the methods of using quan-
tum programming languages for developing new quantum algorithms. We
present the original implementation of a classical game where quantum pro-
gramming was used to develop and analyse quantisation of the game. We
also show how quantum data types, ie. data types allowing for storing su-
perposition of values, can be used to develop new quantum algorithms.

Acknowledgements

I would like to thank my supervisor prof. Jerzy Klamka for his help during
my work on this thesis.

I would like to thank prof. Vladimir Buzek from the Slovak Academy
of Sciences for giving me an opportunity to work in his group and prof.
Karol yczkowski from the Jagiellonian University for interesting and fruitful
discussions.

I also would like to express my gratitude to Ravinda Chhajlany, Piotr
Gawron, Josef Kosik and Zbyszek Puchaa for interesting discussions and
valuable comments. I am also grateful to Ryszard Winiarczyk for his support
and guidance.

Finally, I would like to thank my wife Iza for her help, support and
comments.

This work was realized under financial support of Polish Ministry of Science
and Higher Education grants N519 012 31/1957 and N206 013 31/2258.

Chapter 1

Introduction

In this chapter we give short introduction to quantum information theory
and provide the background for presented research. We briefly describe
recent results in the field of quantum information, related to the topic of this
thesis. We focus on quantum programming languages and novel approaches
to quantum algorithms development. Among these we list quantum games
and quantum walks. We also explain the main motivation for presented
research and provide the outline of results presented in this thesis.

As we do not aim to repeat too many elementary facts the references to
literature are provided. The selected mathematical tools used in quantum
information theory are presented in Appendix

1.1 Quantum information theory

Quantum information theory is a new, fascinating field of research which
aims to use quantum mechanical description of the systems to perform com-
putational tasks. It is based on quantum physics and classical computer
science, and its goal is to use the laws of quantum mechanics to develop
more powerful algorithms and protocols.

According to the Moore’s Law [84] the number of transistors on a given
chip is doubled every two years (see Figure . Since classical computation
has its natural limitations in terms of the size of computing devices, it is
natural to investigate the behaviour of objects in micro scale.

Quantum effects cannot be neglected in microscale and thus they must
be taken into account when designing future computers. Quantum compu-
tation aims not only take them into account, but also develop methods for
controlling them. Quantum algorithms and protocols are recipes how one
should control quantum system to achieve better efficiency.

Information processing on quantum computer was first mentioned in

Introduction

10° - T - T - T - T - ,
Ttanium 2 (9 MB cache) O 3
Itanium 2 O .-)
10% b 4
Pentium 4 "]
0O q
P O Itanium |
@ 107 o O PentiumIIl 3
3]
,*E . O Pentium II]
% Intel486
= X L Pentium
& o100 A E
5] o 3
g Intel286 O Intel386
5 o
Z10° E
8086 .7]
o
10t L E
4004 O 8080]
o0 8008
103 s L s L s L s L s L s L s
1970 1975 1980 1985 1990 1995 2000 2005

Year of introduction

Figure 1.1: Illustration of Moore’s hypothesis. Number of transistors which
can be put on single chip grow expotentially. The circles represent micro-
processors introduced by Intel Corportation [57]. Dashed line illustrates the
rate of growth, with the number of transistors doubling every two years.

1982 by Feynman [37]. This seminal work was motivated by the fact that
simulation of a quantum system on the classical machine requires exponen-
tial resources. Thus, if we could control physical system at the quantum level
we should be able to simulate other quantum systems using such machines.

The first quantum protocol was proposed two years later by Bennett
and Brassard [9]. It gave the first example of the new effects which can be
obtained by using the rules of quantum theory for processing information.
In 1991 Ekert described the protocol [35] showing the usage of quantum
entanglement [32] in communication theory.

Today we know that thanks to the quantum nature of photons it is possi-
ble to create unconditionally secure communication links [16] or send infor-
mation with efficiency unachievable using classical carriers. During the last
years cryptographic systems have been implemented in real-world systems.
Quantum key distribution is the most promising application of quantum
information theory, if one takes practical applications [I114] into account.

On the other hand we know that the quantum mechanical laws of nature
allow us to improve the solution of some problems [107, 46], construct games
[34] and random walks [66] with new properties.

Nevertheless, the most spectacular achievements in quantum information
theory to the moment are the quantum algorithm for factoring numbersﬂ and

'Detailed description of factorisation algorithm can be found in [73].

1.2 Recent results

calculating discrete logarithms over finite field proposed in the late ninethies
by Shor [106]. The quantum algorithm solves the factorisation problem
in polynomial time, while the best known probabilistic classical algorithm
runs in time exponential with respect to the size of input number. Shor’s
factorisation algorithm is one of the strongest arguments for the conjecture
that quantum computers can be used to solve in polynomial time problems
which cannot be solved classically in reasonable (ie. polynomial) time.

Concerning research efforts focused on discovering new quantum algo-
rithms it is suprising that during the last ten years no similar results have
been obtained. One should note that there is no proof that quantum com-
puters can actually solve NP-complete problems in polynomial time [41].
This proof could be given by quantum algorithms solving in polynomial time
problems known to be NP-complete such as k-colorability. The complexity
of quantum computation remains poorly understood. We do not have much
evidence how useful quantum computers can be. Still much is to be discov-
ered about the relations between quantum complexity classes such as BQP
and classical complexity classes like NP.

1.2 Recent results

To give the necessary background for this thesis, we review the recent results
in the fields of quantum programming and quantum algorithms. We also
review new methods proposed during the last few years to study and develop
quantum algorthims, namely quantum games and quantum walks.

1.2.1 Progress in quantum programming

Several languages and formal models were proposed for the description of
quantum computation process. The most popular of them is quantum cir-
cuit model [26], which is tightly connected to the physical operations im-
plemented in laboratory. On the other hand the model of quatum Turing
machine is used for analysing the complexity of quantum algorithms [10].

Another model used to describe quantum computers is Quantum Ran-
dom Access Machine (QRAM). In this model we have strictly distinguised
the quantum part performing computation and classical part, which is used
to control computation. This model is used as a basis for most quantum
programming languages [43]. Among high-level programming languages de-
signed for quantum computers we can distinguish imperative and functional
languages.

At the moment of writing this thesis the most advanced imperative quan-
tum programming languages is Quantum Computation Language (QCL) de-
signed and implemented by Omer [93, 9T, 92]. QCL is based on the syntax
of the C programming language and provides many elements known from
classical programming languages. The interpreter is implemented using sim-

Introduction

ulation library for executing quantum programmes on classical computer,
but it can be in principle used as a code generator for classical machine con-
trolling a quantum circuit. Translation of QCL source code into Quantum
Markup Language [75], used to describe quantum circuits, was presented in
[123].

Along with QCL few other imperative quantum progamming languages
were proposed. Notably Q Language developed by Betteli [11 [12] and
libquantum [I19] have the ability to simulate noisy environment. Thus, they
can be used to study decoherence and analyse the impact of imperfections
in quantum systems on the accuracy of quantum algorithms.

Q Language is implemented as a class library for C4++ programming
language and libquantum is implemented as a C programming language
library. They also share some limitation with QCL, since it is possible to
operate on single qubits or quantum registers (ie. arrays of qubits) only.
Thus, they are similar to packages for computer algebra systems used to
simulate quantum computation [77].

Concerning problems with physical implementations of quantum com-
puters, it became clear that one needs to take quantum errors into account
when modelling quantum computational process. Also quantum commu-
nication has become very promising application of quantum information
theory over the last few years. Both facts are reflected in the design of new
quantum programming languages.

LanQ developed by Mlnaiik was defined in [83]. It provides syntax based
on C programming language. LanQ provides several mechanisms such as
the creation of a new process by forking and interprocess communication.
Thus, it supports the implementation of multiparty protocols. Moreover,
operational semantics of Lan(Q has been defined. Thus, it can be used for
the formal reasoning about quantum algorithms.

It is also worth to mention new quantum programming languages based
on functional paradigm. QPL [I03] was the first functional quantum pro-
gramming language. This language is staticaly typed and allows to detect
errors at compile-time rather than run-time.

Its more mature version is cQPL — communication capable QPL . cQPL
was created to facilitate the development of new quantum communication
protocols. Its interpreter uses QCL as a backend language so the cQPL
programmes are translated in C++ code using QCL simulation library.

In Chapter |3| we compare the selected quantum programming languages
and descibe their main advantages and limitations.

1.2.2 Limitations of quantum programming

In QCL quantum memory can be accessed using only qreg data type, which
represents the array of qubits. In the syntax of cQPL data type qint has been
introduced, but it is only synonymous for the array of 16 qubits. Similar

1.2 Recent results

situation exists in LanQ [83], where quantum data types are introduced
using qnit keyword, where n represents a dimension of elementary unit (eg.
for qubits n = 2, for qutrits n = 3). However, only unitary evolution and
measurement can be performed on variables defined using one of these types.

In this thesis quantum data type is defined as a data type which allows
for superpositions of values in its range. In Chapter [5| we argue that thanks
to quantum data types many common tasks can be performed using com-
pact syntax. We also propose small programming language designed to test
developed algorithms.

Experimental quantum programming language kulka introduces gint data
type for storing integer numbers. It is possible to initialise variable to store
superposition of integers (see Appendix , eg.

gint vl = (5—10—15);

Naturally, this operation must be represented using quantum gates —
this is one of the main requirements for any quantum programming language.
Like in the case of quantum conditions introduced in QCL [93], initialisation
to superposition provides only syntactic sugar for operation of quantum
memory. Nevertheless it can be also used as the basis for more elaborated
quantum algorithms. The example of such algorithm is the quantum radix
sorting algorithm described in Chapter

1.2.3 New methods for developing quantum algorithms

Due to the lack of progress in discovering new quantum algorithms novel
methods for studying impact of quantum mechanics on algorithmic problems
were proposed.

The first of these methods aims at applying the rules of quantum mechanics
to game theory [61]. Classical games are used to model the situation of
conflict between competing agents [98]. The simplest application of quantum
games is presented in the form of quantum prisoners dilemma [34]. In
this case one can analyse the impact of quantum information processing
on classical sceniarios. On the other hand quantum games can be also used
to analyse typical quantum situations like state estimation and clonning [69].
Among interesting results of this approach we can also point out quantum
Parrondo’s paradox [78], which was applied to analyse quantum algorithms
[68] and quantum decoherence [70].

Quantum walks provide the second promising method for developing
new quantum algorithms. Quantum walks are the counterparts of classical
random walks [66]. In [4] the quantum algorithm for element distinctness
using this method was proposed. It requires O(nz/ 3) queries to determine if
the input {z1,...,2,} consisting of n elements contains two equal numbers.
Generalization of this algorithm, with applications to the problem of subset

Introduction

finding, was described in [19]. In [3] the survey of quantum algorithms based
on quantum walks is presented.

In this thesis we show how quantum programming language can be used
to develop and analyse quantum games. The example of such application is
described in Chapter [4]

1.3 Motivation and goals

At the moment only few quantum algorithms exist. Taking into account
intensive work in this field it is natural to ask about the roots of this situation
[108, 109].

One possible explanation of this situation is that quantum mechanical
information processing can be used to solve the narrow class of problems.
It is hard to find new algorithms since it is difficult to find problems which
can be solved on quantum computers better than on classical ones.

The second, more optimistic, explanation lies in the fact that quantum
mechanical description of the computational process differs significantly
from the description we are used to in classical physics. We know that
quantum mechanical objects behave in the way that is far from common
intuition.

Following this argument one can conclude that it is necessary to develop
new methods for dealing with quantum mechanical systems, which allow us
to develop new algorithms and protocols. This was the main motivation for
starting research in the field of quantum programming languages.

Any classical computation can be described using only bits and operations
on them, but it is very complicated to write programmes processing only bits.
Similar situation occurs in quantum computing where one needs to process
not only single bits, but also the superposition of them. Of course any
quantum programme written in high-level programming language needs to
be decomposed into the set of elementary operations. But like in the classical
case this can be done automatically using the compiler of a high-level language.

This is also the motivation for research described in this thesis. Our aim
is to show that quantum programming languages and quantum data types
can be used to facilitate construction of new quantum algorithms.

1.4 Thesis

The main goal of this research is to show how quantum programming allows
for developing new quantum algorithms. In particular we show how it can
be used to develop quantum versions of classical results. We present two
applications where quantum programming languages were used for developing
the generalisation of classical results.

The first example is the application of quantum computing paradigm
to game theory. We present the original quantum version of Parrondo’s

1.5 Organization of this thesis

paradoxical game [48| 49]E| The development and analysis of the presented
quantum Parrondo’s game were conducted using a quantum programming
language. In spite of the fact that existing quantum programming languages
do not provide many high-level elements they can be used to facilitate the
development and analysis of quantum algorithms.

The second application is related to experimental quantum programming
language kulka designed during the work on this thesis. We present the
algorithm for state initialisation used in kulka interpreter. It was used
to implement quantum data type for handling integer numbers. We also
present the quantum version of radix sorting algorithm. It has been developed
using data types allowing for the superposition of values from their range.

By analyzing existing quantum programming languages and examples
from experimental programming language we aim to prove following thesis
concerning quantum programming languages and quantum algorithms:

1 Existing quantum programming languages can be used to develop new
quantum algorithms.

[Introduction of quantum data types provides the way for handling
common computing operations, in particular primitive operations used
in quantum information processing.

1.5 Organization of this thesis

This thesis is organized as follows.

In Chapter 2]we describe formal models used to describe quantum computation.
This includes quantum circuits model, quantum Turing machine and quantum
random access machine. In analogy to the situation in classical computer
science the model based on random access machine is used as the theoretical
background for programming languages.

Chapter [3] presents the state of art in the field of quantum programming
languages. We describe the most advanced existing languages designed to
operate on quantum memory. Some examples are provided to allow for
better insight into syntax of presented languages. We argue that quantum
programming is necessary for developing new quantum algorithms and protocols.
We also point out the drawbacks of existing languages and why it is necessary
to develop new languages.

In Chapter [4] the application of quantum programming to quantum
games is discussed. We provide the example of classical game implemented
in high-level quantum programming language. We show how procedural
quantum programming language can be used to create and analyse the
quantum version of classical game.

2Tt shuld be noted that for a given classical game there is no unique method for con-
structing its quantum version.

Introduction

Chapter [f] contains the description of the quantum procedures developed
during the work on this thesis. We present the original algorithm for
preparing superposition of quantum registers, which has been used in the
interpreter of high level quantum programming language. We also present
the quantum algorithm for sorting, which has been developed using the
methods based on quantum data types. We compare the time and space
complexity of the presented algorithm with the complexity of existing algorithms.
Appendix [A] contains the description of experimental programming language
kulka which has been developed to test algorithms presented in this chapter.

Chapter [6] contains the summary, conclusion and considerations about
the possible directions of further work.

Chapter 2

Models of quantum computation

Computational process must be studied using the fixed model of computational
device. This chapter introduces the basic models of computation used in
quantum information theory. We show how these models are defined by
extending classical models.

We start by introducing basic facts about classical and quantum Turing
machines. This model helps to understand how useful quantum computing
can be. It can be also used to discuss the difference between quantum
and classical computation. For the sake of completeness we also give brief
introduction to the main results of quantum complexity theory. Next we
introduce Boolean circuits and describe the most widely used model of
quantum computation, namely quantum circuits. We focus on this model
since many presented facts about quantum circuits are used in the following
chapters. Finally we introduce another model which is more suited for
defining programming languages operating on quantum memory — quantum
random access machine (QRAM).

Note that we will not discuss problems related to the physical realization
of described models. We also do not cover the area of quantum error
correcting codes, which aims to provide methods for dealing with decoherence
in quantum systems. For an introduction to those problems and recent
progress in this area see for example [17] and [5].

2.1 Computability

Classically computation can be described using various models. The choice
of the model used depends on the particular purpose or problem. Among
the most important models of computation we can point:

10

Models of quantum computation

O Turing Machine introduced in 1936 by Turing [52] and used as the
main model in complexity theory [94].

0 Random Access Machine [22, [105] which is the example of register
machines; this model captures the main features of modern computers
and provides theoretical model for programming languages.

1 Boolean circuits defined in terms of logical gates and used to compute
Boolean functions f: {0,1}™ — {0, 1}"; they are used in complexity
theory to study circuit complexity.

[Lambda calculus defined by Church [20] and used as the basis for many
functional programming languages [2].

(A Universal programming languages which are probably the most widely
used model of computation [80].

It can be shown that all these models are equivalent [94, 52]. In other
words the function which is computable using one of these models can
be computed using any other model. It is quite suprising since Turing
machine is a very simple model, especially when compared with RAM or
programming languages.

In particular the model of multitape Turing machine is regarded as a
canonical model. This fact is captured by the Church-Turing hypothesis.

Hypothesis 2.1 (Church-Turing) Every function which would be naturally
regarded as computable can be computed by a universal Turing machine.

Although stated as a hypothesis this thesis is one of the fundamental axioms
of modern computer science.

Universal Turing machine is a machine which is able to simulate any
other machine. The simplest method for constructing such device is to use
the model of Turing machine with two tapes [65] [94].

Research in quantum information processing is motivated by the extended
version of Church-Turing thesis formulated by Deutsch [25].

Hypothesis 2.2 (Church-Turing-Deutsch) Every physical process can be simulated

by a universal computing device.

In other words this thesis states that if the laws of physics are used to
construct Turing machine, such model might provide greater computational
power when compared with the classical model. Since the basic laws of
physics are formulated as quantum mechanics, such improved version of
Turing machine should be governed by the laws of quantum physics.

In this chapter we review some of these computational models focusing
of their quantum counterparts. The discussion of quantum programming

2.2 Turing machine 11

languages, which are based on the quantum random access machines (QRAM),
is presented in Chapter [3]

We start be recalling the basic facts concerning Turing machine. This
model allows to establish clear notion of computational resources like time
and space used during computation. It is also used to precisely define other
models introduced in this chapter.

On the other hand for practical purposes the notion of Turing machine
is clumsy. Even for simple algorithms it requires quite complex description
of transition rules. Thus we use more sophisticated methods like Boolean
circuits and programming languages to describe the results presented in this
thesis.

2.2 Turing machine

The model of Turing machine is widely used in classical and quantum

complexity theory. Despite of its simplicity it captures the notion of computability.
In what follows by alphabet A = {ai,...,a,} we mean any finite set

of characters or digits. Elements of A are called letters. Set A* contains

all strings of length k& composed from elements of A. Elements of A are

called words and the length of the word w is denoted by |w|. The set of all

words over A is denoted by A*. Symbol € is used to denote an empty word.

The complement of language L C A* is denoted by L and it is the language

defined as L = A* — L.

2.2.1 Classical Turing machine

Turing machine can operate only using one data structure — string of symbols.
Despite its simplicity, this model can simulate any algorithm with inconsequential
loss of efficiency [94]. Classical Turing machine consists of

d an infinitely long tape containing symbols from the finite alphabet A,

[d a head, which is able to read symbols from the tape and write them
on the tape,

1 memory for storing programme for the machine.

The programme for the Turing machine is given in terms of transition
function 6. The schematic illustration of Turing machine is presented in

Figure

Formally, the classical deterministic Turing machine is defined as follows.

Definition 2.1 (Deterministic Turing machine) A deterministic Turing machine
M over an alphabet A is a sixtuple (Q, A, 0, qo, a, ¢r), Where

4 @ is the set of internal control states,

Models of quantum computation

A qo, ¢4, g € Q are initial, accepting and rejecting states,

0 d:QxA— QxAx{—1,0,1} is a transition function ie. the programme
of a machine.

By the configuration of machine M we understand a triple (g;,z,y),
q € Q, x,y € A*. This the describes the situation where the machine is in
the state ¢;, the tape contains the word zy and the machine starts to scan
the word y. If x = 2’ and y = by’ we can illustrate this situation as in
Figure 2.1

V

x a | b Yy

(a) Configuration (q;,z'a, b1y’)

Y

x! a | by Y

(b) Configuration (gq;,x’, abay’)

Figure 2.1: Computational step of the Turing machine. Configuration
(gi,2'a,bry’) is presented in (a). If the transition function is defined such
that d(g;,b1) = (g2,b2, —1) that computational step leads to configuration

(gj, 2, abay’) (see (b)).

The transition from the configuration ¢; to the configuration cs is called
a computational step. We write ¢ - ¢ if § defines the transition from ¢ to
. In this case ¢ is called the successor of c.

Turing machine can be used to compute values of functions or to decide
about input words. The computation of a machine with input w € A*
is defined as the sequences of configurations cg,ci,co, ..., such that ¢y =
(gi,e,w) and ¢; F ¢;11. We say that computation halts if some ¢; has no
successor or for configuration ¢;, the state of the machine is ¢, (machine
accepts input) or ¢, (machine rejects input).

The computational power of the Turing machine has its limits. Let us
define two important classes of languages.

Definition 2.2 A set of words L € A* is a recursively enumerable language
if there exists a Turing machine accepting input w iff w € L.

2.2 Turing machine

Definition 2.3 A set of words L € A* is a recursive language if there exists
a Turing machine M such that

[M accepts w iff e € L,

(d M halts for any input.

The computational power of the Turing machine is limited by the following
theorem.

Theorem 2.1 There exists a language H which is recursively enumerable but
not recursive.

Language H used in the above theorem is defined in halting problem
[94]. Tt consists of all words composed of words encoding Turing machines
and input words for those machines, such that a particular machine halts
on a given word. Universal Turing machine can simulate any machine, thus
for a given input word encoding machine and input for this machine we can
easily perform the required computation.

Deterministic Turing machine is used to measure time complexity of
algorithms. Note that if for some language there exists a Turing machine
accepting it, we can use this machine as an algorithm for solving this
problem. Thus we can measure the running time of the algorithm by
counting the number of computational steps required for Turing machine
to output the result.

The time complexity of algorithms can be described using following
definition.

Definition 2.4 Class TIME(f(n)) consists of all languages L such that there
exists a deterministic Turing machine running in time f(n) accepting input
wiff we L.

In particular complexity class P defined as

P = | TIME(n"). (2.1)
k

captures the intuitive class of problems which can be solved easily on a
Turing machine.

2.2.2 Nondeterministic and probabilistic computation

Since one of the main features of quantum computers is their ability to
operate on the superposition of states we can easily extend classical model
of probabilistic Turing machine and use it to describe quantum computation.
Since in general many results in the area of algorithms complexity are stated
in the terms of a nondeterministic Turing machine we start by introducting
this model.

14

Models of quantum computation

Definition 2.5 (Nondeterministic Turing machine) A nondeterministic Turing
machine M over an alphabet A is a sixtuple (Q, A, 6, qo, Ga, qr), Where

[@ is the set of internal controll states,
A qo, ¢, g € Q are initial, accepting and rejecting states,

oCc@QxAxQ xAx{-1,0,1} is a relation.

The last condition in the definition of a nondeterministic machine is the
reason for its power. It also requires to change the definition of accepting
by the machine.

We say that a nondeterministic Turing machine accepts input w if for
some initial configuration (g;, €, w) computation leads to configuration (¢, a1, a2)
for some words a; and as. Thus a nondeterministic machine accepts input if
there exists some computational path defined by transition relation ¢ leading
to an accepting state ¢q.

The model of a nondeterministic Turing machine is used to define complexity
classes NTIME.

Definition 2.6 Class NTIME(f(n)) consists of all languages L such that
there exists a nondeterministic Turing machine running in time f(n) accepting
input w iff w € L.

The most prominent example of such complexity classes is NP, which is the
union of all NTIME (n*)

NP = JNTIME(n"). (2.2)
k

Nondeterministic computation Turing machine is used as a theoretical
model in complexity theory. However, it is hard to imagine how such device
operates [65]. One can illustrate the computational path of nondeterministic
machine as in Figure [2.2.2

Since our aim is to provide the model of physical device we restrict
ourselves to more realistic model. We can do that by assigning to each
element of relation a number representing probability. In this case we obtain
model of probabilistic Turing machine.

Definition 2.7 (Probabilistic Turing machine) A probabilistic Turing machine
M over an alphabet A is a sixtuple (Q, 4, 4, o, ¢a, @), Where

1 @ is the set of internal control states,

A qo,qq, g € Q are initial, accepting and rejecting states,

2.2 Turing machine

15

time flow . .

Figure 2.2: Schematic illustration of the computational paths of
nondeterministic Turing machine [94]. Each circle represents the
configuration of the machine. The machine can be in many configurations
simultanously.

Oo:QxAxQxAx{-1,0,1} — [0,1] is a transition probability
function ie.

Z 6(q1,a1,q2,a2,d) = 1. (2.3)
(g2,a2,d)€EQx Ax{-1,0,1}

For a moment we can assume that probabilities of transition used by a
probabilistic Turing machine can be represented only by rational numbers.
we do this to avoid problems with machines operating on arbitrary real
numbers. We will address this problem when extending the above definition
to the quantum case.

The time complexity of computation can be measured in terms of the
number of computational steps of the Turing machine required to execute a
programme. Among important complexity classes we have chosen to point
out:

[P — the class of languages for each there exists a deterministic Turing
machine running in polynomial time,

[NP - the class of languages for each there exists a nondeterministic
Turing machine running in polynomial time,

Models of quantum computation

1 RP - the class of languages L for each there exists a probabilistic
Turing machine M such that: M accepts input w with probability at
least % if w € L and always rejects w if w & L,

[coRP - the class of languages L for each L is in RP,
1 ZPP - RP NncoRP.

2.2.3 Quantum Turing machine

Quantum Turing machine was introduced by Deutsch in [25]. This model is
equivalent to quantum circuit model [124,[90]. However, it is very inconvenient
for describing quantum algorithms since the state of a head and the state of
a tape are described by state vectors.

Quantum Turing machine consists of

[Processor: M 2-state observables {n;|i €z,, }.
d Memory: infinite sequence of 2-state observables {m;|i € Z}.
1 Observable x, which represents the address of the current head position.

The state of the machine is described by the vector |¢(t)) = |x; ng, n1,...;m)
in the Hilbert space H associated with the machine.

At the moment ¢ = 0 the state of the machine is described by the vectors
[¥(0)) = >_,,am|0;0,...,0;...,0,0,0,...) such that

Z ;|2 = 1. (2.4)

The evolution of the quantum Turing machine is described by the unitary
operator U acting on H.

Classical probabilistic (or nondeterministic) Turing machine can be described
as a quantum Turing machine such that at each step of its evolution the state
of the machine is represented by the base vector.

The formal definition of the quantum Turing machine was introduced in
[10].

It is common to use real numbers as amplitudes when describing the
state of quantum systems during quantum computation. To avoid problems
with an arbitrary real number we introduce the class of numbers which can
be used as amplitudes for amplitude transition functions of the quantum
Turing machine. B

Let us denote by C the set of complex numbers ¢ € C, such that there
exists a deterministic Turing machine, which allows to calculate Re (¢) and
Im (¢) with accuracy 2% in time polynomial in n.

Definition 2.8 (Quantum Turing Machine) A quantum Turing machine (QTM)
M over an alphabet A is a sixtuple (Q, A, 0, qo, a, ¢r), Where

2.2 Turing machine

17

[@ is the set of internal control states,
a qo, qq, g- € Q are initial, accepting and rejecting states,

i:QxAxQxAx{-1,0,1} — C is a transition amplitude function
ie.

Z 16(q1, a1, g2, a2, d)|* = 1. (2.5)
(g2,a2,d)EQx Ax{—1,0,1}

Reversible classical Turing machines (ie.Turing machines with reversible

transition function) can be viewed as particular examples of quantum machines.

Since any classical algorithm can be transformed into reversible form, it is
possible to simulate classical Turing machine using quantum Turing machine.

2.2.4 Quantum complexity

Quantum Turing machine allows for rigorous analysis of algorithms. This is
important since the main goal of quantum information theory is to provide
gain in terms of speed or memory with respect to classical algorithms. It
should be stressed that at the moment no formal proof has been given that
quantum Turing machine is more powerful than classical Turing machine.

In this section we give some results concerning quantum complexity
theory.

In analogy to classical case it is possible to define complexity classes for
the quantum Turing machine. The most important complexity class is this
case is BQP.

Definition 2.9 Complexity class BQP contains languages L for which there
exists quantum Turing machine running in polynomial time such that, for
any input word z this word is accepted with probability at least % ifxelL
and is rejected with probability at least % ifx & L.

Class BQP is a quantum counterpart of the classical class BPP.

Definition 2.10 Complexity class BPP contains languages L for which there
exists nondeterministic Turing machine running in polynomial time such
that, for any input word x this word is accepted with probability at least %

if x € L and is rejected with probability at least % ifx & L.

Since many results in complexity theory are stated in terms of oracles,
we define an oracle as follows.

Definition 2.11 Oracle or black box is an imaginary machine which can
decide certain problems in a single operation.

We use notation AP to describe the class of problems solvable by an
algorithm in class A with an oracle for the language B.
It was shown in [10] that

18

Models of quantum computation

Theorem 2.2 Complexity classes fulfil the following inequality
BPP C BQP C P#P, (2.6)

Complexity class #P consists of problems of the form compute f(x),
where f is the number of accepting paths of an NP machine. For example
problem #SAT formulated below is in #P.

Problem 2.1 (#SAT) For a given Boolean formula, compute how many
satisfying true assignments it has.

Complexity class P#P consists of all problems solvable by a machine
running in polynomial time which can use oracle solving problems in #P.

2.3 Quantum computational networks

After presenting the basic facts about Turing machines we are ready to
introduce more usable models of computing devices. We start be defining
Boolean circuits and extending this model to quantum case. Quantum
circuits defined in this section will be used to describe algorithms in Chapters

[and [BL

2.3.1 Boolean circuits

Boolean circuits are used to compute functions of the form
f:{0,1}" — {0,1}"™. (2.7)
Basic gates (functions) which can be used to define such circuits are
a A:{0,1}2 = {0,1}, A(z,y) = 1 & 2 =y = 1 (logical and),
av:{0,1}2 = {0,1}, V(z,y) = 0 < = = y = 0 (logical or),
a ~:{0,1} — {0,1}, ~ () =1 — = (logical not).

The set of gates is called universal if all functions {0,1}" — {0,1} can
be constructed using the gates from this set. It is easy to show that the set
of functions composed of the ~, V and A is universal. Thus it is possible
to computer any functions {0,1}" — {0,1}"™ using only these functions.
The full characteristic of universal sets of functions was given by Post in
1949 [127].

Using above set of functions a Boolean circuit is defined as follows.

Definition 2.12 (Boolean circuit) A Boolean circuit is an acyclic direct graph
with nodes labelled by input variable, output variables or logical gates V, A
or ~.

2.3 Quantum computational networks

19

Figure 2.3: The example of a Boolean circuit computing the sum of bits x;
and zy [50]. Nodes labelled z; and x9 represent input variables and nodes
labelled y; and yo represent output variables.

Input variable node has no incoming arrow while output variable node has
no out-coming arrows. The example of a Boolean circuit computing the sum
of bits 1 and z9 is given in Figure [2.3]

Note that in general it is possible to define Boolean circuit using different
sets of elementary functions. Since functions V, A and ~ provide universal
set of gates we defined Boolean circuit using these particular functions.

Function f : {0,1}™ — {0, 1} is defined on the binary string of arbitrary
length. Let f, : {0,1}™ — {0,1}"™ be a restriction of f to {0,1}". For each
such restriction there is a Boolean circuit C),, computing f,. We say that
Cy, C1,Co, ... is a family of Boolean circuits computing f.

Note that any binary language L C {0,1}* can be accepted by some
family of circuits. But since we need to know the value of f,, to construct a
circuit C), such family is not an algorithmic device at all. We can state that
there a exists family accepting language but we don’t know how to build it
[94].

To show how Boolean circuits are related to Turing machine we introduce
uniformly generated circuits.

Definition 2.13 We say that language L € A* has uniformly polynomial
circuits if there exists a Turing machine M that an input 1...1 outputs the

n
graph of circuit C), using space O(logn), and the family Cy, C1, ... accepts
L.

The following theorem provides a link between uniformly generated circuits

and Turing machines.

Theorem 2.3 A language L has uniformly polynomial circuit iff L € P.

20

Models of quantum computation

Quantum circuits model is an analogous to uniformly polynomial circuits.
They can be introduced as the straightforward generalisation of reversible
circuits.

2.3.2 Reversible circuits

The evolution of isolated quantum systems is described by a unitary operator
U (see Appendix. The main difference with respect to classical evolution
is that this type of evolution is reversible.

Before introducting quantum circuit we define reversible Boolean circuit

Definition 2.14 (Reversible gate) A classical reversible function (gate) {0,1}™ —

{0,1}™ is a permutation.

Definition 2.15 A reversible Boolean circuit is a Boolean circuit composed
of reversible gates.

The important fact expressed by the following theorem allows us to
simulate any classical computation no a quantum machine described using
a reversible circuit

Theorem 2.4 All Boolean circuits can be simulated using reversible Boolean
circuits.

Like in the case of nonreversible circuit one can introduce the universal
set of functions for reversible circuits.

x1 U1
€2 Y2
€3 Y3

Figure 2.4: Classical Toffoli gate is universal for reversible circuits. It was
also used in [26] to provide the universal set of quantum gates.

The important example of a gate universal for reversible Boolean circuits
is a Toffoli gate. The graphical representation of this gate is presented in
Figure The following theorem was proved by Toffoli [112].

Theorem 2.5 A Toffoli gate is a universal reversible gate.

As we will see in the following section it is possible to introduce two-bit
quantum gates which are universal for quantum circuits. This is impossible

2.3 Quantum computational networks

21

in classical case and one needs at least a three-bit gate to construct the
universal set of reversible gates.

In particular, any reversible circuit is automatically a quantum circuit.
However quantum circuits offer much more diversity in terms of number of
allowed operations.

2.3.3 Quantum circuits

The computational process of the quantum Turing machine is complicated
since data as well as control variables can be in a superposition of base states.
To provide more convenient method of describing quantum algorithms one
can use quantum circuits modelH

Quantum circuits model was first introduced by Deutsch in [26] and it is
the most commonly used notation for quantum algorithms. It is much easier
to imagine than the quantum Turing machine since the control variables
(executed steps and their number) are classical. The only data in a quantum
circuit are quantum.

Quantum circuit consists of the following elements (see Table [2.2)):

[d the finite sequence of wires representing qubits or sequences of qubits
(quantum registers),

A quantum gates representing elementary operations from the particular
set of operations implemented on a quantum machine,

[d measurement gates representing measurement operation, which is usually

executed as the final step of quantum algorithm. It is commonly
assumed that is is possible to perform measurement on each qubit
in canonical basis {|0),|1)} which corresponds to the measurement of
the S, observable.

The concept of a quantum circuit is the natural generalisation of acyclic
logic circuits studied in classical computer science. Quantum gates have the
same number of inputs as outputs. Each n qubit quantum gate represents
the 2"-dimensional unitary operation of the group U(2"), ie. generalised
rotation in a complex Hilbert space.

The main adventage of this model is it’s simplicity. It also provides very
convenient representation of physical evolution in quantum systems.

Elements of quantum circuit model

From the mathematical point of view quantum gates are unitary matrices
acting on n-dimensional Hilbert space. They represent the evolution of an
isolated quantum system [89).

! This models is sometimes called quantum gate arrays model.

22

Models of quantum computation

The problem of constructing new quantum algorithms requires more
careful study of operations used in quantum circuit model. In particular we
are interested in efficient decomposition of quantum gates into elementary
operations.

We start by providing basic charactersistic of unitary matrices [7, [89)

Theorem 2.6 Every unitary 2 x 2 matrix G € U(2) can be decomposed using
elementary rotations as

G = R.(B)Ry(0)R.(c)®(0) (2.8)
where
G [cos(§/2) sin(€/2)
(6 = < 0 it > Ry (&) = < _sin(€/2) cos(é/2) >
and

We introduce the definition of quantum gates as stated in [50].

Definition 2.16 A quantum gate U acting on m qubits is a unitary mapping
(see Appendix omC"=C...0C?
—————

m times
U:C¥ - C?", (2.9)
which operates on the fixed number of qubits.

Formally quantum circuit is defined as the unitary mapping which can
be decompose into the sequence of elementary gates.

Definition 2.17 A quantum circuit on m qubits is a unitary mapping on
C?", which can be represented as a concatenation of a finite set of quantum
gates.

Examples

Any reversible classical gate is also a quantum gate. In particular logical
gate ~ (negation) is represented by quantum gate NOT', which is realized
by o, Pauli matrix.

As we know any Boolean circuit can be simulated by a reversible circuit
and thus any function computed by a Boolean circuit can be computed using
a quantum circuit. Since quantum circuit operates on a vector in complex
Hilbert space it allows for new operations typical for this model.

2.3 Quantum computational networks

23

The first example of quantum gate which has no classical counterpart is
VvV NOT gate. It has property

VNOTVNOT = NOT, (2.10)

which cannot be fulfilled by any classical Boolean function {0,1} — {0,1}.
Gate /N is represented by the unitary matrix

1/ 1+7 1—4
VNOT_2(1—2' 1+Z,>. (2.11)

Another example is Hadamard gate H. This gate is used to introduce
the superposition of base states. It acts on the base state as

1 1

— —(]0) = |1}). 2.12

% 7510~ 1) (212)
If the gate G is a quantum gate acting on one qubit it is possible

to construct the family of operators acting on many qubits. Particularly

important class of multiqubit operations is the class of controlled operations.

H|0) = —=(|0) + (1)), H|1) =

Definition 2.18 (Controlled gate) Let G be a 2Xx2 unitary matrix representing
a quantum gate. Operator

1){(1]® G+ |0)(0]|®1I (2.13)
acting on two qubits, is called a controlled-G gate.

Here A ® B denotes the tensor product of gates (unitary operator) A and B
and [is an identity matrix (see Appendix . If in the above definition we
take G = NOT we get

1 0 00

0100
t@o+0)0leI=| & oo | (2.14)

0010

which is the definition of CNOT (controlled-NOT') gate. This gate can be
used to construct the universal set of quantum gates. Also this gate allows
to introduce entangled states during computation

1 1
V2 V2
The classical counterpart of CNOT gate is XOR gate.

Other examples of single qubit and two qubit quantum gates are presented
in Table In Figure 2.5|a quantum circuit for quantum Fourier transform
on three qubits is presented.

One can extend definition and introduce quantum gates with many
controlled qubits.

CNOT(H ®T)[00) = CNOT— (|0) + 1)) ®0) = — (00) + |11)) (2.15)

Models of quantum computation

o) E
H—S —

|Q1> ©
|q2) «— H

Figure 2.5: Quantum circuit representing quantum Fourier transform for
three qubits. Elementary gates used in this circuit are described in Table[2.2]

Definition 2.19 Let G be a 2 x 2 unitary matrix. Quantum gate defined as

LD @G+ Y el (2.16)
n—1 n—1 1#1...1
n—1

is called (n — 1)-controlled G gate. We denote this gate by A,_1(G).

Figure 2.6: Generalised quantum Toffoli gate acting on n qubits. Gate G is
controlled by the state of n — 1 qubits according to definition [2.19

This gate Ap,—1(G) is sometimes referred to as a generalised Toffoli gate
or a Toffoli gate with m controlled qubits. Graphical representation of this
gate is presented in Figure We will use this construction in Chapter

T X9 I XOR T2
0|0 0
01 1
110 1
1 1 0

Table 2.1: Logical values for XOR gate. Quantum CNOT gate computes
value of x1 XOR x5 in the first register and stores values of x5 in the second

register.

2.3 Quantum computational networks

25

The name of the gate Graphical representation Mathematical form
Hadamard (1] (b
adamar AR
Pauli X 0 1
ant —xH 10
Pauli Y 0
au —Y = i 0
Pauli Z 7] L0
auli 0 —1
Ph 10
ase . 0 i
3 1 0
d) o
10 00
0100
CNOT -t 0 0 01
— 00 10
10 00
0010
SWAP 0100
0 0 01
Measurement { (> < > }
qubit - wire = single qubit
n qubits / wire representing n qubits

classical bit double wire = single bit

Table 2.2: Basic gates used in quantum circuits with their graphical
representation and mathematical form. Note that measurement gate is
represented in Kraus form (see Section , since it is the example of
non-unitary quantum evolution.

26

Models of quantum computation

Decomposition of quantum gates

The important feature of quantum circuits is expressed by the following
universality property [7].

Theorem 2.7 The set of gates consisting of all one-qubit gates U(2) and one
two-qubit CNOT gate is universal in the sense that any n qubit operation
can be expressed as the composition of these gates.

Note that in contrast to classical case, where one needs at least three-bit
gates to construct a universal set, quantum circuits can be simulated using
one two-qubit universal gate.

In order to implement a quantum algorithm one has to decompose many
qubit quantum gates into elementary gates. It has been shown that almost
any n qubit quantum gate (n > 2) can be used to the build universal set of
gates [27] in the sense that any unitary operation on the arbitrary number
of qubits can be expressed as the composition of gates from this set. In
fact the set consisting of two-qubit exclusive-or (XOR) quantum gate and
all single-qubit gates is also universal [7].

Let us assume that we have the set of gates containing only CNOT and
one-qubit gates. In [104] theoretical lower bound for the number of gates
required to simulate a circuit using these gates was derived. The efficient
method of elementary gates sequence synthesis for an arbitrary unitary gate
was presented in [86].

Theorem 2.8 (Shende-Markov-Bullock) Almost all n-qubit operators cannot
be simulated by a circuit with fewer than [1[4" — 3n — 1]] CNOT gates.

In [I16] the construction providing the efficient way of implementing arbitrary
quantum gates was described. The resulting circuit has complexity O(4™)
which coincides with lower bound from Theorem 2.8

Since in Chapter [5| we use gates with many controlled and one target
qubits, it is useful to provide more details about this special case. The
following results were proved in [7].

Theorem 2.9 For any single-qubit gate U the gate A,,—1(U) can be simulated
in terms of ©(n?) basic operations.

In many situation it is useful to construct a circuit which approximates
the required circuit. We say that quantum circuits approximate other circuits
with accuracy e if the distance (in terms of Euclidean norm) between unitary
transformations associated with these circuits is at most € [7].

Theorem 2.10 For any single-qubit gate U and £ > 0 gate A,,—1(U) can be
approximated with accuracy ¢ using ©(n log %) basic operations.

2.4 Random access machines

27

Note that the efficient decomposition of quantum circuit is crucial in
physical implementation of quantum information processing. In particular
case decomposition can be optimised using the set of elementary gates
specific for target architecture. CNOT gates are of big importance since
they allow to introduce entangled states during computation. It is also
hard to physically realise CNOT gate since one needs to control physical
interaction between qubits.

2.4 Random access machines

Quantum circuit model does not provide a mechanism for controlling with
classical machine the operations on quantum memory. Usually quantum
algorithms are described using mathematical representation, quantum circuits
and classical algorithms [63]. The model of quantum random access machine
is built on an assumption that the quantum computer has to be controlled
by a classical device [93]. Schematic presentation of such architecture is
provided in Figure

Quantum random access machine is interesting for us since it provides
convenient model for developing quantum programming languages. However,
these languages are our main area of interest. We see no point in providing
the detailed description of this model as it is given in [93] together with the
description of hybrid architecture used in quantum programming.

2.4.1 Classical RAM model

The classical model of random access machine (RAM) is the example of
more general register machines [22], 94 [105].

The random access machine consists of an unbounded sequence of memory
registers and finite number of arithmetic registers. Each register may hold an
arbitrary integer number. The programme for the RAM is a finite sequence
of instructions II = (7y,...,m,). At each step of execution register i holds
an integer r; and the machine executes instruction 7, where x is the value
of the programme counter. Arithmetic operations are allowed to compute
the address of a memory register.

Despite the difference in the construction between Turing machine and
RAM, it can be easily shown that Turing machine can simulate any RAM
machine with polynomial slow-down only [94].

2.4.2 Quantum RAM model

Quantum random access machine (QRAM) model is the extension of the
classical RAM, which can exploit quantum resources and at the same time
can be used to perform any kind of classical computation. QRAM allows us
to control operations performed on quantum registers and provides the set
of instructions for defining them.

28

Models of quantum computation

o)) the sequence of elementary gates
the description of algorithm in

abstract model /\

u — \
Y

Quantium Il

probability distribution for

. classical controlling device quantum memory
futher analysis

the outcome of measurement

Figure 2.7: The model of classically controlled quantum machine [93].
Classical computer is responsible for performing unitary operations on
quantum memory. The results of quantum computation are received in
the form of measurement results.

The quantum part of QRAM model is used to generate probability
distribution. This is achieved by performing measurement on quantum
registers. The obtained probability distribution has to be analysed using
classical computer.

2.4.3 Quantum pseudocode

Quantum algorithms are in most of the cases described using the mixture of
quantum gates, mathematical formulas and classical algorithms. The first
attempt to provide a uniform method of describing quantum algorithms was
made in [2I], where the author introduces a high-level notation based on the
notation known from computer science textbooks [23] [52].

In [63] the first formalised language for description of quantum algorithms
was introduced. Moreover, it was tightly connected with the model of
quantum machine called quantum random access machine (QRAM).

Quantum pseudocode proposed by Knill [63] is based on conventions for
classical pseudocode proposed in [23, Chapter 1]. Classical pseudocode was
designed to be readable by professional programmers, as well as people who
had done a little programming. Quantum pseudocode introduces operations
on quantum registers. It also allows to distinguish between classical and
quantum registers.

Quantum registers are distinguished by underlining them. They can
be introduced by applying quantum operations to classical registers or by
calling a subroutine which returns a quantum state. In order to convert a
quantum register into a classical register measurement operation has to be

2.4 Random access machines 29

perfomed.

The example of quantum pseudocode is presented in Listing It
shows the main advantage of QRAM model over quantum circuits model —
the ability to incorporate classical control into the description of quantum
algorithm.

Procedure: Fourier(a, d)
Input: A quantum register ¢ with d qubits. Qubits arenumbered form 0 to d — 1.
Output: The amplitudes of a are Fourier transformed over Zga.

C: assign value to classical variable
w < ei2m/2¢
C: perform sequence of gates
for i=d-—1 to i=0
for j=d—1 to j=i+1
ﬁ aij then szd—i—1+j (&)
C: number of loops executing phase depends on
C: the required accuracy of the procedure

H(ai)
C: change the order of qubits

for j=0 to j=4-1
SWAP(aj,a4-a—;)

Listing 2.1: Quantum pseudoceode for quantum Fourier transform on d

qubits. Quantum circuit for this operation with d = 3 is presented in
Figure 2.5

Operation H(a;) executes a quantum Hadamard gate on a quantum
register a; and SWAP(ai,a;) performs SWAP gate between a; and a;.
Operation R4(a;) executes a quantum gate R(¢) is defined as

R(¢) = ((1) 69¢ > ; (2.17)

on the quantum register a;. Using conditional contruction
if a; then Rg(ai)

it is easy to define controlled phase shift gate (see Definition [2.19). Similar
construction exists in QCL quantum programming language described in
Chapter

The measurement of a quantum register can be indicated using an assignement.

aj < aj

Models of quantum computation

2.4.4 Quantum programming environment

Since the main aim of this thesis is to present the advantages of high-level
programming languages, we need to explain how such languages are related
to quantum random access machine. Thus as the summary of this chapter
we present the overview of an architecture for quantum programming, which
is based on QRAM model.
The architecture proposed in [I10, I11] is designed for transforming
a high-level quantum programming language to the technology-specific implementation
set of operations. This architecture is composed of four layers:

(1 High level programming language providing high-level mechanisms
for performing useful quantum computation; this language should
be independent from particular physical implementation of quantum
computing.

(A Compiler of this language providing architecture independent optimisation;
also compilation phase can be used to handle quantum error correction
required to perform useful quantum computation.

0 Quantum assembly language (QASM) — assembly language extended
by the set of instructions used in the quantum circuit model.

J Quantum physical operations language (QCPOL), which describes the
execution of quantum programme in a hardware-dependent way; it
includes physical operations and it operates on the universal set of
gates optimal for a given physical implementation.

The authors of [110, IT1] do not define a specific high-level quantum
programming language. However, they point out that existing languages,
mostly based on Dirac notation, do not provide the sufficient level of abstraction.
They also stress, following [I1], that it should have the basic set of features.
We will discuss these basic requirements in detail in Chapter At the
moment quantum assembly language (QASM) is the most interesting part
of this architecture, since it is tightly connected to the QRAM model.

QASM should be powerful enough for representing high level quantum
programming language and it should allow for describing any quantum
circuit. At the same time it must be implementation-independent so that
it could be used to optimise execution of the programme with respect to
different architectures.

QASM uses qubits and cbits (classical bit) as basic units of information.
Quantum operations consist of unitary operations and measurement. Moreover
each unitary operator is expressed in terms of single qubit gates and CNOT
gates.

In the architecture proposed in [I11] each single-qubit operation is stored
as the triple of rationals. Each rational multiplied by 7 represents one of
three Euler-angles, which are sufficient to specify one-qubit operation.

2.5 Further reading

31

2.5 Further reading

The methods for efficient decomposing arbitrary quantum gates into the
sequence of elementary operations were described in [86, 87]. In [125]
necessary condition for the optimal construction of a two-qubit unitary
operation is discussed.

Recently a new model of sequential quantum random machine (SQRAM)
has been proposed. Instruction set for this model and compilation of high-level
languages is discussed in [88]. However, it is very similar to QRAM model.

Complexity ZOO [I] contains the description of complexity classes and
many famous problems from complexity theory. Complete introduction to
the complexity theory can be found in [94]. Theory of NP-completeness
with many examples of problems from this class is presented in [42].

Programming languages can be defined without using RAM model. Interesting
programming language for Turing machine, providing the minimal set of
instructions, was introduced in [15].

Many important results and basic definitions concerning quantum complexity
theory can be found in [I0]. The proof of equivalence between quantum
circuit and quantum Turing machine was given in [124]. Interesting discussion
of quantum complexity classes and relation of BQP class to classical classes
can be found in [41].

32

Models of quantum computation

Chapter 3

Quantum programming languages

In this chapter we briefly describe selected examples of the existing quantum
programming languages.

We start by formulating the requirements which must be fulfilled by
any universal quantum programming language. Next we describe languages
based on imperative paradigm — QCL (Quantum Computation Language)
and LanQ. We focus on QCL since it is used as the implementation language
for quantum Parrondo’s game described in Chapter

We also describe recent research efforts focused on implementing languages
based on functional paradigm and discuss adventages of a language based
on this paradigm. As the example of functional quantum programming
language we present cQPL.

We introduce syntax and discuss features of presented languages. We
also point out their weaknesses. For the sake of completeness a few examples
of quantum algorithms and protocols are presented. We use these examples
to introduce the main features of presented languages.

3.1 Introduction

During the last few years many quantum programming languages were
proposed [43].

Recently developed languages focus on quantum communication and
thus provide syntactic elements which can be used to facilitate simulation of
quantum protocols. Recently it also became clear that models of quantum
computation must reflect the situation in real-world quantum systems where
decoherence and errors are unavoidableE] Thus new quantum programming
languages aim to incorporate the model of mixed states.

'For the basic introduction to quantum channels and errors see Appendix

Quantum programming languages

Table|3.1|contains the comparison of few quantum programming languages.
It includes the most important features of existing languages. In particular
we list the underlying mathematical model (ie. pure or mixed states) and
the support for quantum communication.

QCL @ Language QPL cQPL LanQ kulka

reference [91] [13] [103] [71] [83]

implemented y y y y y y
formal semantics n n y y y n
communication n n n y y n
universal y y y y y y
mixed states n n y y y n

Table 3.1: Comparison of quantum programming languages with

information about implementation and basic features. Based on information
in [83] and [71]. Experimental quantum programming language kulka is
introduced in Appendix [A]

All languages listed in Table are universal and thus they can be
used to compute any function computable on quantum Turing machnie.
Consequently, all these language provide the model of quantum computation
which is equivalent to the model of quantum Turing machine.

In this chapter we introduce the basic syntax of three of the languages
listed in Table — QCL, LanQ and cQPL. This is motivated by the fact
that these languages have a working interpreter and can be used to perform
simulations of quantum algorithms. In particular the results described in
Chapter [were obtained using QCL interpreter. We introduce the elements
of QCL required to understand the implementation of Parrondo’s paradox.
We also compare the main features of presented languages.

The syntax of experimental programming language kulka is described
in Appendix [A] The implementation of the interpreter for this language
motivated the results presented in Chapter

3.2 Requirements for quantum programming language

Taking into account QRAM model described in Chapter [2f we can formulate
basic requirements which have to be fulfilled by any quantum programming
language [12].

1 Completeness: Language must allow to express any quantum circuit
and thus enable the programmer to code every valid quantum programme
written as a quantum circuit.

1 Extensibility: Language must include, as its subset, the language
implementing some high level classical computing paradigm. This

3.3 Imperative quantum programming

isimportant since some parts of quantum algorithms (for example
Shors algorithm) require nontrivial classical computation.

A Separability: Quantum and classical parts of the language should be
separated. This allows to execute any classical computation on purely
classical machine without using any quantum resources.

[Expressivity: Language has to provide high level elements for facilitating
the quantum algorithms coding.

[Independence: The language must be independent from any particular
physical implementation of a quantum machine. It should be possible
to compile a given programme for different architectures without introducing
any changes in its source code.

As we will see, the languages presented in this chapter fulfill most of
above requirements. The main problem is the expressivity requirement.
Parrondo’s game presented in Chapter 4] shows that in many situations one
has to use very low-level construction to implement the elements used in
an algorithm. This fact has motivated the research on quantum data types
described in Chapter

3.3 Imperative quantum programming

First we focus on quantum programming languages which are based on
the imperative paradigm. They include quantum pseudocode, discussed in
Chapter [2, Quantum Computation Language (QCL) created by Omer [93]
and LanQ developed by Mlnaiik [83].

Below we provide an introduction to QCL. It is one of the most popular
quantum programming languages. Moreover, this language was used to
implement the quantum version of Parrondo’s game described in Chapter [4

Next, we introduce the basic elements of LanQ [83]. This language
provides the support for quantum protocols. This fact reflects the recent
progress in quantum communication theory.

3.3.1 Quantum Computation Language

QCL (Quantum Computation Language) [91, 93] is the most advanced
implemented quantum programming language. Its syntax resembles syntax
of the C programming language [59] and classical data types are similar to
data types in C or Pascal.

The basic built-in quantum data type in QCL is qureg (quantum register).
It can be interpreted as the array of qubits (quantum bits).
qureg x1[2]; // 2—qubit quantum register x1
qureg x2[2]; // 2—qubit quantum register x2
H(x1); // Hadamard operation on xI1

Quantum programming languages

H(x2[1]); // Hadamard operation on the second qubit of the x2

QCL standard library provides standard quantum operators used in
quantum algorithms, such as:

(1 Hadamard H and Not operations on many qubits,

A controlled not CNot with many target qubits and Swap gate,
(d rotations: RotX, RotY and RotZ,

(1 phase Phase and controlled phase CPhase.

Most of them are described in Table 2.2 in Chapter [2]

Since QCL interpreter uses qlib simulation library, it is possible to observe
the internal state of the quantum machine during the execution of the
quantum programmes. The following sequence of commands defines two-qubit
registers a and b and executes H and CNot gates on these registers.

qcl;, qureg a[2];

qcl;, qureg b[2];

qcly, H(a);

[4/32] 0.5 —0,0; + 0.5 —1,04 + 0.5 —2,0; + 0.5 —3,0;,
qcl;, dump

: STATE: 4 / 32 qubits allocated, 28 / 32 qubits free
0.5 —0y + 0.5 —1; + 0.5 —2; + 0.5 —3;

qcl;, CNot(al[l],b)

[4/32] 0.5 —0,0;, + 0.5 —1,0; + 0.5 —2,0; + 0.5 —3,04,
qcl, dump

: STATE: 4 / 32 qubits allocated, 28 / 32 qubits free
0.5 —0; + 0.5 —1; + 0.5 —2; + 0.5 —3;

Using dump command it is possible to inspect the internal state of quantum
computer. This can be helpful for checking if our algorithm changes the
state of quantum computer in the requested way.

One should note that dump operation is different from measurement,
since it does not influence the state of quantum machine. This operation
can be realised using simulator only.

Quantum memory management

Quantum memory can be controlled using quantum types qureg, quconst,
quvoid and quscratch. Types qureg is used as a base type for general quantum
registers. Other types allow for the optimisation of generated quantum
circuit. The summary of types defined in QCL is presented in Table

3.3 Imperative quantum programming

37

Type Description Usage

qureg general quantum register basic type

quvoid register which has to be empty when | target register
operator is called

quconst must be invariant for all operators used in | quantum
quantum conditions conditions

quscratch | register which has to be empty before and | temporary
after the operator is called registers

Table 3.2: Types of quantum registers used for memory managemnt in QCL.

Classical and quantum procedures and functions

QCL supports user defined operators and functions know from languages like
C or Pascal. Classical subroutines are defined using procedure keyword. Also
standard elements, know from the C programming language, like looping (eg.
for i=1ton { ... }) and conditional structures (eg. if x==0{ ... }), can be
used to controll the execution of quantum and classical elements. In addition
to this, it provides two types of quantum subroutines.

The first type is used for unitary operators. Using it one can define
new operations, which in turn be used to manipulate quantum data. For
example operator diffuse defined in Listing defines inverse about the

mean operator used in Grover’s algorithm [46]. This allows to define algorithms

on the higher level of abstraction and extend the library of functions available
for programmer. This feature will be used in Chapter |4 to implement basic
elements of Parrondo’s scheme.

operator diffuse (qureg q) {

H(q); // Hadamard Transform

Not (q); // Invert q

CPhase(pi,q); // Rotate if q=1111..
INot(q); // undo inversion

'H(q); // undo Hadamard Transform

}

Listing 3.1: The implementation of the inverse about the mean operation in
QCL [93]. Constant pi represents number 7. Exampl ation mark ! is used
to indicate that the interpreter should use the inverse of a given oprator.
Operation diffuse is used in quantum search algorithm [46].

Using subroutines it is easy to describe quantum algorithms. Figure
presents QCL implementation of Deutsch’s algorithm, along with the
quantum circuit for this algorithm. This simple algorithm uses all the

38

Quantum programming languages

)

operator U(qureg x,qureg y) {

H(x);
Oracle(x,y);
H(x & y);
}
procedure deutsch() { // Classical control structure
qureg x[1]; // allocate 2 qubits
qureg y[1];
int m;
{ // evaluation loop
reset ; // initialise machine state
U(x,y); // do unitary computation
measure y,m; // measure 2nd register
} until m==1; // value in 1st register valid?
measure X ,Im; // measure 1lst register which
print "g(0) xor g(1) =" ,m; // contains g(0) xor g(1)
reset ; // clean up

Figure 3.1: Quantum circuit for Deutsch’s algorithm and QCL
implementation of this algorithm (see [93] for more examples). Evaluation
loop is composed of preparation (performed by reset instruction), unitary
evolution (U(x,y) operator) and measurement. Subroutine Oracle()
implements function used in Deutsch’s algorithm [25] 28] (see also Appendix

main elements of QCL. It also illustrates all the main ingredients of existing
quantum algorithms.

The second type of quantum subroutine is called quantum functionﬂ
They can be defined using qufunct keyword. The subroutine of type qufunct
is used for all transformations of the form

[n) = [f(n)), (3.1)

where |n) is a base state and f is a one-to-one Boolean function. The
example of quantum function is presented in Listing [3.2

2Quantum function are also called pseudo-classic operators.

3.3 Imperative quantum programming 39

Quantum conditions

QCL introduces quantum conditional statemens, ie. conditional constructions
where quantum state can be used as a condition.

QCL, as well as many classical programming languages, provides the
conditional construction of the form

if be then
block

where be is a Boolean expression and block is a sequence of statements.
QCL provides the means for using quantum variables as conditions.

Instead of a classical Boolean variable, the variable used in condition can be

a quantum register.

qureg a[2];

qureg b[2];

// the sequence of statements

// perform CNot if a=11

if a {
CNot(b[0], b[1]);
}

In this situation QCL interpreter builds and executes sequence of CNOT
gates equivalent to the above condition. Here register a is called enable
register.

In addition, quantum conditional structures can be used in quantum
subroutines. Quantum operators and functions can be declared as conditional
using cond keyword. For example

// conditional phase gate

extern cond operator Phase(real phi);
// conditional not gate

extern cond qufunct Not(qureg q);

declares conditional Phase gate and controlled NOT gate. Keyword extern
indicates that the definition of subroutine is specified in external file. The
enable register (ie. quantum condition) is passed as an implicit parameter if
the operator is used within the body of a quantum if-statement.

In the case of inc procedure, presented in Listing [3.2] the enable register
is passed as an implicit argument. This argument is set by a quantum
if-statement and transparently passed on to all suboperators. As a result,
all suboperators have to be conditional. This is illustrated by the following
example [93]

qcl;, qureg q[4];qureg e[1]; // counting and control registers
qcl;, H(q[3] & e); // prepare test state

5/32] 0.5 —0,0; + 0.5 —8,0, + 0.5 —0,1; + 0.5 —8,1;
qcly, cine(q,e); // conditional increment

40

Quantum programming languages

cond qufunct inc(qureg x) { // increment register
int i;
for i = #x—1 to 0 step -1 {
CNot (x[i],x[0::1]); // apply controlled —not from
// MSB to LSB

}

// equivalent implementation with constant enable register
qufunct cinc(qureg x,quconst e) { // Conditional increment
int i; // as selection
for i =#x—1 to 0 step —1 { // operator
CNot(x[i],x[0::1] & e);

}

Listing 3.2: Operator for incrementing quantum state in QCL defined as a
conditional quantum function. Subroutine inc is defined using cond keyword
and it does not require the second argument of type quconst. Subroutine cinc
provides equivalent implementation with explicit-declared enable register.

[5/32] 0.5 —0,0; + 0.5 —8,0, + 0.5 —1,1; + 0.5 —9,1;

qcly, if e — inc(q); ” // equivalent to cinc(q,e)

5/32] 0.5 —0,0; + 0.5 —8,0; + 0.5 21 + 0.5 —10,1;
qcly, !eine(q,e); // conditional decrement

5/32] 0.5 —0,0; + 0.5 —8,0; + 0.5 1,1, + 0.5 —9,1;
qcly, if e = linc(q); ” // equivalent to !cinc(q,e);

[5/32] 0.5 —0,0; + 0.5 —8,0; + 0.5 —0,1; + 0.5 —8,1;

Finally we should note that a conditional subroutine can be called outside
of a quantum if-statement. In such situation enable register is empty and
as such ignored. Subroutine call is in this case unconditional.

3.3.2 LanQ

Imperative language LanQ is the first quantum programming language with
full operation semantics specified [83].

Its main feature is the support for creating multipartite quantum protocols.
LanQ, as well as cQPL presented in next section, are build with quantum
communication in mind. Thus, in contrast to QCL, they provide the set of
features for facilitating simulation of quantum communication.

Syntax of the LanQ programming language is very similar to the syntax
of C programming language. In particular it supports:

(A Classical data types: int and void.

d Conditional statements of the form

3.3 Imperative quantum programming

41

if (cond) {
}.e'l.se {

1 Looping with while keyword
while (cond) {

-

1 User defined functions, for example

int fun(int i) {
int res;

return res;

}

Process creation

LanQ is built around the concepts of process and interprocess communication,
known for example from UNIX operating system. It provides support for
controlling quantum communication between many parties. The implementation
of teleportation protocol presented in Listing [3.3| provides an example of
LanQ features, which can be used to describe quantum communication.
Function main() in Listing is responssible for controlling quantum
computation. The execution of protocol is divided into the following steps:

1. Creation of the classical channel for communicating the results of
measurement: channel[int]| ¢ withends [c0,cl];.

2. Creation of Bell state (see Appendix used as a quantum channel
for teleporting a quantum state (psiEPR aliasfor [psil, psi2]); this is
acomplished by calling external function createEPR() creating an entangled
state.

3. Instruction fork executes alice () function, which is used to implement
sender; original process continues to run.

4. In the last step function bob() implementing a receiver is called.

Quantum programming languages

void alice (channelEnd[int] c0, gbit auxTeleportState) {
int i;
gbit phi;
// prepare state to be teleported
phi = computeSomething ();
// Bell measurement
i = measure (BellBasis, phi, auxTeleportState);
send (c0, i);
}

void bob(channelEnd[int] cl, gbit stateToTeleportOn) {
int 1i;
i = recv(cl);
// execute one of the Pauli gates according to the protocol
if (i=1){
Sigma’z (stateToTeleportOn);
} oelse if (i = 2) {
Sigma'x (stateToTeleportOn);
} else if (i = 3) {
Sigma'x (stateToTeleportOn);
Sigma’z (stateToTeleportOn);

}

dump_q(stateToTeleportOn);

}

void main() {
channel [int] ¢ withends [c0,cl];
gbit psil, psi2;
psiEPR aliasfor [psil, psi2];

psiEPR = createEPR ();

¢ = new channel[int]();

fork alice(cO, psil);

bob(cl, psi2);
}
Listing 3.3: Teleportation protocol implemented in LanQ [82]. Functions
Sigma’'x(), Sigma'y() and Sigma'z() are responsible for implementing Pauli
matrices. Function createEPR() (not defined in the listing) creates maximally
entangled state between parties — Alice and Bob. Quantum communication
is possible by using state, which is stored in a global variable psiEPR.
Function computeSomething() (not defined in the listing) is responsible for
preparing a state to be teleported by Alice.

Communication

Communication between parties is supported by providing send and recv
keywords. Communication is synchronous, ie. recv delays programme execution

3.4 Functional quantum programming

43

until there is a value received from the channel and send delays a programme
run until the sent value is received.

Processes can allocate channels. It should be stressed that the notion
of channels used in quantum programming is different from the one used in
quantum mechanics. In quantum programming channel refers to a variable
shared between processes. In quantum mechanics channel refers to any
quantum operationﬁ

Another feature used in quantum communication is variable aliasing. In
the teleportation protocol presented in Listing the syntax for variable
aliasing

qbit psil, psi2;
psiEPR aliasfor [psil, psi2];

is used to create quantum state shared among two parties.

Types

Types in LanQ are used to control the separation between classical and
quantum computation. In particular they are used to prohibit copying of
quantum registers. The language distinguishes two groups of variables [83,
Chapter 5]:

[Duplicable or non-linear types for repsenting classical values, eg. bit,
int, boolean. The value of a duplicable type can be exactly copied.

(1 Non-duplicable or linear types for controlling quantum memory and
quantum resources, eg. gbit, qtrit channels and channel ends (see
example in Listing|3.3)). Types from this group do not allow for cloning
[122].

One should note that quantum types defined in LanQ are mainly used
to check validity of the program before its run. However, such types do
not help to defined abstract operations. As a result, even simple arithmetic
operations have to implemented using elementary quantum gates.

3.4 Functional quantum programming

During the last few years many quantum programming languages based
on functional programming paradigm were proposed [102]. As we have
point out in the Introduction, the lack of progress in creating new quantum
algorithm is cause by the problems with operating on complex quantum
states. Classical functional programming languages have many features
which allow to clearly express algorithms [80]. In particular they allow
for writing better modularised programmes than in the case of imperative
programming languages [55]. This is important since this allows to debug

3See Appendix

Quantum programming languages

programmes more easily and reuse software components, especially in large
and complex software projects.

Quantum functional programming attempts to merger the concepts know
from classical function programming with quantum mechanics. The program
in functional programming language is written as a function, which is defined
in terms of other functions. Classical functional programming languages
contain no assignment statements, and this allows to eliminate side-effect]
It means that function call can have no effect other than to compute its
result [55]. In particular it cannot change value of a global variable.

The first attempts to define functional quantum programming language
were made by using quantum lambda calculus [115], which was based on
lambda calculus. For the sake of completeness we can also point out some
research on modelling quantum computation using Haskell programming
language [100, 58]. However, here we focus on high-level quantum programming
languages. Below we present recently proposed languages QPL and cQPL,
which are based on functional paradigm. They aim to provide mechanism
known from programming languages like Haskell [56] to facilitate the modelling
of quantum computation and quantum communication.

3.4.1 QPL and cQPL

In [103] Quantum Programming Language (QPL) was described and in [71]
its extension useful for modelling of quantum communication were proposed.
This extended language was name cQPL — communication capable QPL.
Since cQPL compiler is also QPL compiler, we will describe cQPL only.

The compiler for cQPL language described in [71] is built on the top of
libqgc simulation library used in QCL interpreter. As a result, cQPL provides
some features known from QCL.

Classical elements of cQPL are very similar to classical elements of QCL
and Lan@Q. In particular cQPL provides conditional structures and loops
introduces with while keyword.

new int loop := 10;
while (loop > 5) do {
print loop;
loop := loop — 1;
b
if (loop = 3) then {
print ”loop is equal 37;
} else {

print ”loop is not equal 37;
¥

Listing 3.4: Classical control structures in cQPL.

4This is true in so-called pure functional programming languages like Haskell.

3.4 Functional quantum programming

Procedures

Procedures can be defined to improve modularity of programmes.

proc test: a:int, q:qbit {

-

Procedure call has to know the number of parameters returned by the
procedure. If, for example, procedure test is defined as above, it is possible
to gather calculated results

new int al = 0;
new int cv = 0;
new int qv = 0;
(al) := call test(cv, qv);

or ignore them

call test(cv, qv);

In the first case the procedure returns the values of input variables calculated
at the end of its execution.

Classical variables are passed by value ie. their value is copied. This is
impossible for quantum variable, since a quantum state cannot be cloned
[122]. Thus, it is also impossible to assign value of quantum variable calculated
by procedure.

Note that no cloning theorem requires quantum variables to be global.
This show that in quantum case it is impossible to avoid some effect known
from imperative programming and typically not present in functional programming
languages.

Global quantum variables are used in Listing to create maximally
entangles state in a teleportation protocol. Procedure createEPR(eprl, epr2);
operates on two quantum variables (subsystems) and produces a Bell state.

Quantum elements

Quantum memory can be accessed in cQPL using variables of type qgbit or
qint. Basic operations on quantum registers are presented in Listing [3.5
In particular, the execution of quantum gates is performed by using x=
operator.

new qbit ql := 0;

new qbit q2 := 1;

// execute CNOT gate on two qubits
ql, g2 x= CNot;

ql *= Phase 0.5;

Listing 3.5: State initialisation and basic gates in cQPL. Data type gbit
represents a single qubit.

46

Quantum programming languages

It should be pointed out that gint data type provides only a shortcut for
accessing table of qubits.
Only few elementary quantum gates are built into the language:

1 Single qubit gates H, Phase and NOT implementing basic gates listed
in Table [2.2] in Chapter

1 CNOT operator implementing controlled negation and FT(n) operator
for n-qubit quantum Fourier transform.

This allows to simulate an arbitrary quantum computation. Besides, it is
possible to define gates by specifying their matrix elements.

Measurement is performed using measure/then keywords and print command
allows to display the value of a varaible.

measure a then {
print "a is [0>7;
} else {
print "a is [1>7;
}s
In similar manner like in QCL, it is also possible to inspect the value of a
state vector using dump command.

Quantum communication

The main feature of cQPL is its ability to simulate quantum communication
protocols easily. The implementation of teleportation protocols in cQPL is
presented in Listing [3.6]

Communicating parties are described using modules. In analogy to
Lan@, cQPL introduces channels, which can be used to send quantum data.
Once again we stress that notion of channels used in ¢cQPL and LanQ is
different from that used in quantum theory. Quantum mechanics introduces
channels to describe allowed physical transformations, while in quantum
programming they are used to describe communication links.

3.5 Summary

First we should note that languages presented in this chapter provide very
similar set of basic quantum gates and allow to operate only on the arrays
of qubits. Most of the gates provided by these languages correspond to
the basic quantum gates presented in Chapter Thus, one can conclude
that the presented languages have the ability to express quantum algorithms
similar to the abilities of a quantum circuit model.

The biggest advantage of quantum programming languages is their ability
to use classical control structures for controlling the execution of quantum
operators. This is hard to achive in quantum circuits model and it requires
the introduction of non-unitary operations to this model.

3.5 Summary

47

module Alice {
proc createEPR: a:qgbit, b:qgbit {
a x= H;
b,a *= CNot; /% b: Control, a: Target x/
}oin {
new gbit teleport := 0;
new gbit eprl := 0;
new qbit epr2 := 0;

call createEPR (eprl, epr2);
send epr2 to Bob;

/* teleport: Control, eprl: Target

(see: Figure in Appendix */

teleport , eprl x= CNot;

new bit ml := 0;

new bit m2 := 0;

ml := measure teleport;
m2 := measure eprl;

/* Transmit the classical measurement results to Bob x/
send ml, m2 to Bob;

}s

module Bob {
receive q:qbit from Alice;
receive ml:bit , m2: bit from Bob;

if (ml = 1) then {
[

q*= [[0,1,1,0]]; /* Apply sigma_x x/
=
if (m2= 1) then {

q *= H 170707_1]}a /* Apply Sigma,z >|</

}s

/* The state is now teleported x/

print ”Teleported state:”;

dump g;
}s
Listing 3.6: Teleportation protocol implemented in cQPL (from [71]).
Quantum circuit for this protocol is presented in Appendix [B] Two parties —
Alice and Bob — are described by modules. Modules in cQPL are introduced
using module keyword.

Quantum programming languages

In addition, LanQ and cQPL provide the syntax for clear description of
communication protocols.

The syntax of presented languages resembles the syntax of popular classical
programming languages like C [59] or Java [45]. As such, it can be easily
mastered by programmers familiar with classical languages. Moreover, the
description of quantum algorithms in quantum programming languages is
better suited for people unfamiliar with the notion used in quantum mechanics.

The main disadvantage of described languages is the lack of quantum
data types. The types defined in described languages are used mainly for
two purposes:

A To avoid compile-time errors caused by the copying of quantum registers
(cQPL and LanQ).

J Optimisation of memory management (QCL).

Both reasons are important from the simulations point of view, since they
facilitate writing of correct and optimised quantum programmes. However,
these features do not provide a mechanism for developing new quantum
algorithms or protocols.

In the next chapter we will see how structured quantum programming
can be used to develop a new model of a quantum game. This example
also shows problems one encounters while using quantum programming
languages. In Chapter [5| we provide the description of some research results
addressing these problems. Experminental quantum programming language
kulka, described in Appendix[A] has been developed in attempt to test these
results.

3.6 Further reading

Recent developments in the field of quantum programming are described in
[102] and [113]. Gay [43] provides an extensive bibliography.

One of the first imperative programming languages was Q Language.

It was described in [12, IT]. As it was implemented as an extension of
C++ programming language, it is relatively easy to use it and integrate it
with existing software. It provides classes for basic quantum operations like
QHadamard, QFourier, QNot, QSwap, which are derived from the base class
Qop. New operators can be defined using C++ class mechanism.

Research in functional quantum programming languages started by introducing
quantum lambda calculus [I15]. It was introduced in a form of simulation
library for Scheme programming language.

Due to the large amount of resources needed to execute quantum programmes
(ie. simulate quantum computation) it is reasonable to provide parallel
simulator. In particular [44] describes initial parallel version of the simulation
library used in QCL interpreter.

Chapter 4

Application in quantum game
theory

In this chapter we describe the application of quantum programming in the
quantum game theory. The results presented in this chapter are based on
work described in [78] and [67].

We start by introducting basic facts from game theory. We provide an
example of Prisoner’s dilemma and Parrondo’s paradox. Next, we show how
quantum games can be constructed using the example of quantum Prisoner’s
dilemma. This was one of the first quantum games proposed. In spite of its
simplicity it shows the impact of quantum mechanics on game theory.

Quantum programming is presented as the method of developing the
quantum version of Parrondo’s paradox. We present the implementation of
this paradox in QCL quantum programming language. We also provide the
results of simulations indicating that the presented construction does have
the properties know from the classical version.

The presented implementation is also discussed from the quantum programming
point of view. We argue that some elements of the proposed Parrondo’s
scheme could be described using quantum data types. This shows potential
applications of the results presented in Chapter

4.1 Introduction

Game theory is used to describe the situations of mutual interaction of
several parties, where each party aims to maximise its gain [99]. Parties are
usually called players and they are free to choose among allowed moves in
order to maximise payoff function.

Classical game theory is based on two assumptions:

50

Application in quantum game theory

1 Players can choose from the set of well-defined strategies.
(1 Payoff function is defined for any choice of strategies.

However, if we consider the physical system used to define a game, it is
reasonable to ask the question about the influence of physical laws on games.
This motivation resembles one used to formulate Deutsch—Church—Turing
hypothesis in Chapter

As a result, we should consider more general notion of a game, where
strategies are defined in terms of quantum evolution. In such case the payoff
function must be defined in terms of quantum observable on the spaces of all
strategies. The players in quantum games can use larger space of strategies
and this should influence the expected value of the payoff.

Formally, the classical game can be defined as follows.

Definition 4.1 (Strategic form of a game [36], 08]) A classical N-party game
is the triple (A, S, f), where

0 A={A, Ay, ..., AN} is the set of players,

0SS =5 x--- xSy, 8 is the strategy space of the j-th player for
j=1,...,N,

Q f:S — RY is the payoff function.

A strategy is a rule that prescribes the action of a player upon the game
situation. Strategy can be pure, in which case it specifies a unique move
in a given configuration, or mixed, in which case players use a randomising
device to select among alternatives for some or all configurations.

In this chapter we give examples of 1-party games and 2-party games,
ie. games with A = {A;} and A = {41, A3}. In particular, Parrondo’s game
discussed in this chapter is the example of 1-party (or 1-player) game. Such
games are sometimes referred to as games agains nature [94]. We start,
however, by introducing a well known example of classical game, namely
Prisoner’s dilemma.

4.1.1 Prisoner’s dilemma

Classical game described as Prisoner’s dilemma is the example of two-party
(two players) game. In this scenario two players (suspects) — Alice and
Bob — are interrogated by a prosecutor. He offers them separately to pass
the offence if they provide evidence against each other. We describe player’s
moves as cooperation (C) of defection (D). In the first case this means that
a player decides not to provide the evidence against his partner. In the
second case a player decides to provide the evidence. Depending on their
decision, players can be put in the jail for the different period of time. Payoff

4.1 Introduction

function, presented in Table defines the reductions of the verdict (in
years).
Using Definition [£.1] we can describe this situation by

0 A = {Alice, Bob},

Q 5={(C,0),(D,D),(C,D),(D,C)},

[Payoff function for this game is given in Table
| Bob: C Bob: D

Alice: C' | (3,3) (0,5)
Alice: D | (5,0) (1,1)

Table 4.1: Payoff function for the Prisoner’s dilemma game for each player
(Alice, Bob) either cooperating (C) or defecting (D). The number in
parenthesis represent some kind of units, which can be used to describe
the reward for each player. For example, if Alice decides to defeat (D) and
Bob decides to cooperate (C), they will have their verdicts reduced by 5 and
0 years, respectively.

To explain why the above game is described as dilemma, we introduce
two important terms used in game theory.

We say that the combination of strategies is Nash equilibrium, if no
player can improve his payoff by unilateral change of strategy. We say that
the combination of strategies is Pareto optimal, if no player can increase
his gain (the value of payoff function) without decreasing the gain of other
players.

Clearly, in the game described above Nash equilibrium is formed by the
combination of strategies (D, D). On the other hand, combination (C,C) is
Pareto optimal. As the result a dilemma arises: one player cannot obtain
higher gain without reducing the gain of the other player and, at the same
time, he cannot increase his gain by changing his strategy only. On average,
it is better for both players to defeat. Dilemma is solved by allowing for
communication between the players, since in such case they can both use
strategy C' to maximise their gain.

4.1.2 Classical version of Parrondo’s game

Before discussing the quantum version of the Parrondo’s game we present its
classical version. In Section[d.3we will introduce the quantum implementation
of this scheme.

Classical Parrondo’s game is an example of 1-player game. Parrondo’s
scheme is constructed by using two games and combining them into a sequence.
Each game can be interpreted as a toss of an asymmetrical coin. Every

52

Application in quantum game theory

success means that the player gains one dollar, every loss means that the
player loses one dollar.

Definition 4.2 (Parrondo’s game [96], 67]) Let S = {A,B} be the strategy

space; the strategies consist of coin tosses with different coins. The Parrondo’s
game is given by the sequence {s, € S : n = 1,2...} and the capital

sequence {c, € Z : n = 0,1,...}, where ¢q is given and ¢,11 = ¢, = 1

depending on whether the outcome of s, is "heads up” (= s, > 0) or not.

The probability that s, > 0 is

p sp=A
Prob(s, >0)=<py sn=BA3|c, (4.1)

p1 otherwise

The Parrondo’s game is called winning if

V N\ ea=e>0 (4.2)

ne,€E N>nNg

\/ /\ cn < e<0. (4.3)

no,€E N>Ng

and losing if

We will refer to the presented game as Parrondo’s game or Parrondo’s
scheme.

Let us assume that the first game A has the probability of winning
1/2 — €. The second game B depends on the amount of capital accumulated
by a player.

If his capital is a multiple of three, the player tosses coin Bj, which has
probability of wining 1/10 — ¢, otherwise the player tosses coin By which has
probability of wining 3/4 — €. Originally ¢ = 0.005, but generally it can be
any small real number.

Both games A and B are biased and have negative expected gain. But
when a player has the option to choose which game he wants to play at
each step of the sequence, he can choose such a combination of games which
allows him to obtain positive expected gain.

It is known that sequences (ABBAB)+ or (AABB)+ give relatively high
expected gain. This fact is known as Parrondo’s paradox.

4.2 Quantum games

Quantum game theory [38,[97] has its roots in both game theory and quantum
information theory. The investigation of different quantum games may bring
new insight into the development of quantum algorithms and provide new
methods of designing quantum algorithms. Quantum games can be also used
to describe decoherence in quantum computers. Such games fit naturally in

4.2 Quantum games

o) = 10) — HaH
q1) =10)— HBH

Figure 4.1: Protocol for two-person quantum game [38]. Gate J is used to
introduce an entangled state. In the case of Prisoner’s dilemma it is used to
produce initial maximally entangled state.

JT

the scheme of 1-player games. Thus, in the following section we will study
Parrondo’s game, which is an example of such scheme.

The first example of a quantum game was provided in the form of simple
penny flip game [72]. In this scenario a player with the ability to use
quantum strategies (moves) can always win with a player using only classical
moves.

Eisert et al. [34] provided more elaborated example of two-person quantum
game — quantum Prisoner’s dilemma. Below we briefly describe this scheme.
We start by introducing some definitions.

Quantum game theory introduces the description of physical system to
the definition of a game. Following Meyer [38] we will define a quantum
game as follows.

Definition 4.3 (Quantum game [38]) Quantum N-party game is a tuple (H, p, A, S, f),
where

1 H is a Hilbert space,
O p € S(H) is the initial state,
O A={A,As,..., An} is the set of players,

QS =5 x - xSy, S is the strategy space of the j-th player for
j=1,...,N,

Q f:S — RY is the payoff function.

General protocol for two-person quantum game is presented in Figure
Gate J is used to introduce an entangled state shared by the players.
In particular, this gate can be used to study the behaviour of quantum
games when the initial state is not maximally entangled [31]. However, we
will neglect this gate and, in the case of quantum Prisoner’s dilemma, use
entangled initial state instead. In the case of Parrondo’s game we don’t need
to introduce entanglement since this game is a single-player game.

54

Application in quantum game theory

4.2.1 Quantum Prisoner’s dilemma

The quantum version of Prisoner’s dilemma was introduced in [34]. The
original scheme for Quantum Prisoner’s dilemma is constructed using the
following settings:

O Hilbert space of two qubits H = C? @ C?,

0 maximally entangled initial state p = |¢)(¢|, where |¢) = \1[(100) +14|11)),

2

[set of strategies consisting of the subset of U(2),
1 payoff function calculated using measurement operators

{rcc,mep, mpes ToD} S (4.4)
defined as

moo = lpco)(éccl, lpcc) = 1/v2(]00) +i[11)
mep = |¢cp)(éepl, ldep) = 1/V2(|01) —i|10)

W épcl, [¢opc) = 1/V2(]10) —i[01)
mop = |opp){(¢pDl, |¢pD) = 1/V2(|11) +[00)).

)5
)5
Tpco = |opc)

)

In this scheme the classical strategies C' and D correspond to matrices

0~<(1) ?)andD~<_01 é) (4.5)

Payoff is calculated by performing the measurement on the final state
o= (S4® Sp)p(Sa® Sp)t. For example, if the measured state was lopc)
and Alice receives payoff Apc and Bob — Bpc, specified in Table

Average payoff functions for Alice and Bob read

Pa(sa,sp) = Y Agytr[mpy0ol, (4.6)
z,ye{C,D}

Pg(sa,s) = Buytr[meyol. (4.7)
z,ye{C,D}

It can be shown [34], B8] that the described setting allows for solving the
dilemma observed in the classical case. We can restrict allowed strategies to
unitary strategies of the form (see Theorem in Chapter 2))

(€ cos(0/2) sin(6/2)
v, y) —< —sin(0/2) e cos(8/2) > (48)

In this case strategy (@, Q) with matrix
Q= U(0,7/2) = ic, = (é i) (4.9)

gives the expected payoff P4(Q, Q) = Pp(Q, Q) = 3 [34,33], which is Pareto
optimal. This strategy also gives Nash equilibrium, and thus solves the
dilemma observed in the classical case.

4.3 Quantum implementation of Parrondo’s game

95

4.3 Quantum implementation of Parrondo’s game

The previous example shows the impact of quantum mechanics on quantum
games. One should note that there are many methods for quantisation of
a given game. Quantum version can be changed by, for example, changing
allowed set of strategies.

In this section an example of one-player quantum games is provieded. It
is based on classical Parrondo’s game described in Section

We present the implementation of the Parrondo’s game in QCL quantum
programming language. The choice of QCL for this implementation was
motivated by its support for user-defined quantum operators and by the fact

that the standard library for this language provides many usefoul subroutines.

Another reason for choosing this language was the execution speed of the
interpreter, which is implemented in C++.

We start by specifying the elements of the proposed scheme in term of
quantum circuits.

4.3.1 Elements of the scheme

According to Definition it is necessary to specify a Hilbert space, which
is used to defined the presented scheme. The quantum register used to
perform this scheme consists of three subregisters:

[|¢) — one-qubit register representing the coin,
O |$) — n-qubit register storing player’s capital,

[|o) — three-qubit auxiliary register used to store results of internal
calculations.

As the results, we will operate on the Hilbert space H.®@Hg®@H,. Dimensions
of H. and H, are fixed and equal to 2 and 3 respectively.

Register |c) holds the state of the quantum coin. Gates A, B; and Bj,
acting on this register, represent quantum coin tosses. One should note that
the register |c¢) does not store the information about history of the games.

After every execution of gates A, By and By, the state of the register |$)
is changed, according to the result of the quantum coin toss. This register
is responsible for storing player’s capital.

Register |o) is an auxiliary register, which is used to check if the state of
the |$) register is a multiple of three. At the beginning of the scheme and
after the application of the games’ gates this register is always set to [000).

The presented scheme is defined using the following elements:

Q {04,04,84,04,0B,,aB,,08,,08,,0B,, 4B,, BB,, 0B, } — the set of parameters

for constructing gates A, By and By according to theorem (see
Table for parameters used in the simulation),

o6

Application in quantum game theory

[s, — the strategy of the player, which in this case is composed of the
sequence of games A, B; games A and B are constructed using gates
A, By, and By described below,

(d N — the number of qubits used to store the value of capital in the
register |$) (outcome register); it has to be chosen depending on the
number of iterations we wish to study (see below);

(1 offset — initial capital offset, which is used to study the influence of
the initial state on the behaviour of strategies.

Games A and B are constructed using three one-qubit quantum gates A,
Bji and Bs. Each gate is described by four real parameters according to the
decomposition from Theorem 2.6 in Chapter [2]

Games A and B are implemented using the conditional incrementation/decrementation
(CID) gate and gates A, By and By described below. Gate CID is responsible
for controlling the conditional execution of elementary gates. In addition,
game B uses the gate mod3. Quantum circuits for implementing these gates
are presented in Figure

ICHZFCID@P o) ———{xf——{x}
$) L |$>+é
(b)

(a)
o) ——————B] E@ @ B
%) L
loo) —mod3 H X | [X Hmodst
o) — Hx] X H
|o2) @ @

()

Figure 4.2: Gates used to implement Parrondo’s game. (a) Circuit for
the game A. See Listing for implementation in QCL (b) Conditional
incrementation/decrementation (CID) circuit. Its QCL implementation is
presented in Listing [4.1] (c) Circuit for the game B. See Listing for
implementation in QCL

Gate mod3 sets |o1) and |o2) registers to state |1) if the |$) register
contains a number that is a multiple of three (see Definition :

mod3|z)|0) = |z)|x (mod 3)). (4.10)

4.3 Quantum implementation of Parrondo’s game

57

It is implemented using single-qubit operations, since it is impossible in QCL
to store integer numbers in quantum registers.

The CID gate is responsible for increasing and decreasing the player’s
capital. The circuit for this gate is presented in Figure This gate
increments register |$) if |c) is in state |1) and decrements if it is in state
0)-
|$+ 1)|c) if |¢) = |0)
|3 —1)le) if |e) = 1)
One should note that this operation can be easily translated to the quantum

conditional structure in QCL described in Section [3.3.1} This fact is used
in its QCL implementation presented in Listing

CIDIS)|c) = { (4.11)

operator CID(qureg p, quconst c¢) {
// if c¢==1 p=p+1 else p=p-1
if ¢ {
inc (p);
1 else {
linc(p);
}
}

Listing 4.1: The implementation of CID gate used in Parrondo’s scheme.
Operator inc is implemented in QCL standard library. The implementation
of this procedure is presented in Listing [3.2] in Chapter

Game A is implemented directly by gate A as presented in Figure
Game B, presented in Figure is more complicated. It uses gate mod3
to check if the player’s capital is a multiple of three. If it is the case, gate
By is applied to register |c), otherwise, B; is applied.

One can easily check that all gates used in this scheme are unitary
because they are composed of elementary unitary operations.

To obtain Parrondo’s paradoxical effect we need to combine games A
and B into some sequence s,. The initial state of the system is prepared as
follows:

1. Preparation of |¢) in state %(|O> + [1)).

2. Preparation of |$) in state |(2("~1) + offset)), where offset is a small
integer number.

3. Preparation of the auxilary register |0) = |010203) in the state [000).

Parrondo’s game consists of the application of games A and B in some
chosen order s, on the state prepared according to the above description.

Application in quantum game theory

Pseudocode describing the execution of Parrondo scheme is presented in
Listing [£.4]

After each application of gate A or B the number stored in register |$) is
either incremented or decremented. The initial state of register |$) must be
chosen in such way that integer overflow is avoided. The maximum number
of elementary games cannot exceed the capacity of the register |$). Using
N qubits for |$) register it is possible to perform 2V~! elementary games or
to perform %QN ~! Parrondo’s games with strategy of length n.

If the presented scheme is implemented on a physical quantum device
it should be finalised by measurement. This would give a single outcome
representing the final capital. Thus, to obtain the expected gain, the experiment
should be repeated several times. Note that the payoff must be calculated
as the difference between initial capital and actual capital.

Simulation allows to observe the state vector of the quantum system.
Using this property the expected gain is calculated as the average value of
o, in state

18) (8| = triygo) [e, 8, 0) (¢, 8, o], (4.12)

obtained after tracing out the register with respect to coin and auxiliary
subregisters

(8) = tr [o2"|5)(3]]. (4.13)

In physical implementation one has to repeat the experiment to calculate
the expected payoff.

4.3.2 Simulation results

As we have seen in Chapters[2]and [3] quantum pseudocode is, in many cases,
very similar to existing quantum programming languages. Here we can use
this observation to implement classical control used to control a quantum
game (see Listing [4.4)).

Listing [4.5] contains subrouties controlling the execution of described
Parrondo’s scheme. It includes external files with the definition of quantum
gates (presented in Listings and and parameters used in simulation
(Listing |4.6)).

Table contains the parameters used in the simulation of the presented
scheme. These parameters are used to define quantum gates used in the
scheme, as well as for controlling classical computation. Parameters of the
scheme can be controlled using a single QCL file (see Listing , which is
included in other files.

First, we note that games A and B gave, as expected, negative expected
value of payoff. The behaviour of Parrondo’s game composed only of game
A or only of game B is presented in Figure One can see that game B
gives worse results (ie. larger negative expected payoff) than game A.

4.3 Quantum implementation of Parrondo’s game

99

04 | aa | Ba 04
0 | 1 | 0 |2Z+001)

0B, | aB, | BB 0B,
0 | 1| 0 |2(&+0.01)

0B, | aB, | BB, 0B,
0 1 | 0 |2(3+0.01)

Table 4.2: Parameters used in the simulation of Parrondo’s scheme. Note
that 4, dp, and dp, are set to 0. The behaviour of games A and B is
controlled by parameters 64, 0p, and 6p, mainly.

2100 | B
2000 F e -
5 "
z
2, e
9 1900 L]
=9 -
2
1800 | 1
..... B el
1700 = . initial capital RS

0 100 200 300 400

Number of steps

Figure 4.3: Parrondo’s game composed only of game A or only of game B.
By playing game B only a player obtains bigger negative expected payoff.
In this case the sequence of games is composed of one game. As a result it
is possible to perform 2! steps using 12 qubits.

As in classical case the combination of two losing games leads to the
game of different behaviour. First of all, one can observer that by using
strategies AB or BA we can change the expected payoff dramatically. One
can observe that, by combining games, we can obtain much better results
than by using only one of the games. The comparison of strategies AB and
BA is presented in Figure There exist four strategies of the length two.
Obtained game is losing, but the average payoff is higher than in the case
presented in Figure

Classical results suggest that one needs to study more complicated strategies

to obtain more interesting situations. This also shows that it is necessary

60

Application in quantum game theory

2060 T T " T T T
2055 + N
i
Z
& O OO OO0 UOO s OOOO T OOTs S UTOO T OOOs T OOOO T OUOT OO OO O P SUOOO T OOOOTP OO
:q'é 2050 ~ E
8 - ’
=%
=
[€a)
2045 + N
— BA
---- AB
- initial capital
2040 : L : L : L

0 100 200 300 400

Number of steps

Figure 4.4: The comparison of strategies AB and BA. One can note that, by
using simple combination of initial games, a player can obtain the significant
gain when compared to the strategy with one game only (see Figure .
Note that the number of steps refers to number of sequence s,, execution.

to use simulation since the number of strategies of the length n (composed
of n elementary games A and B) is equal to 2.

Figure presents the comparison of strategies of length 3. There exists
8 such strategies. The presented results show that it is possible to obtain
paradoxical behaviour even for such a short sequence of games. It is suprising
that strategy ABB gives the positive expected payoff, since it is composed
of two B games, which gave worse results. One should also note that a
small change in strategy alters the behaviour of the game — strategy AAB
is losing. As the reslt, one can conclude that the descibed quantum game is
very sensitive for anych changes or errors.

Simulation results for strategies composed of 5 games are presented in
Figure In this case we have 2° = 32 possible strategies. In addition
we can control the behaviour of the Parrondo’s scheme by changing the
initial state. The strategies in Figure [4.6| were found to be the best winning
strategies for different values of an offset parameter.

Another interesting feature of the presented scheme is the dependency
of its behaviour on the initial state. First, we note that the behaviour of
strategies A and B does not depend on an initial offset. On the other hand,
the initial state, controlled by the parameter offset, can influence obtained
results. In Figure [£.7] one can observe that, depending on the initial offset,
the strategy can change its behaviour completely. In this case strategy
BBABA is losing for offset = 0 or offset = 2, but it gives positive expected

4.3 Quantum implementation of Parrondo’s game

61

gain for offset = 1. This can be explained by the fact that the presented
scheme is very sensitive to the initial conditions. We have already observed
similar effect in the case of strategies ABB and AAB, presented in Figure

4.3.3 Discussion

The presented scheme allows to study the behaviour of Parrondo’s game
using a relatively small number of qubits. The simulation of Parrondo’s
scheme composed of k games requires approximately O(log(nk)) qubits,
where n is the number of simulation steps. This allows us to study the
behaviour of proposed scheme for large number of games played. This is
significant improvement to the previously proposed schemes [40, [39], which
require a linear number of qubits.

Using simulation it was possible to find winning strategies. This shows
that the proposed construction has properties of classical Parrondo’s scheme.
Nevertheless, for the given set of initial parameters, it is not common to
find a winning strategy. This suggests that paradoxical behaviour is hard
to achieve.

The initial value of the payoff register |$) can change the behaviour of
strategy. The initial value of the payoff is controlled using offset parameter.
For example strategy BBABA is losing for offset = 0 or offset = 2, but it
gives positive expected gain for offset = 1. The behaviour of this strategy

2060 T T T T T T
2055 L T e S,
o e
z
A i
T 2050 R
g
&
%
€3}
2045 B
---- ABB
— AAB

- initial capital

0 100 200 300 400

Number of steps

2040

Figure 4.5: The comparison of strategies ABB and AAB. This plot shows
that it is possible to obtain Parrondo’s effect for relatively short strategy
(the sequence of games A and B) used in Parrondo’s scheme.

62

Application in quantum game theory

2070

— ABBAB
---- BABAA T
- initial capital 2000 B

2065

2060 1750 Tl A E

2055 i

Expected payoff

2050

2045 4

2040 : ' : ' : '
0 100 200 300 400

Number of steps

(a)

2070

— BABBB
---- BBABA

2065 - initial capital

2060

2055

Expected payoff

2045 R

2040 ' ' ' ' ' '
0 100 200 300 400

Number of steps

(b)

Figure 4.6: Influence of the initial state changes on strategies. See also
Figure (a) The comparison of two winning strategies for offset = 0.
The values for strategies A and B are presented in an internal figure (see
also Figure 4.3). (b) The comparison of two best-found winning strategies
of the length 5 for offset = 3.

4.4 Summarry

63

2060 . :

— offset =0

---- offset =1

..... Oﬁset N 2 (Y _.;‘\f*~("
2055 | - initial capital) e |
2050 -

G
1

Expected payoff

2045

2040 . ' . ' . '
0 100 200 300 400

Number of steps

Figure 4.7: Influence of the initial state on the strategy BBABA. This
strategy BBABA is losing for offset = 0 or offset = 2, but it gives positive
expected gain for offset = 1. In this case initial state was set to [2048+ offset)
and the game was played using 12 qubits.

for different offsets is presented in Figure [4.7]

4.4 Summarry

We have presented the implementation of quantum Parrondo’s scheme, which
is the example of a single-player quantum game. The presented model was
developed using QCL quantum programming language. As a result, we
have shown how quantum programming can be used to design quantum
algorithms. The presented construction exploits the main advantages of
existing quantum programming languages. In particular we have used:

0 quantum subprocedures for defining basic structures (see Listings

and ,

(1 conditional structures based on quantum registers to implement parts
of the scheme (see Listing 4.1),

O classical control structures to prepare simulation of the scheme (see
Listing |4.6)).

The main problem, which can be observed in the presented implementation,
is the lack of mechanism for managing quantum memory representing data
other than simple qubits. We have used mechanism built on the top of QCL
to control the behaviour of games. In particular modulo arithmetic has to

64

Application in quantum game theory

be implemented using single-qubit operations. One has to use elementary
operations like CNOT and NOT to calculate simple functions. This is
suprising since such procedures are implemented as a part of the syntax in
many modern programming languages.

Also unitary circuits for basic arithmetic operations were proposed [117]
and some research was made to use quantum computers to implement arithmetics
[29]. This suggests that quantum data type for operating on integers can be
useful in developing new quantum algorithms or creating quantum versions
of existing classical algorithms.

In the next chapter we use this motivation to develop basic data types,
which can be used to operate on integer numbers using quantum registers.
Experimental quantum programming language kulka, described in Appendix
[A] was created to test these data types.

4.4 Summarry

65

operator Ph(real alpha, qureg r) {
Matrix2x2 (E" (Ixalpha),0,0 ,E"(Ixalpha),r);
¥

operator Ai(real de, real al, real th, real be, qureg c¢) {
Ph(de,c);
RotZ(al ,c¢);
RotY (th,c);
RotZ (be,c);
}

operator A(qureg p, qureg c) {

//p — payoff, ¢ — coin

Ai(Ade, Aal ,Ath,Abe,c);

CID(p,c);

I'Ai(Ade, Aal,Ath,Abe,c);
}
Listing 4.2: Game A used in Parrondo’s scheme. This game is defined in
terms of operator Ai(), which represents a biased coin toss. Operator Ph
implements a phase shift gate (see Chapter [2[and [93]).

operator B(qureg p, qureg c, quvoid s, quvoid o) {
muln(1l, 3, p, s); //s<-pxl mod 3
Not(s);
CNot (0,s);

Bi(Blde,Blal,Blth,Blbe,c,0); // Bl
Not (0);
Bi(B2de,B2al ,B2th ,B2be,c,0); // B2

CID(p,c);

!Bi(B2de,B2al ,B2th ,B2be,c,0); // !B2
Not(o0);
!Bi(Blde,Blal ,Blth,Blbe,c,0); // !Bl

CNot(o,s);

Not (s);//
'muln (1, 3, p, s);

¥

Listing 4.3: Game B used in Parrondo’s scheme. The execution of game is
based on the current capital of a player. Register |o) is in the state [111)
if the current value of player’s capital is divided by 3. Operator Bi() (not
shown) is defined, in analogy to operator Ai(), by using elementary rotations.

66

Application in quantum game theory

Procedure: Parrondo(z, sy, k,1)
Input: Quantum register x with N qubits, strategy s,, initial offset k¥ and number
of simulation steps [.
Output: Payoff p.
C: calculate the initial state of payoff register
z 2N 4k
C: prepare initial state
c+ H(0)
o+ 000
$+—ax+k
C: perform sequence of games
for =1 to i=1
5n(8,¢,0)
C: perform final measurement and store its outcome in p
p 3§
C: calculate the gain
p—p—=x

Listing 4.4: Parrondo’s scheme described in quantum pseudocode. Classical
control structures used in this listing are very similar to the structures used

in Listing [4.5

4.4 Summarry 67

// include required external files

<<modarith; // standard library

<<examples; // standard library

<<parrondo operators; // definition of opertators
<<data; // parameters for simulation

procedure strategy (qureg p, qureg c, qureg s, qureg o) {
// the example of strategy
B(p,c,s,0);

(
(p,c);
(
(

}

// classical control

qureg c[1]; // coin

qureg plregsize]; // payoff

qureg s[2]; // used to perform operation mod3 (s <— p mod 3)
qureg o[1l]; // used to controll game B (o==1 <=> p|3)

// initial payoff is set to avoid overflow
set (27 (regsize —1)+offset ,p);

// initial Hadamard gate
H(c);

int i;

for i=1 to steps {
strategy (p, ¢, s, 0);
print 7i="i;
dump p;

}

Listing 4.5: Classical routine controlling the execution of strategies in
Parrondo’ scheme. Procedure strategy() is used to encapsulate the sequence
of games used by a player.

68 Application in quantum game theory

// File: data.qcl

// three sets of parameters for quantum gates

const epsilon = —0.01xpi;

const Ade = 0; /] V
const Aal = 0; // RotZ
const Ath = 2x%(pi/2—epsilon); // RotY
const Abe = 0; // RotZ

const Blde = 0;
const Blal = 0;
const Blth = 2x(pi/l0—epsilon);
const Blbe = 0;

const B2de = 0;
const B2al = 0;
const B2th = 2x%(3xpi/4—epsilon);
const B2be = 0;

// parameters for classical control

const regsize= 12;

const steps= 400;

const offset= 3;

Listing 4.6: Parameters used in the simulation of Parrondo’s scheme. This
file (data.qcl) contains the parameters listed in Table Not all the
parameters have been used to obtain the presented results, since in the
presented results we neglect the global phase introduced by the phase gate.

Chapter 5

Operating on quantum data types

Quantum computation is about generating interesting probability distributions
using the subtle rules of quantum mechanics. The best example of such
probability engineering is the quantum algorithm for factorisation. In this
chapter we aim to show how quantum computers can be used to obtain
probability distributions useful for solving other problems like sorting.

We start by discussing the problem of state initialisation. This is motivated
by the quantum data types introduced in the experimental quantum programming
language kulka, described in Appendix [A] Presented procedure may be
regarded as the generalisation of classical variable initialisation problem.

The second presented algorithm is the quantum version of classical radix
sort algorithm. Described algorithm is obtained by the modification of the
state initialisation procedure. The results of sorting are encoded in the
form of probability distribution. The time complexity of described sorting
algorithm depends on complexity of read-out procedure, which consists of
the series of measurements. Sorting procedure on a quantum computer is
equivalent to generating appropriate probability distribution.

5.1 Motivation

As we have seen in previous chapters, quantum algorithms [46, 107] and
communication protocols [9, 18] are described using the language of quantum
circuits. While this method is convenient for simple algorithms, it is very
difficult to operate on abstract data types using this notation.

This lack of data types and control structures motivated the development
of the quantum pseudocode and quantum programming languages described
in Chapters [2] and

We have pointed out that existing quantum programming languages are

70

Operating on quantum data types

based on mathematical formalism of quantum theory ie. state vectors or
density matrices. They do not provide abstract data types for operating
on quantum memory. Similar situation exists in some old programming
languages like Fortran 77, where it is possible to use only the arrays of
numbers and no mechanism for creating new data types is provided. In
contrast, many modern programming languages are built on object-oriented
paradigm (eg. Java [45]). In these languages data types are one of the
main elements and they provide mechanisms for seamless creation of new
data types. In fact, appropriate choice of data types is sometimes the most
important decision during the implementation [I01].

Definition 5.1 (Data type) A data type is a set of values along with set of
operations allowed on those values.

The set of data type values is called its range.

For example in Java programming language, the type int represents the
set of 32-bit integers {—231 ...,0,..., 23 — 1} and the set of allowed
operations on these numbers like addition, subtraction and multiplication [45].

5.2 Quantum data types

In the existing quantum programming languages one needs to operate using
arrays of qubits. It is impossible to create a quantum programme without
using elementary quantum gates. In most cases it is possible to perform
only basic operations like C NOT or Hadamard gates.

The only advantage of existing programming languages over quantum
circuits model is that they allow for classical control of quantum computation.
But taking into account the provided level of abstraction they are very
similar to specialised packages for simulating quantum computers [77].

As we have seen in Chapter [] one needs to use elementary gates to
implement arithmetic operations on data encoded in quantum registers.
This is very inconvenient since many algorithms operate mainly on numbers.

Quantum programming language kulka, developed during the work on
this thesis, introduces a new element when compared to existing quantum
programming languages. It allows for operating on quantum data types.

Definition 5.2 (Quantum data type) A quantum data type is a classical data
type which allows for operating on superposition of elements in its range.

The main advantage of quantum data types is that they allow for the
automatic generation of quantum gates for typical tasks. Below we focus on
the state initialisation. We also suggest the possible application of quantum
data types in the implementation of the sorting procedure.

Using the presented procedure and results on quantum arithmetic described
in [I17] it is possible to implement quantum data types, which is an extension
of the classical data type in the sense of Definition [5.2

5.3 Initialisation of quantum registers

Quantum programming language kulka, described in Apendix[A] introduce
quantum data type qint. Variables of this type can be used to store integer
numbers. It is possible to initialise a variable of this type to the superposition
of integer numbers and to perform basic arithmetic operations using the
methods described in [117]. For example

qint vl = (5]|10|15);

prepares quantum register v1 in the state
o) 1 1

V1) = —= —

V3 V3

This operation has to be represented using quantum gates — this is one of
the requirements for quantum programming language discussed in Chapter
Like quantum conditional structures available in QCL [93], initialisation
to superposition facilitates operations on quantum memory. It has also the
advantage similar to quantum conditional statements in QCL (see Chapter|3)),
ie. it eliminates the number of elementary quantum gates needed to write
quantum programmes.

(I5) + |10) 4 |15)) = —=(|0101) + |1010) + [1111)). (5.1)

5.3 Initialisation of quantum registers

We start by discussing the initialisation problem and introducing the notation
used in this chapter.

The problem of state preparation was discussed by Grover. He proposed
[47] an algorithm using O(v/N) steps. In contrast the algorithm presented
below uses O(log3 N) steps to prepare the superposition of N elements.
The algorithm proposed in [47] uses the modification of the quantum search
algorithm as the base step and allows to prepare more general class of states.
General methods for constructing a quantum state were also discussed in
[87]. The procedure proposed therein used 2"+2? — 4n — 4 CNOT gates and
2n+2 _ 5 single-qubit operators.

The procedures proposed in [47] and [87] are suited for preparing an
arbitrary quantum pure state. In contrast, the algorithm discussed in this
section allows to prepare only a uniform superposition. However, the presented
algorithm is simpler and can be easily implemented. This is important since
as such it can be easyly incorporated as a part of the quantum programming
language interpreter. It is also much faster and does not require a quantum
oracle.

In what follows we will use numbers which can be written using M bits.
By af,i =1,2,..., M we denote the i-th bit of the number a* and by the
control «; we denote the string of bits which defines projection operator
|ai) (cv;]. We also introduce the following notation

O cx(aj) — the number of elements a’, such that abF=lak—2 . al = aj,

Operating on quantum data types

O #1(aj) — the number of elements a’, such that a*~1a*=2.. . a! = o,
and aj, = 1.

Below we describe the procedure for generating quantum gate R used
to implement an initialisation algorithm [76]. Generated quantum gate acts
on M-qubit Hilbert space and outputs the uniform superposition of input
numbers.

As the analogue of a classical bits, qubits are described by systems with
two base states (see Appendix . We introduce gate GG, which can be used
to accomplish the following task:

Task 5.1 Starting from the state |0) prepare the superposition

V1=pl0)+v/p[1), (5.2)
with 0 <p <1.

Since
[{1[(+/1 = p|0) + vB[1)* = p, (5.3)

p denotes here the probability of measuring the state |1). On the other hand
the probability of measuring |0) in this state reads

0I(v/1 = pl0) + v/BI1)I* =1~ p. (5-4)

It is easy to see that the desired state can be reached by using R,

rotation [89)
_(cos(0/2) sin(0/2)
Ry (6) = (—sin(0/2) cos(0/2)) (5:5)
with the parameter
f = —2arctan T (5.6)
This rotation is equivalent to

G<(p) = R, (—Zarctan 1fp> (5.7)

and we have clear probabilistic interpretation of the parameter p as the probability
of measuring the system in the state |1).

For p =1 all we need is to perform NOT = o, gate. In what follows we
use the quantum gate defined as

6 - {

G<(p), 0<p<1

o =1 (5.9)

Since more than one qubit is needed to perform useful quantum computation,
we can formulate our state initialisation task as follows

5.3 Initialisation of quantum registers

73

Task 5.2 For the given set of integers A = {a',a?,...,a"} C Zym generate
unitary operation R(A) such that

R(A)[0...0) =)). (5.10)

Here A may be associated with the probability distribution P4 such that

A L, a€A
P (a)—{ 10<’ ad A (5.11)
on the Zyn, where K is a number of elements in A.

The task defined this way can be regarded as a variant of the quantum
searching algorithm [46]. In this case our goal is to prepare the probability
distribution, not only to amplify the chosen probability.

One should note that the procedure defined below uses only classical data
to a generate unitary evolution. As such it does not require any information
about the quantum state [87].

5.3.1 Generating unitary matrix

The quantum gate, which is used to solve Task is generated from the
list of input numbers. It is convenient to divide the procedure for generation
of this gate into two parts — first, we process bits on the first position and
then the other bits.

We assume that the initial state of the systems is |¢o) = [0...0) € C2",
where the most significant bit of the input is encoded into the leftmost qubit.

Part 1 — the first qubit

Operation for the first qubit depends only on the information in the first
bits a%, a%, e ,a{(of the input numbers a',a?,...,a. By t; we denote the
number of occurrence of 1 at the first position. The first operation is defined

as rotation

R =112 G(t,/K). (5.12)

The resulting state reads

1) = Ril0...0) (5.13)
M
= —z arctan tl .
- ’0&:10> ® (Ry < 2arctan | t1> |0>> (5.14)

= 10...0)® (VI—ti/K|0) + Vt1/K|1)). (5.15)

M-1

74

Operating on quantum data types

Part 2 — qubits 2,..., M

Unitary gates to be performed on the k-th qubit depend on the information
in the bits 1,...,k — 1. At the k-th step of the procedure we process k-th
bits of the input numbers.

Using information in ¢ («;) and ¢4 (c;) defined above we can build controlled
gates

tr(ay)
cr(aj)

Xl =6 (200 ooyl +10 (I~ la(eyl) . (519

which represent rotations in subspaces defined by the operators |a;){a;].
Here I" is the identity operation on n qubits and «; are the appropriate
controls.

Operation Ry generated in the k-th step of our procedure reads

Ry =1""% g | [Xk(ey) | - (5.17)
a;

Quantum gate R, which is an output of the procedure, is defined as

M
R=]]R. (5.18)
=1

It is easy to see by induction that operation R produces the appropriate
output gate, required to obtain the state defined in Task The first step
affects only the first qubit and the rotation in the n-th step is performed
only in the subspace characterised by the projection operators |o;)(c;|.

Example

We present an example of state initialisation procedure for the input {1,5,10}.
Thus we have:

Input: The list of three 4-bit numbers {1, 5, 10}.
Output: Quantum state %(\D + [5) + [10)) € C*6.

We have 1 = 00012,5 = 01012, 10 = 10102 in binary form. Quantum gates
generate during the procedure described above are:

k=1 Ry =B ®G(2/3)

k=2 R2 == XQ(l)XQ(O) with
Xo(1) =P aIx|1){(1]+I3 = [0)(0]
X3(0) =* @ 0, @ |0)(0] + I* @ [1)(1]

5.4 Sorting integers on quantum computer 75

o) = 10) —|G(2/3) Tz X|
lq1) =10 g X J x|
X

G(1/2)

Figure 5.1: The example of register initialisation. This circuit presents final
form of the initialisation procedure for input numbers {1, 5,10}.

k=3 R3 = X3(01)X3(10) with
X3(01) =1T® G(1/2) ®]01){(01| + IT® T ® (12 — |01)(01])
X53(10) =I®I® [10)(10| + I® I ® (I? — [10)(10])

X4(001) = I ® |001)(001] + I ® (I — |001)(001])
X4(101) =1 ®]101)(101| + I ® (I — |101)(101])
X4(010) = 0, ® [010)(010| + I ® (I — [010)(010])

As one can see many of the operators defined during this procedure, for
example X;(1) and X3(10), are equal to identity. This suggests that the
generated circuit can be simplified. This can be observed in Figure [5.1
where only nontrivial gates for this example are presented. One should also
note that the simulation of the above procedure is limited by the number of
qubits which can be used.

5.4 Sorting integers on quantum computer

This algorithm for state initialisation can be modified to implement radix
sort algorithm [23],64] on quantum computer. The crucial observation is that
we need to generate a state such that the probability distribution obtained
after the final measurement encodes the order of input elements.

In the state initialisation procedure we have obtained the flat superposition
of input numbers. Thus we need to change the rotation matrices to obtain
the appropriate rotation of the input state. But the most important difference
is that we need to read-out the result to get information about the mutual
order of input elements. This step is typical for quantum algorithmsﬂ

The classical sorting problem can be stated as follows [64].

Task 5.3 (Sorting) Let X be the set of elements and K the set of keys
with defined ordering relation <. For a given sequence of elements A =

!See for example the description of Shor’s algorithm in [73]

76

Operating on quantum data types

(a,a?,...,a") C X and the function x : X — K find permutation 7 on
{1,...,n} such that

k(a™) < k(a™@) < ... < K(a™™). (5.19)

There exist many algorithms solving this problem [64]. Below we focus
on a single example only and develop its quantum version.

5.4.1 Radix sort algorithm

The idea of radix sorting appeared for the first time in the context of sorting
punched cards, but it can be easily extended to any elements. The following
definition can be found in [23, Chapter 9] and [64] Section 5.2.5].

Let us assume that A is an array of n elements and each element of A
has d digits. Using pseudocode it can be written as presented in Listing [5.1

Procedure: RadixSort(A4, d)
Input: The array A of n d-digit elements.
Output: The array A with sorted elements.

while 72 <d do
SomeStableSort (A[i])

Listing 5.1: Pseudocode for the classical radix sort algorithm. Note that the
time complexity of this algorithm depends on the complexity of the sorting
algorithm used as a subprocedure.

Running time of radix sort procedure depends on the stable sort procedure
used to sort each column of the input array. If each digit is in range
[1,2...,k] where k = O(n) we can use counting sort and in this case radix
sort runs in linear time.

Theorem 5.1 (Complexity of radix sort [23]) Given n d-digit numbers in which
each digit can take on up to k possible values, RadixSort(A4, d) correctly sorts
these numbers in ©(d(n + k)) time.

Unfortunately, counting sort algorithm does not sort in place and thus
it is better to use fast comparison sort algorithm such as quick sort when
we have to work with limited memory.

5.4.2 Quantum radix sort algorithm

In this section we describe how the methodology used for preparing flat
superposition can be used to construct quantum version of the radix sort
algorithm.

5.4 Sorting integers on quantum computer

It was shown in [62] that for any storage bounds n/logn > S > log®n
there exist an algorithm that solves this problem in time O(n3/2log®? n/v/S).
In quantum case time-space trade-off for sorting n numbers from a polynomial
size range in a general sorting algorithm is 7S = Q(n?®/?), while in classical
case this trade-off is T'S = ©(n?).

It is also known that the lower bound for the number of comparisons in
quantum oracle model is Q(nlogn) [54].

The results cited above use quantum oracles to perform sorting and
searching. More precisely, a quantum oracle is used to perform number
comparison.

In contrast, the algorithm presented below describes the generation of
quantum circuit from the information contained in the input numbers and it
presents the quantum version of the radix sort algorithm [64]. The generated
circuit does not require a quantum oracle since it is not based on comparison.

In analogy with the state initialisation problem, we will reformulate the
classical sorting problem as follows

Task 5.4 (Quantum sorting) Let X be the set of elements and K the set of
keys with a defined ordering relation <. For a given sequence of elements
A= (a',a?, ... ,a") C Zyu, find quantum gate Q such that

P(a") < P(d') & o < d. (5.20)

We are neglecting the key function x : X — K from Task since it
can be implemented by appending an additional qubits for storing the value
of the key for every input element.

Again, it is convenient to distinguish the operations acting on the first
qubits, but in this case we process the most significant qubit in the first
step. Note, that the gate) does not solve Task completely, since we
need to perform measurements to extract information about the permutation
7 from the final state. Thus, the quantum radix sort algorithm produces a
quantum state encoding the sorted list of numbers. It requires the sequence
of measurements to extract information from the quantum state.

Part 1 — the most significant qubit

The generation of the quantum radix sort procedure starts from the most
significant bit, which is encoded into the right-most qubit. Gate ()1 reads

M-1e1 if Y,at=0
0,={ M'wo, if Y, =K (5.21)
M-1gaG (%) otherwise

Note that, to check the conditions in this equation, only bit operations
are required. As in the state initialisation example the generated circuit acts
on the state |0...0).

78

Operating on quantum data types

Gate Q1 acting on the state does not introduce the superposition of the
base state unless input numbers differ at the first position.

Part 2 — qubits M —1,...,1

We will use controls «; to define gates to be performed on the other qubits.

For each bit n =M — 1,...,2 we define an operation
I® (1" — Jeg)(cu]) + I @ |ou)(a] if 305, =0
Yolag) = { 1@ ("1 = Jag){eu]) + 0w @ Jau){a] if 2, ap = calou)
Io (I — o) (u]) + G (%) ® |ag){ay| otherwise
(5.22)
where the summation is taken over all the numbers a’ with the bits M, ..., n—

1 equal to aq (at the n-th step we operate using controls of the length n—1).
Also in this case the above conditions can be verified using bit operations
on a classical computer only.

Unitary matrix @Q,, which is generated at the n-th step of the procedure
and represents the n-th step of the quantum algorithm, is defined as

Qn=1""® (H Yn(al)> : (5.23)

and the gate Q which implements the sorting algorithm for the list A reads

M
Q=] (5.24)
n=1

The state obtained after the execution of the gate () contains the sorted
superposition of the input numbers. To show this let us assume that we have
two input numbers that differ at the M-th position. The first step divides
our state space into two subspaces, and the next steps of the generated
algorithm operates on these subspaces independently and thus do not change
the values of probabilities, but only perform o, or I gates.

To check that () generates the desired probability distribution, let us
assume that the measurement after the (I — 1)-th step gives for as < a3
the probability distribution such that P;_q(a2) < P;_1(a1). Then, if we
have a3z < ag such that aé\/[...aé_l = aé”...aé_l, al3 =0 and d}, = 1, the
probability distribution after the | — th step reads

2l+1 -1 1
Pl(az) == WPl_l(ag) and Pl(ag) == FPl_l(ag) (525)

and thus Pj(as) < Pj(a2) < Pj(ay). If on the other hand we have asz > a
and aé\/[...aéfl =a)’ ... asl — 1 but a§ =0 and d}, = 1, then

Pi(a2) = =—=Pi—1(az2) and P;(a3) = T

= 2l+1 Pl,l(ag) (5.26)

5.5 Time and space complexity

79

and thus P;(az2) < Pi(as) < Pi(a1).

Thus, the presented algorithm allows us to generate the superposition
required to solve the problem stated in Task

5.5 Time and space complexity

In this section we will study the complexity of the presented procedures.

Quantum gates Rp, 1 < k < M executed in the k-th step of the
initialisation algorithm is composed of at most K rotations. Each rotation is
controlled using at most k— 1 qubits. Using Theorem [2.9]from Chapter [2 we
can conclude that such operation can be decomposed into O(k?) elementary
gates (single qubit operations and CNOT gates).

As a results, gate R implementing quantum initialisation algorithm can
be decomposed using O(M?3) elementary gates, where M is the number of
bits required to encode input elements. One should note that this bound
it independent of the number of input elements, but it depends on their
length.

The number of elementary gates required to implement gate @, used in
the sorting procedure, is of the same order as in the case of state initialisation.
One needs to execute O(M?3) elementary gates to prepare the state with
sorted numbers of length M. However, in the case of quantum sorting the
main problem arises from the readout of the algorithm results.

To obtain information from the final state one needs to perform sequence
of measurements and the measurement procedure has the major contribution
to the complexity of the quantum radix sorting.

The first advantage of the sorting algorithm is the ability to sort an
exponential number of input elements. This is achieved by using quantum
superposition. We have to use approximately M =~ logn qubits in this
procedure. As aresult, time complexity of this procedure is equal to O(log3 n).
However, it does not include the procedure for reading information about
the order from the final quantum state which is approximately equal to
O(n*) for n input numbers [79)].

The second advantage of the presented algorithm over the existing quantum

sorting algorithms is that it does not use a quantum oracle. This allows for
better analysis of the algorithm and allows for optimisation in the generated
quantum circuit.

One should note that it is very difficult to compare the proposed quantum
sorting algorithm with classical results. Time bounds for quantum sorting
are described in the terms of elementary quantum operations. In classical
algorithms time complexity is expressed in the terms of elementary operations
like addition.

80

Operating on quantum data types

5.6 Final remarks

The presented algorithm for register initialisation generates a quantum circuit
for preparing flat superposition of the list of integers and thus shows, that
such operation in high level programming languages can be implemented
unitarily. This introduces the means for using integer numbers as quantum
data types [I17]. Similar concepts were developed using fuzzy numbers [29].

The generation of code for quantum machine by classical controlling
device is one of the translation phases for quantum language compiler as
described in [111]. The presented algorithm for state initialisation allows
for optimisation of initialisation procedure and thus could be used for code
generation in quantum programming language compiler in the architecture
presented in Section [2.4.4

The feature of the presented quantum radix sort algorithm is that it
does not require a quantum oracle model and thus its complexity can be
calculated without making assumptions about the complexity of an oracle.
It also shows that the complexity of a quantum algorithm depends heavily
on the read-out procedure complexity.

Chapter 6

Conclusions

The main goal of this thesis was to show how abstract operations on quantum
data types can be used to develop new quantum algorithms. We have
presented two original applications of high-level quantum programming languages
for developing quantum algorithms and protocols.

The example of quantum Parrondo’s paradox was motivated by the
recent research efforts in the field of quantum game theory. We have shown
how quantum programming language allows for the quantisation of a classical
game. The presented scheme uses the features provided by a programming
language to build a quantum algorithm from basic operations. Quantum
programming languages allow us to divide quantum algorithms into smaller
parts which are easier to control. We have shown how quantum conditional
structures allow for more compact description of quantum algorithms.

The described quantum programming languages were developed using
the syntax known from classical programming languages. For that reason,
classical control structures can be easily incorporated into quantum programmes
using the syntax of quantum programming languages. The ability to use
classical control structures for controlling the execution of quantum operators
is the biggest advantage of quantum programming languages. This is dificult
to achieve in quantum circuits model and requires the introduction of non-unitary
operations to this model.

On the other hand, existing quantum programming languages do not
provide the sufficient level of abstraction. For example, it is difficult to define
nonstandard quantum gates using their syntax. They also provide only basic
data types for operating on quantum memory. We have shown that, by
introducing new quantum data types, it is possible to achieve interesting
results in the scope of quantum algorithms.

By defining operations on quantum registers, interpreted as integer numbers,

82

Conclusions

we have constructed the sequence of unitary operations implementing the
state initialisation. This algorithm was used to implement the elements of an
interpreter for high-level quantum programming language kulka. Although
this algorithm can only be applied to prepare a narrow set of states ie. base
states in C2", it is easier to implement and optimise it than in the case of
general purpose methods for preparing arbitrary superposition.

We have also extended the initialisation procedure and constructed a
sorting algorithm. It implements the quantum version of radix sort algorithm.
Its main advantage is good memory efficiency. This was achieved by using a
typically quantum phenomenon — namely the superposition of states. Since
the presented algorithm does not use a quantum oracle and it is not based on
comparison, it cannot be reduced to existing algorithms, based on searching.
We have also seen that it is difficult to use this algorithm in a real-world
application due to the complexity caused by the measurement procedure.
Nevertheless, this result suggests that provided methodology can be used to
develop other quantum algorithms.

The work conducted while preparing this thesis could serve as a starting
point for further development of a quantum programming language. As
it has been shown, quantum types can provide an insight in the quantum
algorithms construction. Thus, we intend to extend the methodology used
to design kulka programming language for further research in the field of
quantum algorithms.

Appendix A

Experimental quantum
programming language kulka

In this chapter the syntax of the experimental quantum programming language
kulka is presented. Experimental quantum programming language kulka was
created to test the new method of developing quantum algorithms based on
introducing quantum data types.

We provide the overview of data types defined in this language and
describe briefly the functionality of the existing interpreter. Also a few
examples of language usage are presented.

At the moment of writing only the basic interpreter for kulka exists.
Also the syntax presented below is in preliminary form and probably will
be changed. In many cases it can be enriched by adding features from
modern classical programming languages. However, the main goal of this
language was to test operations on quantum data types, not to provide
general purpose programming language.

A.1 Motivation

The main motivation for creating new quantum programming language from
scratch was to test new methods of operating on quantum data types. It
should be stressed that, in contrast to existing programming languages,
we do not describe quantum gates or measurement in this chapter. The
presented language was designed to operate on quantum memory without
using low-level quantum operators such as CNOT or Hadamard gates.

84

Experimental quantum programming language kulka

A.2 Grammar

Below we describe the grammar of kulka programming language using extended
Backus-Naur form including the rules for operators precedences.

Keywords and other literals are typesed in fixed-width font. Optional
expressions are denoted using the question mark (?), alternatives are denoted
as altg |alty. By (elem)* we denote an arbitrary number of occurences of elem
and by (elem)+ one or more occurences of elem.

Basic components

A programme written in kulka programming language is composed of statements
and it is possible to include external files with definitions.

Single line comments are introduced by # symbol. For example, the
following line will be ignored

File: fact.kulka
Desc: Implmentation of factorial function

It is also possible to use C-style multi-line comments using the following
syntax
/%

File: qdata.kulka

Author: Jarek Miszczak
Version: 0.1

*/

Below STRING represents a sequence of characters enclosed in single or
double quotes, INT represents an integer number with possible sign, REAL
represents a floating-point number with possible sign.

Programme
program ::= (includeStmt)? stmtx
includeStmt ::= include string
Expressions
exprList ::= expr (, expr)x

expr ::= (idRef|arrayRef) = expr | orExpr

orExpr ::= andExpr ((or |) andExpr)*
andExpr ::= eqExpr ((and | &&) eqExpr)*

eqExpr ::= compExpr ((== | !=| ji) compExpr)x*
compExpr ::= addExpr ((; | j | j= | i=) addExpr)=

A .2 Grammar

addExpr ::= mulExpr ((+ | -) mulExpr)x
mulExpr ::= notExpr ((* | / | &) notExpr)x*

notExpr ::= (! | not)? negExprx
negExpr ::= (-)? primaryx

primary ::= atom | (expr)

atom ::= varRef | subCall | arrayRef | constant
varRef ::= id

subCall ::= id (exprList)’

arrayRef ::=

constant ::= string | numeric | ket | superposition
string ::= STRING

ket ::= — (0|1)+ |,

superposition ::= (INT (, INT)+)
numeric ::= INT | REAL | complex
complex ::= [expr , expr |

Statements

stmt ::= expr ; | codeBlock | loop | ifStmt | return | break | ioStmt
codeBlock ::= { stmt * }

loop ::= forLoop | whileLoop
foorLoop ::= for (varDef ; expr ; expr) codeBlock
whileLoop ::= while (expr) codeBlock

ifStmt ::= if (expr) codeBlock else codeBlock
break ::= break ;

return ::= return expr ;

ioStmt ::= printStmt | readStmt
printStmt ::= say expr ; | say_nl expr ;
readStmt ::= ask id ;

Data types, subroutines and definitions

scalarType ::= numericType | quantumType | stringType
numericType ::= int | real | complex

86

Experimental quantum programming language kulka

quantumType ::= qreg | qint
stringType ::= string

varDef ::= scalarType id (= expr)*
arrayDef ::= scalarType id (= expr)*

subDef ::= scalarType id (paramsList) codeBlock
paramsList ::= (param (, param)x*)?
param ::= scalarType id

A.3 Data types and subprocedures

There are three data types defined for numeric values — int, real and complex.
For convenience, type string is provided for dealing with string literals. For
operating on quantum memory kulka introduces two types — qreg and qint.

Classical types

Numeric types in kulka programming language are implemented using Java
numeric types.

Int

Data type int is implemented using java.lang.Integer standard Java class.
The variable of this type can be used to store integer numbers in range

[—231, 231 —1].
Real

The variable of type real can store double precision floating-point numbers.
It is based on java.lang.Double Java standard class and can be used to store
values of 64-bit double precision numbers.

Complex
Complex numbers can be initialised using real and imaginary part
complex ¢l = [0,1];

or using real or complex variables

real a = 1;
complex ¢2 = [a,1.5];
complex ¢3 = [1,1] + ¢2;

See also Figure for more examples.

A.3 Data types and subprocedures 87

At the moment kulka programming language does not provide syntax
complex cv = 1 + 1i; provided by other programming languages (eg. PythorEl
or GNU OctaveED.

Strings

String processing is provided to facilitate the interaction with a user. Basic
escape sequences — including “n (new line) and “t (tab) — can be used inside
string literals. For example

—kulka;, string s = ” This“tdog “tis “tblack!“n”;
—kulka, say s;

gives

This—dog-—is—- black!
—kulkay,

Here the symbol - is used to indicate a blank symbol (space).

Quantum types

The variable of type qreg can be used to store state of quantum registers.
Initialisation of quantum register can be performed usign Dirac notation.
For example

qreg rl = |0100>;
prepares register rl in the state |0100).

B xlulka - O x
File Run Help

lulka> greg a = |0000>;
lulka> greg b = [1111>;

aregb = [11115; | Exere

Figure A.1: An example of quantum register allocation using Dirac notation.
Quantum registers can be initialised to any base state

!Python v3.0 documentation, http://docs.python.org/dev/3.0/
2GNU Octave documentation, |http://www.gnu.org/software/octave/doc/interpreter/

http://docs.python.org/dev/3.0/
http://www.gnu.org/software/octave/doc/interpreter/

Experimental quantum programming language kulka

Name Description Arguments

sin(x), cos(x), | trigonometric functions numeric

tan(x), cot(x)

sqrt (x) square root of z numeric

pow(x,y) zY numeric,
numeric

random() random value from [0, 1) —

exp(x) exponential function e® numeric

log(x) natural logarithm numeric

pi(), e(), h(), k() | mathematical and physical constants | —

Table A.1: Mathematical functions available in kulka programming language
interpreter.

For a convenient manipaulation on superpositions of integer numbers
(quantum integers) kulka provides qint data type. The variables of this type
can be used to store a superposition of integer numbers and to operate on
them. Initialisation is performed using the following syntax

qint ql = (1|5]10);
which prepares the state
) 1 1
1) = 7= =
RV V3

The initialisation of quantum integers is performed using the algorithm
described in Chapter

(I1) + |5) + |10)) = — (]0001) + [0101) + |1010))

Classical functions

Subroutines can be defined in kulka using syntx similar to C programmiong
language.

Standard functions

kulka programming language provides some standard mathematical functions
known from any computer algebra system. Nevertheless, this list is far from
being exhaustive, since we do not aim to provide a replacement for general
programming language for calculations.

Quantum gates

Since the main goal of the kulka programming language was to test some
new ideas, it provides a limited support for standard notion of quantum
gates known from QCL, LanQ or cQPL.

A .4 Interpreter implementation

89

At the moment kulka supports only basic quantum gates like CNOT,
NOT and the Hadamard gate (see Table in Chapter [2)). They are
implemented as a part of the standard library. For example, the following
line in the stdlib.kulka file

gate Sx ={ {0, 1} , {1, 0} };

declares Pauli gate o, or NOT gate. At the moment it is impossible to
declare new quantum gates using the interpreter.

To perform Sx() operation on the register q one can use the following
syntax:

qreg q = |0100>;
Sx(q);

Data conversions

Since kulka programming language allows to use classical and quantum data
types, we need to specify the casting rules for conversion between them.

The mesurement of a quantum variable is performed using casting on
classical variable. The value of the measurement is stored in a classical
variable.

qint a = (2]4]6);
int b = a;
say b;

The output of the last statement is random, since the assignement int b = a;
is performed by measuring the state of the variable a, and assigning it to a
classical variable b.

It is also possible to perform the measurement using say or say_n operators.

In this case the measured value is printed to the standard output.

A.4 Interpreter implementation

The existing interpreter is implemented in Java programming language. It
uses ANTLR [95] parser generator to implement lexical analysis.

Simulation layer was developed using JScience class library [24], which

provides basic matrix manipulation routines. The algorithms described in
Chapter [5| are implemented without any optimisation.

It should be stressed that no effort has been made toward speed optimisation.

Thus, it is possible to run programmes operating only on a small number of
qubits.

90

Experimental quantum programming language kulka

(=" Terminal — [OTX
File Edit View Terminal Tabs Help

jam@odie:~/Kuwetakulka B
$ sh tik.sh

This is TIK - tiny interpreter for kulka language.

Note: This is experimental software!

Interpreter release: 20082002

[kulka= I

Figure A.2: Text user interface allows for interactive work with kulka
programming language interpreter.

User interface
Batch execution

Programmes written in kulka can be executed in batch mode using kulka.Exec
class. In the following example, $ indicates the command line input.

$ cat ex/base.kulka
example of integer and string manipulation

int x =2 + 2;

inty =95+ x;

say "x ="

say nl x;

say "x +y ="

say'nl x + y;

$ java kulka.Exec ex/base kulka
x=4

x+y=13

Text mode shell

For more convinient testing of the language text mode shell is provided. It
allows for interactive work with the interpreter. Also command line history
is provided using JLine class libraryEl

The example of an interactive session is presented in Figure

3 JLine — Java library for handling console input, |http://jline.sourceforge.net/.

http://jline.sourceforge.net/

A4 Interpreter implementation 91

Graphical shell

Scripts can be also executed using graphical user interface. It allows for
restarting the interpreter session. It can be used for batch execution of
kulka programming language scripts as well as for interactive work.

B xkulka - O x
Eile Run Help

info> Session restarted
kulkka> complex ¢l = [1,0];

leullea> complex c2 = [0,1];
lulka> saycl + c2 ;
[1.0,1.0]

saycl + c2 || Execute

Figure A.3: Graphical shell for kulka interpreter with an example of complex
numbers usage

Errors

Since kulka is an experimental language, only basic functionality for handling
errors is provided.

Table A.2 contains the summary of errors reported by the kulka programming
language interpreter. Every class implementing the particular type of error
must be a subclass of kulka.lang.errors.KulkaError, which is an abstract
class for gathering base methods.

Extending interpreter

It is possible to add more built-in functions by adding new definitions to
stdlib.kulka in bin/kulka/stdlib directory. For example function random/()
is defined by adding to this file the following line

real random() kulka.stdlib.methods.Random;

which tells the interpreter that the function random() returns the value
of type real, it does not require any arguments and it is implemented in
kulka.stdlib.methods.Random class. This method is used to implement all
standard functions listed in Table [AT]

92

Experimental quantum programming language kulka

Name Description

FunctionNotImplemented Call to undefined function

InitializationError Error caused by problems
with variable initialisation

TypeMismatch Undefined conversion between
data types

Undefined Value Undefined value

Undefined Variable Reference to undefined
variable

UnsupportedOperation Operation which was not
defined for particular types

VariableRedefinition Redefinition of a variable or a
function

Table A.2: Errors reported by the kulka interpreter. Error handling
mechanism is implemented using Java exceptions.

A.5 Remarks and further information

The presented programming language has the syntax similar to many modern
programming languages. Most of its elements should be familiar to Java and
C programmers. The syntax for initialising quantum integers is based on
Perl 6 syntax[l] In particular the parts of grammar were based on Lua 5.1
grammar for ANTLRE] by Nicolai Mainiero and C-- compiler and interpreter[]
by Scott Fortmann-Roe. The implementation of the standard library was
based on LanQ interpretelﬂ (see also [83]).

Further information related to the interpreter for the kulka quantum
programming language can be obtained from [126].

“Perl Development: Perl 6, |http://dev.perl.org/perl6/

®Lua 5.1 Reference Manual, |http://www.lua.org/manual/5.1/

SList of available ANTLR grammars: http://www.antlr.org/grammar/list
"Source code available at: http://www.antlr.org/share/list

8LanQ project page: |http://lang.sourceforge.net/

http://dev.perl.org/perl6/
http://www.lua.org/manual/5.1/
http://www.antlr.org/grammar/list
http://www.antlr.org/share/list
http://lanq.sourceforge.net/

Appendix B

Mathematics of quantum
information

This chapter provides basic mathematical tools used in quantum mechanics
and quantum information theory. We review the formalism of finite-dimensional
Hilbert spaces, Dirac notation used in quantum mechanics and quantum
information theory, and the formalism of density matrices. We also provide
some examples of quantum algorithms and protocols. Also, a brief introduction
to quantum operations is presented and some examples of quantum operations
are given.

For the complete introduction to the subject please refer to [51], [89] 1T§]
and [50]. The review of linear operators theory in finite dimensional vector
spaces can be found in [I4] and [53]. Recent developement in the theory of
entangled states is presented in [§].

B.1 Structure of quantum theory
In this section we provide basic facts concerning mathematical structure of

quantum theory.

Preliminaries

1. (a)

Let H be a separable, complex Hilbert space used to described the system
in question. We use Dirac notation [30] for inner product in H

(¢]9), (B.1)

where [¢), |¢) € H and (¢| = |p)* is a complex conjugate of |¢). Symbol
|1} (¢| denotes the operator of rank one (ie. a projection operator) which

94

Mathematics of quantum information

acts on a vector |a) € H as

(1) (o)) la) = (Bl |). (B.2)

In quantum information theory we deal mainly with finite-dimensional
Hilbert spaces.

Observables

The term observable is used to describe a physical quantity of a system
which can be observed and measured. Observables are quantum mechanical
analogous of the random variables from classical mechanics.

In quantum mechanics observables are described by self-adjoint operators,
ie. linear functions X : H — H such that

(X9ld) = (¥[X79), (B.3)

for any |¢),|¢) € H. An important property of self-adjoint operators is
expressed by the following theorem.

Theorem B.1 (Spectral decomposition) Every self-adjoint operator A can
be decomposed according to the formula

A= Y Alwi)(xil (B.4)

Ai€o(A)

with)", |x;)(z;| = I, where |z;) are the eigenvectors of A with corresponding
eigenvalues \;.

Here o(A) denotes the spectrum of the operator A. The mapping p : A; —
|x;){x;| is called spectral measure [81].

Spectral decomposition can be used to define functions on the space of
self-adjoint operators. If f: R — C is any function, one can define f(A) as

A = Y FO0)laail. (B.5)

Ai€o(A)

For example, if we take A = NOT, we have

NOT:+1<

SIS
[N
N————
|
—_
7N
I N[=
NI
[N |
N |—
_/
~—
oy
(@)
N—

and square root of NOT can be easily calculated as

W:M(

D[RO =
DI
N———
|
ﬁ
—_
7 N\
D[
|
D[—
N——
oo}
-

B.1 Structure of quantum theory

95

States

In quantum mechanics the state of the system is described by the density
matrix, ie. Hermitian operator p : H — H, which is

p >0 (positive) (B.8)

and
tr[p] =1 (normalized). (B.9)

Density matrix in the analogue of the classical probability distribution.
The set of states S(H) is a convex set and thus every p € S(H) can be
represented as a convex combination

p= sz'o’i, (B.10)
7

with o; € S(H), Zipi =1.
If the operator p additionally fulfils the condition

PP =p (B.11)

ie. p is a projection operator, the state described by p is said to be pure.
In this case density operator posesses only one eigenvector |«), which can
be used to describe the state. Therefore, in the case of pure states, we can
write

p = la)al- (B.12)

In particular, if H = C? we say that [¢)) € H describes the state of a
qubit. In this case

1) = a|0) + 1), (B.13)
where o? + 82 =1 and |0), |1) € C? form a base C.

Results of experiments

Quantum mechanics is a probabilistic theory in a sense, that it can only
predict the probability of events. We have already noted, that states and
observables can be understood as analogues of probability distributions and
random variables from classical mechanics. Physical experiments can be
interpreted using the following theorem.

Theorem B.2 (Born-von Neuman formula [51]) The results of the measurement

of observable A in the state p are described by the probability distribution
P(a) = tr [pp(a)] on the spectrum of the operator A.

96

Mathematics of quantum information

Unitary evolution

Let us assume that the described system is isolated during the time of
evolution. If initially the system is in a pure state |¢)), then the evolution of
the system is given by some unitary operator U. The action of the operator
U on the initial state is given by a formula

1) = Ule). (B.14)

If the initial state of the system is mixed and given by the density matrix
p, then the final state is given by

p— UpUT. (B.15)
However, in many situations it is impossible to avoid the interaction of
the systems with an environment.
B.1.1 Operations

The most general framework for describing evolution in quantum systems is
based on the completely positive operators acting on the space of statesH

Definition B.1 Operator E : S(H) — S(H) (superoperator) is called completely
positive if E is positive and
E®I®" (B.16)

is positive for any n € N.

Definition B.2 (Quantum operation) Operator E : S(H) — S(H) is called
an operation if it is completely positive.

Definition B.3 (CP-map) A map T : B — B is called completely positive
(CP) if it is positive and map T ® I" is positive for arbitrary n.

Important representation of the CP-maps is given by the Kraus form.

Theorem B.3 (Kraus representation) Every completely positive and trace-preserving
map T : S(H) — S(H) can be expressed as

K
T(0) =Y trot},
k=1

for all p € S(H) and K < dim®H. Kraus operators t;, : H — H satisfy the
completeness relation
S it =1
k

In many cases quantum operations are also called quantum channels [60].

LAn operator acting on the space of density operators is called a superoperator.

B.2 Examples

97

B.1.2 Composite systems

To perform any useful calculation more the one qubit must be used. In
quantum mechanics a system composed of two subsystems A and B is
described in Hilbert space H 4p which is built as a tensor product of Hilbert
spaces associated with subsystems Hap = Ha ® Hp.

This representation of states allows for a phenomenon known as quantum
entanglement. Any pure state |a)4p of the bipartite quantum system can
be represented as [§]

k
lo) aB = Z \/>\7'|ai>A ® |bi) B, (B.17)
i=1

where vectors |a;) 4 and |b;) g are orthonormal for systems A and B respectively
and), \; = 1. Decomposition in equation (B.17)) is known as Schmidt

decomposition.

Definition B.4 Pure state |a) 4p is called separable (ie. non-entangled) if it
can be expressed as

|y ap = |ai)a ® |bi) B (B.18)
for some |a;)4 € Ha and |b;)p € Hp. In the other case it is called entangled.
The definition of separability in the case of a mixed state of a bipartite

quantum system is more complicated. The following definition was given
in [120].

Definition B.5 State p € S(A® B) of the bipartite quantum system is called
separable if it can be written in the form

n
p=> piri@pf (B.19)
i=1

where pt € S(A), p#t € S(A) and Y7, pi = 1.

The theory of entangled states is an important part of quantum information
theory. More information concerning this topic can be found in [§].

B.2 Examples

Quantum information theory deals with the manipulation of quantum systems
and aims to develop procedures that would enable us to harness quantum
mechanical phenomena. The following examples present some important
features of the quantum computational model. See also [74] for more examples.

98

Mathematics of quantum information

B.2.1 Quantum registers

The simplest quantum system is represented by the two-dimensional Hilbert
space C2. In this case it is convenient to introduce the logical representation
for the base states.

The following standard notion used in [89] 50] defines the computational

basis as . < (1) >) = < (1) > (B.20)

where vectors |0) and |1) are the eigenvectors of the o, operator
0,|0) = +1|0), o|1) = —1|1). (B.21)

Quantum registers are defined as arrays of qubits. The quantum register
of dimension n is represented as a vector in C2" Hilbert space. In other
words, the quantum state of a quantum register is represented by the vector
in C"

o) = |arag ... ap) € C", (B.22)

with convention that
|00...0) = [0)®|0)®...®]0), (B.23)
11...1) = DH[1)®...®]|1). (B.24)

Single-qubit quantum gate U acts on quantum register |a,,) € C™ as
UPa) =Uloy) ®...® Ulay) (B.25)
See also Definition [2.16]in Chapter

B.2.2 Deutsch’s algorithm

In [25] Deutsch provided a simple example of quantum algorithm. The
proposed algorithm is capable of determining in a single step whether the
given function f : {0,1} — {0,1} is either constant (f(1) = f(0)) or
balanced. Deutsch’s algorithm uses a function implemented as an oracle
(see also Definition in Chapter . In other words, a function is given
in the form of unitary operator

Glz)ly) = [2)[f(y) ® v), (B.26)

where a ® b is addition modulo 2.

Below we present the version of Deutsch’s algorithm from [93]. Different
realisation can be found in [85].

Deutsch’s algorithm is composed of the following steps:

1. Prepare initial state |¢)g) = |0)|0).

B.2 Examples

99

2. Perform Hadamard operation on the first qubit

1

[¥1) = H ®1]0)|0) = —=(0) +[1)) |0). (B.27)

S

2

3. Apply the oracle operation
1

[V2) = Glahr) = NG

(10)].£(0)) + [1)] (1)) - (B.28)

4. Perform Hadamard operation on both qubits |¢3) = H ® H |¢9)

) = > (VPO ()T O)y (B.29)
z,y€{0,1}

7 (100) + (1YW) @ fa)) - (B30

5. Measure the state of both registers.

The first qubit will contain the value f(0) @ f(1) whenever 1 has been
measured in the second register. Thus, using the above procedure, it is
possible to find out the type of function f with the probability % Using the
modified version of this procedure described in [85] it is possible to solve
this problem with the probability 1.

In Chapter [8|we have described a quantum circuit realising this algorithm
along with its QCL implementation.

B.2.3 Quantum teleportation

Quantum teleportation is an example of how non-classical features of quantum
mechanics allow for creating new protocols, in this case for transferring an
unknown quantum state between two parties.

According to the rules of quantum mechanics it is impossible to make
a copy of an unknown quantum state [122, [6]. It is possible, however, to
send an unknown quantum state |z), if we have a quantum channel to our
disposal.

Let us assume that Alice and Bob share bipartite entangled state |¢4).
To send a perfect copy of an unknown state |x) = «|0) + 3|1) Alice has to
perform the following steps:

1. Prepare state |z)|¢T).
2. Measure the state of the first two qubits in {|¢+), [¢)+)},

3. Using classical channel send two bits of information describing her
measurement to Bob.

100 Mathematics of quantum information

4. At the last step Bob has to reconstruct state |z). To achieve this he
performs the following steps on his part of the system, depending on
the information obtained from Alice

Initial state of three qubits can be described using Bell states

D6t = - (a]000) + al011) + B[100) + BI111))

V2
= S118:)(al0) + 1) + 19-)(al0) ~ BIL)
+) all) + BI0Y) + 9)(al1) — 10))]

If, for example, Alice gets the state |¢_) in result of her measurement,
Bob gets the state
alo) - 81, (B.31)

and thus he has to perform operation o, to reconstruct the input state
o-(al0) — B[1)) = al0) + B[1). (B.32)

This completes the protocol.

H -

|q0)

7N
N

1) — H H
42) ¢ X[z}

Figure B.1: Circuit for quantum teleportation. Double lines represent
operation which is executed depending on the classical data obtained after
the measurement on a subsystem.

The quantum circuit realizing teleportation protocol is presented in Figure
One of the interesting features of this protocol is its usage of classical
data obtained as the result of measurement.

In Chapter 3| we have presented the implementation of quantum teleportation
in LanQ and cQPL programming languages..

B.2 Examples 101

B.2.4 Quantum channels and quantum errors

The introduction of general notion of completely positive maps (see Section
is required to describe the general evolution of a quantum system. In
particular, it allows us to describe the nonunitary evolution of the systems
interacting with an environment.

In real-world situations it is impossible to isolate a quantum system
completely. Its state becomes mixed due to the interactions with environment.
This phenomenon is know as decoherence. The formalism of quantum
operations described by completely positive maps allows us to describe errors
in physical implementations of quantum computers.

Simple examples

Since the formalism of quantum operations is very general, it allows to
express the notion of unitary evolution and measurement easily.

The simplest example of quantum operation is given by a unitary evolution
described by the matrix U. In this case Kraus representation of the channel
consists of one operator U only. The action of the channel on the initial
state p is given by a standard formula

p— UpUT. (B.33)

Another example of quantum channel is provided by the orthogonal or
von Neumann measurement [I18]. Let us assume that one measures the
observable .. In the case of one qubit this type of measurement is expressed
using Kraus operators as

{loo=(5 ¢)mar=(g 0)} (B.34)

It transforms the initial quantum state
a b
p—<b 1—a> (B.35)

p oo o+ mapiul=(§ 0). @)

Another example of measurement operators was given in Chapter
where it was used to discuss the Prisoner’s dilemma.

as

Quantum errors

To describe quantum communication channels it is necessary to take the
errors occuring during the transition of quantum states into account. Below
Kraus operators for some standard one-qubit quantum channels are presented
[89].

102

Mathematics of quantum information

A Depolarizing channel:

3 a leY «
{\/ 1— Z]I, \/Zax, \/Zay, \/ZJZ} .

[Amplitude damping:

0 Phase damping:
{6 e) (6 va)

{V1-oal,Vao.}.

(1 Phase flip:

1 Bit flip:
{\/1 — all, \/aax} .

(1 Bit-phase flip:
{V1-oal ao,}.

Parameter « is used here to change the amount of noise in a quantum
channel. For example qubit [¢)) transmitted through the bit-flip channel
will be transmitted without an error with probability /1 — « and with
probability \/a it will change its state to o |1).

Appendix C

Notation

Below we summarize the notation used in this thesis. We follow the standard
notation used in [89] and [50].

complex Hilbert space representing system A

set of bounded operators acting on the complex
Hilbert space H

space of quantum states (density matrices) on the
Hilbert space H

dimension of the Hilbert space H 4

tensor product of Hilbert spaces H4 and Hp

n-fold tensor product of the Hilbert space H
normalized base vector in N-dimensional Hilbert space
HNa

tensor product of pure states [11) and [¢9)

scalar product of the vectors |k) and |I)

projection operator

trace of the opertor X € B(H)

2-dimensional Hilbert space representing one-qubit
base state of n qubits

mixed state (density matrix) in the space S(H)
tensor product of mixed states p; and ps

maximally mixed state over N-dimensional Hilbert
space

104

Notation

[9) (Y]

Ua
U1 ® Us
yen

Ox,0y,0%
NOT

VvNOT
CNOT

A
V

~

(Q, A, 6,490, 9a, qr)

(Qi7 .T,Cl, bly,)

coRP
7ZPP

BPP
BQP

density matrix for a pure state |1)

unitary matrix acting on Hilbert space H 4
tensor product of unitary matrices U; and Us
unitary matrix acting on Hilbert space H®"
Pauli matices

identity operator

negation (~) quantum gate NOT = o,
Hadamard quantum gate

square root of NOT gate

controlled negation gate

logical and

logical or

logical not

Turing machine over the alphabet A with transition
function

configuration of a Turing machine

set of functions bounded from above by f(x)

set of function bounded from below by f(z)

set of function bounded by f(x)

complexity class P (polynomial)

complexity class NP (nondeterministic polynomial)
complexity class RP (randomized polynomial)
complexity class coRP — complement of RP
complexity class ZPP (polynomial randomized with
zero probability of error)

complexity class BPP (bounded probability of error)
complexity class BQP (bounded probability of error
on quantum Turing machine)

List of Figures

[LT TMMustration of Moore’s Lawl 2
2.1 Computation of the Turing machinel 12
2.2 Computational paths of nondeterministic Turing machine| . . 15
2.3 'The Example of a Boolean circuit|. 19
2.4 Toftoli gate] 20
[2.5 Quantum Fourier transform for three qubits| 24
2.6 Generalised quantum Toffoli gate| 24
[2.7 Quantum random machine model|o 00 28
3.1 Quantum circuit and QCL program for Deutsch’s algorithm| . 38
4.1 Protocol for two-person quantum game|. 53
4.2 Gates used to implement Parrondo’s game|. 56
[4.3 Parrondo’s game composed only of game A or only of game B| 59
4.4 'The comparison of strategies AB and BA| 60
[£5 The comparison of strategies ABB and AAB|. 61
|4.6 Influence of the initial state changes on strategies| 62
|4.7 Influence ot the initial state on the strategy BBABA| 63
5.1 The example of register initialisation| 75
|A.1 Allocation of quantum registers in kulka] 87
|[A.2 Text user interface for kulka interpreter| 90
IA.3 Example of using complex numbers in kulka) 91
IB.1 Circuit for quantum teleportation|. 100

List of Listings

2.1 Quantum pseudocode for quantum Fourier transform|. 29
[3.1 Inverse about the mean operation in QCL| 37
13.2 Operator for incrementing quantum state in QCL|. 40
[3.3 Implementation of teleportation protocol in LanQ| 42
|3.4 Classical elements of cQPL| 44
[3.5 Basic operations in cQPL| 0000000 45
13.6 Teleportation protocol implemented in cQPL| 47
4.1 CID gate used in Parrondo’s scheme| 57
4.2 Game A used in Parrondo’s schemel. 65
4.3 Game B used in Parrondo’s schemel 65
|4.4 Parrondo’s scheme described in quantum pseudocode|. 66
4.5 Classical routine controlling the execution ot strategy strategies| 67
4.6 Parameters of Parrondo’s schemel L. 68

List of Tables

[2.1 Logical values for XOR gate|. 24
[2.2 Basic elements ot quantum circuits|o 25
|3.1 Comparison of quantum programming languages| 34
[3.2 Types defined for memory managemnt in QCL| 37
[4.1 Payoft function for the Prisoner’s dilemmal 51
4.2 Parameters used in the simulation of Parrondo’s schemel . . . 59
|A.1 Standard function implemented in kulka interpreter| 88

|[A.2 Errors reported by kulka programming language interpreter| . 92

Bibliography

[1]

S. Aaronson and G. Kuperberg. Complexity ZOO. On-line
aencyclopedia avaible at http://qwiki.stanford.edu/wiki/Complexity’
Z.00.

H. Abelson, G. J. Sussman, and J. Sussman. Structure and
Interpretation of Computer Programs. MIT Press, 1996.

A. Ambainis. Quantum walks and their algorithmic applications.
International Journal of Quantum Information, 1:507-518, 2003.
quant-ph/0403120.

A. Ambainis. Quantum walk algorithm for element distinctness. STAM
Journal on Computing, 37:210-239, 2007.

D. G. Angelakis, M. Christandl, A. Ekert, A. Kay, and S. Kulik,
editors. Quantum information processing, volume 199 of NATO
Science Series. Series III: Computer and System Sciences. IOS Press,
2006.

L. E. Ballenetiene. Quantum Mechanics. A Modern Develepment.
World Scientific, 1998.

A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus,
P. Shor, T. Sleator, J. Smolin, and H. Weinfurter. Elementary gates
for quantum computation. Phys. Rev. A, 52:3457, 1995.

[. Bengtsson and K. yczkowski. Geometry of quantum states.
Cambridge University Press, 2006.

C. H. Bennett and G. Brassard. Quantum cryptography: public key
distribution and coin tossing. In Proceedings of the IEEE International
Conference on Computers, Systems, and Signal Processing, Bangalore,
India, pages 175-179, 1984.

http://qwiki.stanford.edu/wiki/Complexity_Zoo
http://qwiki.stanford.edu/wiki/Complexity_Zoo

112

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM
Journal on Computing, 26(5):1411-1473, 1997.

S. Bettelli. Toward an architecture for quantum programming. PhD
thesis, Universita di Trento, February 2002.

S. Bettelli, L. Serafini, and T. Calarco. Toward an architecture for
quantum programming. Eur. Phys. J. D, 25(2):181-200, 2003.

S. Bettelli, L. Serafini, and T. Calarco. Toward an architecture for
quantum programming. Eur. Phys. J. D, 25(2):181-200, 2003.

R. Bhatia. Matrix Analysis, volume 169 of Garduate Texts in
Mathematics. Springer-Verlag, 1997.

C. Bohm. On a family of turing machines and the related programming
language. ICC Bull., 3:187-194, 1964.

J. Bouda. Encryption of Quantum Information and Quantum
Cryptographic Protocols. PhD thesis, Masaryk University, 2004.

D. Bouwmeester, A. Ekert, and Zeilinger A., editors. The
Physics of Quantum Information: Quantum Cryptography, Quantum
Teleportation, Quantum Computation. Springer, 2000.

G. Brassard, A. Broadbent, and A Tapp. Quantum pseudo-telepathy.
Found. Phys., 35:1877-1907, 2005.

A. M. Childs and J. M. Eisenberg. Quantum algorithms for subset
finding. Quantum Information and Computation, 5:593, 2005.

A. Church. An unsolvable problem of elementary number theory.
American Journal of Mathematics, 58:345-363, 1936.

R. Cleve and D. P. DiVincenzo. Schumacher’s quantum
data compression as a quantum computation. Phys. Rev. A,
54(4):2636-2650, Oct 1996.

S. A. Cook and R. A. Reckhow. Time-bounded random access
machines. In Proceeedings of the forth Annual ACM Symposium on
Theory of Computing, pages 73-80, 1973.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. The MIT Press, 2"¢ edition, 2001.

J-M. Dautelle. JScience. http://www.jscience.org/.

D. Deutsch. Quantum theory, the Church-Turing principle and the
universal quantum computer. Proc. R. Soc. Lond. A, 400:97, 1985.

BIBLIOGRAPHY

113

[26]

[27]

[28]

[29]

[30]

31]

[32]

[33]

D. Deutsch. Quantum computational networks. Proc. R. Soc. Lond.
A, 425:73, 19809.

D. Deutsch, A. Barenco, and A. Ekert. Universality in quantum
computation. Proc. R. Soc. Lond., 449(1937):669-677, 1995.

D. Deutsch and R. Jozsa. Rapid solution of problems by quantum
computation. Proc Roy Soc Lond A, 439:553-558, 1992.

B. D’Hooghe, J. Pykacz, and R. R. Zapatrin. Quantum computation
of fuzzy numbers. Int. J. Theor. Phys., 43(6):1423-1432, 2004.

P. A. M. Dirac. The principles of quantum meachnics. Oxford
University Press, 1958.

J. Du, X. Xu, H. Li, X. Zhou, and R. Han. Playing prisoner’s dilemma
with quantum rules. Fluctuation and Noise Letters, 2(4):R189, 2002.

A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical
description of physical reality be considered complete? Phys. Rev.,
47(10):777-780, May 1935.

J. Eisert. Entanglement in Quantum Information Theory. PhD thesis,
University of Potsdam, 2001.

J. Eisert, M. Wilkens, and M. Lewenstein. Quantum games and
quantum strategies. Phys. Rev. Lett., 83:3077-3080, October 1999.

A. Ekert. Quantum cryptography based on Bell’s theorem. Phys. Rev.
Lett., 67:661-663, 1991.

T. S. Ferguson. Game theory. Lecture notes at the Mathematics
Department, University of California, 2005. http://www.math.ucla.
edu/"tom/Game Theory/Contents.html.

R. P. Feynman. Simulating physics with computers. Int. J. Theor.
Phys., 21(467):467, 1982.

A. P. Flitney and D. Abbott. An introduction to quantum game
theory. Fluctuation and Noise Letters, 2(4):R175-R188, 2002.

A. P. Flitney and D. Abbott. Quantum models of Parrondo’s games.
Physica A, 324(1-2):152-156, 2003.

A. P. Flitney, J. Ng, and D. Abbott. Quantum Parrondo’s games.
Physica A, 314:35, 2002.

L. Fortnow. One complexity theorist’s view of quantum computing.
Theor. Comput. Sci., 292(3):597-610, 2003.

http://www.math.ucla.edu/~tom/Game_Theory/Contents.html
http://www.math.ucla.edu/~tom/Game_Theory/Contents.html

114

BIBLIOGRAPHY

[42]

[43]

[44]

[46]

[47]

[48]

[55]

[56]

M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

S. Gay. Quantum programming languages: Survey and bibliography.
Bulletin of the FEuropean Association for Theoretical Computer
Science, 2005.

I. Glendinning and B. Omer. Parallelization of the QC-lib quantum
computer simulator library. In R. Wyrzykowski, J. Dongarra,
M. Paprzycki, and J. Wasniewski, editors, Parallel Processing and
Applied Mathematics, volume 3019 of Lecture Notes in Computer
Science, pages 461-468. Springer, 2004.

J. Gosling, B. Joy, G. Steele, and G. Bracha. Java(TM) Language
Specification. Prentice Hall PTR, 3rd edition edition, 2005.

L. K. Grover. Quantum mechanics helps in searching for a needle in
a haystack. Phys. Rev. Lett., 79:325-328, 1997.

L. K. Grover. Synthesis of quantum superpositions by quantum
computation. Phys. Rev. Lett., 85(6):1334-1337, Aug 2000.

D. Harmer, G.P. Abbott. Parrondo’s paradox. Statistical Science,
14:206-213, 1999.

G. P. Harmer and D. Abbott. Losing strategies can win by parrondo’s
paradox. Nature, 402(6764):864, 1999.

M. Hirvensalo. Quantum computing. Springer, 2001.

A. S. Holevo. Statistical structure of Quantum theory, volume m67 of
Lecture Notes in Physics. Springer-Verlag, 2001.

J. E. Hopcroft and J. D. Ullman. Wprowadzenie do teorii automatw,
jzykw i oblicze. Wydawnictwo Naukowe PWN, 2003.

R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University
Press, 1985.

P. Hoyer, J. Neerbek, and Y. Shi. Quantum complexities of ordered
searching, sorting, and element distinctness. In Proceedings of the 27th
International Colloquium on Automata, Languages and Programming,
pages 62-73, 2001.

J. Hughes. Why functional programming matters. The Computer
Journal, 32(2):98-107, 1989.

G. Hutton. Programming in Haskell. Cambridge University Press,
2007.

BIBLIOGRAPHY

115

[57]

[58]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Moores law: Intel microprocessor transistor count chart. http://intel.
com/museum/archives/history docs/mooreslaw.htm.

J. Karczmarczuk. Structure and interpretation of quantum mechanics:
a functional framework. In Proceedings of the ACM SIGPLAN
workshop on Haskell, pages 50-61. ACM Press, 2003.

B. W. Kernighan and D. M. Ritchie. Jezyk ANSI C. Klasyka
Informatyki. Wydawnictwa Naukowo-Techniczne, 2004.

M. Keyl. Fundamentals of quantum information theory. Phys. Rep.,
5(369):431-548, 2002.

E. Klarreich. Playing by quantum rules. Nature, 414:244-245, 2001.

H. Klauck. Quantum time-space tradeoffs for sorting. In STOC ’03:
Proceedings of the thirty-fifth annual ACM symposium on Theory of
computing, pages 69-76. ACM Press, 2003.

E. Knill. Conventions for quantum pseudocode. Technical Report
LAUR-96-2724, Los Alamos National Laboratory, 1996.

D. E. Knuth. The Art of Computer Programming: Sorting and
Searching, volume 3. Addison-Wesley, 3 edition, 1998.

A. Kocielgki. Teoria oblicze: Wykady z matematycznych podstaw
informatyki. Wydawnictwo Uniwersytetu Wrocawskiego, 1997.

J. Kosik. Two models of quantum random walk. CEJP, 4:556-573,
2003.

J. Kosik, J. A. Miszczak, and V. Buzek. Quantum Parrondo’s game
with random strategies. Journal of Modern Optics, 54:2275-2287,
2007.

C. F. Lee and N. F. Johnson. Parrondo games and quantum
algorithms. arXiv.org:quant-ph/0203043, 2002.

C. F. Lee and N. F. Johnson. Game-theoretic discussion of quantum
state estimation and cloning. Physics Letters A, 319(5-6):429-433,
2003.

C. F. Lee, N. F. Johnson, F. Rodriguez, and L. Quiroga. Quantum
coherence, correlated noise and Parrondo games. Fluctuation and
Noise Letters, 2(4):L293-L298, 2002.

W. Mauerer. Semantics and simulation of communication in quantum
programming. Master’s thesis, University Erlangen-Nuremberg, 2005.

http://intel.com/museum/archives/history_docs/mooreslaw.htm
http://intel.com/museum/archives/history_docs/mooreslaw.htm

116

BIBLIOGRAPHY

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[30]

[81]

[82]

D. A. Meyer. Quantum strategies. Phys. Rev. Lett., 82(5):1052-1055,
Feb 1999.

J. A. Miszczak. Efficient quantum algorithm for factorization.
Archiwum Informatyki Teoretycznej i Stosowanej, 2(14), 2002.

J. A. Miszczak. Spltanie w algorytmach kwantowych ukrytej
podgrupy. Master’s thesis, University of Silesia, 2003.

J. A. Miszczak. Description and visualisation of quantum circuits with
XML. Archiwum Informatyki Teoretycznej i Stosowanej, 17(4), 2005.

J. A. Miszczak. Initialisation of quantum registers based on probability
distribution. Technical report, IITiS PAN, 2007. |http://zksi.iitis.
gliwice.pl/wiki/projects:kulka.

J. A. Miszczak and P. Gawron. Numerical simulations of mixed
states quantum computation. Int. J. Quant. Inf., 3(1):195-199, 2005.
quant-ph/0406211.

J. A. Miszczak and P. Gawron. Quantum implementation of Parrondo
paradox. Fluctuation and Noise Letters, 5:L471-L478, 2005.

J. A. Miszczak and Z. Puchaa. Quantum radix sorting algorithm. in
preparation, 2007.

J. C. Mitchell. Concepts in programming languages. Cambridge
University Press, 2003.

W. Mlak. Wstp do teorii przestreni Hilberta, volume 35 of Biblioteka
Matematyczna. Pastwowe Wydawnictwo Naukowe, 1987.

H. Mlnatik. Operational semantics of quantum programming language
LanQ. Technical report, Faculty of Informatics, Masaryk University,
Brno, Czech Republic, June 2007. Faculty of Informatics, Masaryk
University.

H. Milnafik. Quantum Programming Language LanQ. PhD thesis,
Masaryk University, 2007.

G. E. Moore. Cramming more components onto integrated circuits.
Electronics, 38:114-117, 1965.

M. Mosca. Quantum Computer Algorithms. PhD thesis, Wolfson
College, University of Oxford, 1999.

M. Mottonen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa.
Quantum circuits for general multiqubit gates. Phys. Rev. Lett.,
93(13):130502, Sep 2004.

http://zksi.iitis.gliwice.pl/wiki/projects:kulka
http://zksi.iitis.gliwice.pl/wiki/projects:kulka

BIBLIOGRAPHY

117

[87]

[83]

[89]

[90]

[95]

[96]

[97]

(98]

[99]

[100]

M. Moéttonen, J. J. Vartiainen, V. Bergholm, and M. M.
Salomaa. Transformation of quantum states using uniformly controlled
rotations. Quantum Information & Computation, 5(6), 2005.

R. Nagarajan, N. Papanikolaou, and D. Williams. Simulating and
compiling code for the sequential quantum random access machine.
Electronic Notes in Theoretical Computer Science, 170:101-124, 2007.

M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

H. Nishimura and M. Ozawa. Computational complexity of uniform
quantum circuit families and quantum turing machines. Theor.
Comput. Sci., 276:147-181, 2002. quant-ph/9906095.

B. Omer. A procedural formalism for quantum computing. Master’s
thesis, Vienna University of Technology, 1998.

B. Omer. Quantum programming in QCL. Master’s thesis, Vienna
University of Technology, 2000.

B. Omer. Structured Quantum Programming. PhD thesis, Vienna
University of Technology, 2003.

C. H. Papadimitriou. Computational complexity. Addison-Wesley
Publishing Company, 1994. Polish translation: Zoono obliczeniowa,
Wydawnictwa Naukowo-Techniczne, 2002.

T. Parr. The Definitive ANTLR Reference. The Pragmatic Bookshelf,
2007.

J. M. R. Parrondo, G. P. Harmer, and D. Abbott. New paradoxical
games based on brownian ratchets. Phys. Rev. Lett., 85:5226-5229,
2000.

E. W. Piotrowski and J. Sadkowski. An invitation to quantum game
theory. International Journal of Theoretical Physics, 42(5):1089-1099,
2003.

E. Ponka. Wykady z teorii gier. Wydawnictwo Politechniki Iskiej,
2001.

E. Rasmusen. Games and Information: An Introduction to Game
Theory. Wiley-Blackwell, 2006. http://www.rasmusen.org/GI/.

A. Sabry. Modeling quantum computing in Haskell. In ACM
SIGPLAN Haskell Workshop, 2003.

http://www.rasmusen.org/GI/

118

BIBLIOGRAPHY

[101]

[102]

103

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

R. Sedgewick and M. Schidlowsky. Algorithms in Java.
Addison-Wesley Professional, 2002.

P. Selinger. A brief survey of quantum programming languages.
In Proceedings of the 7th International Symposium on Functional
and Logic Programming, volume 2998 of Lecture Notes in Computer
Science, pages 1-6, 2004.

P. Selinger. Towards a quantum programming language. Mathematical
Structures in Computer Science, 14(4):527-586, 2004.

V. V. Shende, I. L. Markov, and S. S. Bullock. Minimal universal
two-qubit controlled-NOT-based circuits. Phys. Rev. A, 69:062321,
2004. quant-ph/0308033.

J. C. Shepherdson and H. E. Strugis. Computability of recursive
functions. Journal of the ACM, 10(2):217-255, April 1963.

P. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computers. SIAM J. Computing,
26:1484-1509, 1997.

P. W. Shor. Algorithms for quantum computation: Discrete
logarithms and factoring. In Proceedings of the 35th Annual
Symposium on Foundations of Computer Science, pages 124-134.
IEEE Computer Society Press, 1994.

P. W. Shor. Why haven’t more quantum algorithms been found?
Journal of the ACM, 50(1):87-90, 2003.

P. W. Shor. Progress in quantum algorithms. Quantum Information
Processing, 3(1-5), 2004.

K. M. Svore, A. W. Cross, A. V. Aho, I. L. Chuang, and I. L. Markov.
Toward a software architecture for quantum computing design tools.
In P. Selinger, editor, Proceedings of the 2nd International Workshop
on Quantum Programming Languages, 2004.

K. M. Svore, A. W. Cross, I. L. Chuang, A. V. Aho, and I. L. Markov.
A layered software architecture for quantum computing design tools.
IEEE Computer, pages 74-83, January 2006.

T. Toffoli. Bicontinuous extension of reversible combinatorial
functions. Math. Syst. Theory, 14:13-23, 1981.

D. Unruh. Quantum programming languages. Informatik — Forschung
und Entwicklung, 21(1-2):55-63, 2006.

BIBLIOGRAPHY 119

[114] R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier,
T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein,
J. Perdigues, P. Trojek, B. ()mer, M. First, M. Meyenburg,
J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger.
Entanglement-based quantum communication over 144 km. Nature
Physics, 3:481-486, 2007.

[115] A. van Tonder. A lambda calculus for quantum computation. STAM
Journal on Computing, 33(5):1109-1135, 2004.

[116] J. J. Vartiainen, M. Mottonen, and M. M. Salomaa. Efficient
decomposition of quantum gates. Phys. Rev. Lett., 92:177902, 2004.

[117] V. Vedral, A. Barenco, and A. Ekert. Quantum networks for
elementary arithmetic operations. Phys. Rev. A, 54:147, 1996.

[118] J. von Neuman. Mathematical foundations of quantum meachnics.
Princeton University Press, 1954.

[119] H. Weimer. The C library for quantum computing and quantum
simulation. http://www.libquantum.de/.

[120] R. F. Werner. Quantum states with FEinstein-Rosen-Podolsky
correlations admitting a hidden-variable model. Phys. Rev. A,
40:4277-4281, 1989.

[121] S. Wgrzyn, J. Klamka, and J. A. Miszczak. Kwantowe Systemy
Informatyki. 2003. http://www.iitis.gliwice.pl/ miszczak /notes/.

[122] W. K. Wootters and W. H. Zurek. A single quantum cannot be cloned.
Nature, 299:802-803, 1982.

[123] P. Wycisk. Programowanie komputerw kwantowych. Master’s thesis,
Silesian University of Technology, 2006. In Polish.

[124] A. Yao. Quantum circuit complexity. In Proceedings of the 34" IEEE
Symposium on Foundations of Computer Science, pages 352-360.
IEEE Computer Society Press, 1993.

[125] Yong-Sheng Zhang, Ming-Yong Ye, and Guang-Can Guo. Conditions
for optimal construction of two-qubit nonlocal gates. Phys. Rev. A,
71(6):062331, 2005.

[126] Quantum Systems of Informatics Group at IITiS PAN: Projects. http:
/ /zksi.iitis.gliwice.pl/wiki/projects:kulka.

[127] U. Zwick. Scribe notes of the course boolean circuit complexity. http:
//www.math.tau.ac.il/~zwick /scribe-boolean.html.

http://www.libquantum.de/
http://www.iitis.gliwice.pl/~miszczak/notes/
http://zksi.iitis.gliwice.pl/wiki/projects:kulka
http://zksi.iitis.gliwice.pl/wiki/projects:kulka
http://www.math.tau.ac.il/~zwick/scribe-boolean.html
http://www.math.tau.ac.il/~zwick/scribe-boolean.html

	Abstract
	Acknowledgements
	Introduction
	Quantum information theory
	Recent results
	Progress in quantum programming
	Limitations of quantum programming
	New methods for developing quantum algorithms

	Motivation and goals
	Thesis
	Organization of this thesis

	Models of quantum computation
	Computability
	Turing machine
	Classical Turing machine
	Nondeterministic and probabilistic computation
	Quantum Turing machine
	Quantum complexity

	Quantum computational networks
	Boolean circuits
	Reversible circuits
	Quantum circuits

	Random access machines
	Classical RAM model
	Quantum RAM model
	Quantum pseudocode
	Quantum programming environment

	Further reading

	Quantum programming languages
	Introduction
	Requirements for quantum programming language
	Imperative quantum programming
	Quantum Computation Language
	LanQ

	Functional quantum programming
	QPL and cQPL

	Summary
	Further reading

	Application in quantum game theory
	Introduction
	Prisoner's dilemma
	Classical version of Parrondo's game

	Quantum games
	Quantum Prisoner's dilemma

	Quantum implementation of Parrondo's game
	Elements of the scheme
	Simulation results
	Discussion

	Summarry

	Operating on quantum data types
	Motivation
	Quantum data types
	Initialisation of quantum registers
	Generating unitary matrix

	Sorting integers on quantum computer
	Radix sort algorithm
	Quantum radix sort algorithm

	Time and space complexity
	Final remarks

	Conclusions
	Experimental quantum programming language kulka
	Motivation
	Grammar
	Data types and subprocedures
	Interpreter implementation
	Remarks and further information

	Mathematics of quantum information
	Structure of quantum theory
	Operations
	Composite systems

	Examples
	Quantum registers
	Deutsch's algorithm
	Quantum teleportation
	Quantum channels and quantum errors

	Notation
	Lists of Figures
	List of Listings
	List of Tables
	Bibliography

