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We consider a scenario of exploring a network of quantum
information processing nodes with a faulty sense of direction.
We provide a model of quantum network exploration based
on quantum walk on cycle and mobile agents and we study
its properties.

Introduction
Among the interesting problems arising in the area of quan-
tum internetworking protocols is the development of methods
which can be used to detect errors occurring in large-scale
quantum networks. A natural approach for developing such
methods is to construct them on the basis of the methods
developed for classical networks.

In this work we develop a method for exploring quantum
networks using mobile agents which operate using in-
formation stored in quantum registers. We construct a model
of two-person quantum game on a cycle which can be used
to analyse the scenario of exploring quantum networks with
faulty sense of direction. We analyse the behavior of quantum
mobile agents operating using various classes of strategies.

The Magnus-Derek combinatorial game has been in-
troduced by Nedev and Muthukrishnan [1] for the purpose
of modelling the behavior of mobile agents exploring the ring
network with faulty sense of direction. Here the sense of di-
rection refers to the capability of a processor to distinguish
between its adjacent communication lines.

The game is played by two players: Derek (from direction
or distraction) and Magnus (from magnitude or max-
imization), who operate by moving a token on a round ta-
ble (cycle) with n nodes 0, 1, . . . , n − 1. Initially the token
is placed on the position 0. In each round (step) Magnus
decides about the number 0 ≤ m ≤ n

2 of positions for the
token to move and Derek decides about the direction: clock-
wise (+ or 0) or counter-clockwise (− or 1). Magnus aims to
maximize the number of nodes visited during the game, while
Derek aims to minimize this quantity.

Exploring quantum networks
Let us now assume that the players operate by encoding
their positions on an n-dimensional cycle in finite di-
mensional pure quantum states. To achieve this we
introduce a quantum scheme by defining the following quan-
tum version of the game:

1) The state of the system is described by a vector of the
form

|m〉|d〉|x〉 ∈ Cbn/2c ⊗ C2 ⊗ Cn.

2) The initial state of the system reads |ψ0〉 = |0 . . . 0〉.
3) At each step the players can choose their strategy.

3.a) Magnus operates on his register with any unitary
gate Mi ∈ SU(bn/2c) resulting in a operation of the
form Mi ⊗ 12 ⊗ 1n performed on the full system.

3.b) Derek operates on his register with any unitary gate
Di ∈ SU(2) resulting in a operation of the form 1bn/2c⊗
Di ⊗ 1n performed on the full system.

4) The change of the token position, resulting from the play-
ers’ moves, is described by the shift operator

S =

bn/2c∑
m=0

n∑
k=0

|m, 0〉〈m, 0| ⊗ |k + m〉〈k|

+

bn/2c∑
m=0

n∑
k=0

|m, 1〉〈m, 1| ⊗ |k −m〉〈k|,

where the addition and the subtraction is in Zn.

The single move in the game defined according to the above
description is given by the operator

Ai = S(Mi ⊗Di ⊗ 1n).

We introduce the notion of visiting and attaining a po-
sition to provide the notion of node visiting suitable for
analysing quantum superpositions of states.

Definition 1.We say that the position x is visited in t
steps, if for some step i ≤ t the probability of measuring
the position register in the state |x〉 is 1, i.e.

tr|x〉〈x|(trM,D|ψi〉〈ψi|) = 1.

A |x〉-measured quantum walk from a discrete-time quantum
walk starting in a state |ψ0〉 is a process defined by iteratively
first measuring with the two projectors Π0 = |x〉〈x| and Π1 =
1 − Π0. If Π0 is measured the process is stopped, otherwise
a step operator is applied and the iteration is continued.

A quantum random walk has a (T, p) concurrent (|ψ0〉, |x〉)
hitting-time if the |x〉-measured walk from this walk and ini-
tial state |φ0〉 has a probability ≥ p of stopping at t ≤ T .

Definition 2.We say that the position x is attained
in t steps, if |x〉-measured exploration walk has a (t, 1)
concurrent (|ψ0〉, |x〉) hitting time, i.e. the exploration
walk with initial state |ψ0〉 has a probability of stopping
at a time t < T equal to 1.

With the help of these definitions, one can introduce the con-
cepts of visiting strategy and attaining strategy.

Definition 3. If for the given sequence of moves per-
formed by Magnus, there exists t such that each position
on the cycle is visited in t steps, then we call such se-
quence of moves a visiting strategy.

Definition 4. If for the given sequence of moves per-
formed by Magnus, each position on the cycle is attained,
then we call such sequence of moves an attaining strat-
egy.

Application of quantum strategies

Case n = 2k

The optimal strategy for Magnus can be computed at the
beginning of the game (see Lemma 2 in [1]). As the moves
performed by Magnus allow him the sampling of the space
of positions using r(n) = n − 1 steps, it can be easily seen
that Derek is not able to prevent Magnus from
attaining all nodes using r(n) moves.

On the other hand, Derek is able to prevent Magnus
from visiting all nodes. He can achieve this using the
strategy given as follows.

Strategy 1. For steps i = 1, . . . , n perform the following
gate

Di =

{
H if i is odd
1 if i is even

, (1)

where H denotes the Hadamard gate.

Fig. 1 Probability distribution for the position in the quan-
tum version of the Magnus-Derek game on d = 23 and d = 24
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Case n = pm: Position-controlled adap-
tive strategy
In the situation n = pm, without the possibility to perform
position-controlled operations Derek can only use classical
information about history of choices of Magnus’ unitaries. On
the other hand, if he is able to decide about his move using
the current position, the resulting strategy is more robust.
Let us consider Magnus-Derek game on n = pm, p > 3,
n 6= 2k positions with p being the least prime divisor of n.
When the set of operators available for Derek includes the
operators of the form∑

k

1⊗Dk ⊗ |k〉〈k|

where k is an arbitrary position and Dk is an arbitrary lo-
cal unitary operation then the maximum number of attained
positions for Magnus is equal to n− n/p (as in the classical
case) and the total number of visited positions is at most 2
(respectively 1 if n is an odd number).
In the simplest case Derek leads to a superposition of two
states. In this case he needs only to ensure that the superpo-
sition will not vanish – see Fig. 2.

Strategy 2. For any Magnus’ strategy based on permuta-
tion operators, when n = pm, p > 3 and p is a prime number,
Derek has to perform the following steps:

Step 1: Apply the Hadamard gate.

Step 2: If n is even do nothing as long as Magnus move is
equal to n/2. If n is odd go to Step 3.

Step 3: Find a set of n
p = m equally distant positions that

is disjoint with already visited positions.

Step 4: Apply classical strategy to both parts of the state
using position–controlled operators.

Fig. 2 Strategy 2 with the Hadamard gate at the first step
(left) and at steps 1, 2, 3, 4, 8, 9, 10, 11 (right).
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Final remarks

•By extending the space of possible moves, both players can
significantly change the parameters of the exploration.

•The modification of a classical strategy that enables both
players to preform their tasks efficiently provides an insight
into the difficulty of achieving quantum-oriented goals.

•We have shown that without a proper model of adaptive-
ness, it is not possible for Derek to obtain the results anal-
ogous to the classical case.
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