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Abstract. The goal of the presented paper is to provide an introduction to the basic computational models used in quantum information
theory. We review various models of quantum Turing machine, quantum circuits and quantum random access machine (QRAM) along with
their classical counterparts. We also provide an introduction to quantum programming languages, which are developed using the QRAM
model. We review the syntax of several existing quantum programming languages and discuss their features and limitations.
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1. Introduction

Computational process must be studied using the fixed mod-
el of computational device. This paper introduces the basic
models of computation used in quantum information theory.
We show how these models are defined by extending classical
models.

We start by introducing some basic facts about classical
and quantum Turing machines. These models help to under-
stand how useful quantum computing can be. It can be also
used to discuss the difference between quantum and classi-
cal computation. For the sake of completeness we also give
a brief introduction to the main results of quantum com-
plexity theory. Next we introduce Boolean circuits and de-
scribe the most widely used model of quantum computation,
namely quantum circuits. We focus on this model since many
presented facts about quantum circuits are used in the fol-
lowing sections. Finally we introduce another model which
is more suited for defining programming languages operat-
ing on quantum memory — quantum random access machine
(QRAM).

We also describe selected examples of the existing quan-
tum programming languages. We start by formulating the re-
quirements which must be fulfilled by any universal quantum
programming language. Next we describe languages based
on imperative paradigm — QCL (Quantum Computation Lan-
guage) and LanQ. We also describe recent research efforts
focused on implementing languages based on functional par-
adigm and discuss the advantages of a language based on this
paradigm. As the example of functional quantum program-
ming language we present cQPL.

We introduce the syntax and discuss the features of the
presented languages. We also point out their weaknesses.
For the sake of completeness a few examples of quantum
algorithms and protocols are presented. We use these ex-
amples to introduce the main features of the presented lan-
guages.

*e-mail: miszczak @itis.pl

Note that we will not discuss problems related to the phys-
ical realisation of the described models. We also do not cover
the area of quantum error correcting codes, which aims to
provide methods for dealing with decoherence in quantum
systems. For an introduction to these problems and recent
progress in this area see e.g. [1, 2].

One should be also aware that the presented overview of
existing models of quantum computation is biased towards
the models interesting for the development of quantum pro-
gramming languages. Thus we neglect some models which
are not directly related to this area (e.g. quantum automata or
topological quantum computation).

1.1. Quantum information theory. Quantum information
theory is a new, fascinating field of research which aims to
use quantum mechanical description of the system to perform
computational tasks. It is based on quantum physics and clas-
sical computer science, and its goal is to use the laws of
quantum mechanics to develop more powerful algorithms and
protocols.

According to the Moore’s Law [3, 4] the number of tran-
sistors on a given chip is doubled every two years (see Fig. 1).
Since classical computation has its natural limitations in the
terms of the size of computing devices, it is natural to inves-
tigate the behaviour of objects in micro scale.

Quantum effects cannot be neglected in microscale and
thus they must be taken into account when designing future
computers. Quantum computation aims not only at taking
them into account, but also at developing methods for con-
trolling them. Quantum algorithms and protocols are recipes
how one should control quantum system to achieve higher
efficiency.

Information processing on quantum computer was first
mentioned in 1982 by Feynman [5]. This seminal work was
motivated by the fact that simulation of a quantum system on
the classical machine requires exponential resources. Thus, if
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we could control a physical system at the quantum level we
should be able to simulate other quantum systems using such
machines.
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Fig. 1. Tllustration of Moore’s hypothesis. The number of transis-

tors which can be put on a single chip grows exponentially. The

squares represent microprocessors introduced by Intel Corporation

after Ref. [4]. The dotted line illustrates the rate of growth, with the
number of transistors doubling every two years

The first quantum protocol was proposed two years lat-
er by Bennett and Brassard [6]. It gave the first example of
the new effects which can be obtained by using the rules
of quantum theory for information processing. In 1991 Ek-
ert described the protocol [7] showing the usage of quantum
entanglement [8] in communication theory.

Today we know that thanks to the quantum nature of
photons it is possible to create unconditionally secure com-
munication links [9] or send information with the efficien-
cy unachievable using classical carriers. During the last few
years quantum cryptographic protocols have been implement-
ed in real-world systems. Quantum key distribution is the most
promising application of quantum information theory, if one
takes practical applications [10, 11] into account.

On the other hand we know that the quantum mechanical
laws of nature allow us to improve the solution of some prob-
lems [12-14], construct games [15, 16] and random walks [17,
18] with new properties.

Nevertheless, the most spectacular achievements in quan-
tum information theory up to the present moment are: the
quantum algorithm for factoring numbers and calculating dis-
crete logarithms over finite field proposed in the late nineties
by Shor [13]. The quantum algorithm solves the factorisation
problem in polynomial time, while the best known probabilis-
tic classical algorithm runs in time exponential with respect
to the size of input number. Shor’s factorisation algorithm is
one of the strongest arguments for the conjecture that quantum
computers can be used to solve in polynomial time problems
which cannot be solved classically in reasonable (i.e. polyno-
mial) time.

Taking into account research efforts focused on discov-
ering new quantum algorithms it is surprising that for the
last ten years no similar results have been obtained [19, 20].
One should note that there is no proof that quantum com-
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puters can actually solve NP-complete problems in polyno-
mial time [21, 22]. This proof could be given by quantum
algorithms solving in polynomial time problems known to
be NP-complete such as k-colorability. The complexity of
quantum computation remains poorly understood. We do not
have much evidence how useful quantum computers can be.
Still much remains to be discovered in the area of the rela-
tions between quantum complexity classes such as BQP and
classical complexity classes like NP.

1.2. Progress in quantum algorithms. Due to the slow
progress in discovering new quantum algorithms novel meth-
ods for studying the impact of quantum mechanics on algo-
rithmic problems were proposed.

The first of these methods aims at applying the rules of
quantum mechanics to game theory [16, 23]. Classical games
are used to model the situation of conflict between competing
agents. The simplest application of quantum games is pre-
sented in the form of quantum prisoners dilemma [15]. In
this case one can analyse the impact of quantum information
processing on classical scenarios. On the other hand quantum
games can be also used to analyse typical quantum situations
like state estimation and cloning [24].

Quantum walks provide the second promising method for
developing new quantum algorithms. Quantum walks are the
counterparts of classical random walks [17, 18]. For example,
in [25] the quantum algorithm for element distinctness using
this method was proposed. It requires O(n?/3) queries to de-
termine if the input {z1,...,2,} consisting of n elements
contains two equal numbers. Classical algorithm solving this
problem requires O(nlogn) queries. The generalisation of
this algorithm, with applications to the problem of subset
finding, was described in [26]. Other application of quantum
walks include searching algorithms [27] and subset finding
problem. It was also shown that quantum walks can be used
to perform a universal quantum computation [28, 29]. In [30]
the survey of quantum algorithms based on quantum walks is
presented. More information concerning recent developments
in quantum walks and their applications can be found in [31].

One should note that the development of quantum algo-
rithms is still a very lively area of research [20, 32]. General
introduction to quantum algorithms can be found in [33]. The
in-depth review of the recent results in the area of quantum
algorithms for algebraic problems can be found in [34].

2. Computability

Classically computation can be described using various mod-
els. The choice of the model used depends on the particular
purpose or problem. Among the most important models of
computation we can point:

e Turing machine introduced in 1936 by Turing and used
as the main model in complexity theory [35].

e Random access machine [36, 37] which is the example
of register machines; this model captures the main features
of modern computers and provides a theoretical model for
programming languages.
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e Boolean circuits [38] defined in terms of logical gates and
used to compute Boolean functions f : {0,1}™ — {0,1}";
they are used in complexity theory to study circuit com-
plexity.

e Lambda calculus defined by Church [39] and used as the
basis for many functional programming languages [40].

e Universal programming languages which are probably
the most widely used model of computation [41].

It can be shown that all these models are equivalent [35,
38]. In other words the function which is computable using
one of these models can be computed using any other model.
It is quite surprising since Turing machine is a very simple
model, especially when compared with RAM or programming
languages.

In particular the model of a multitape Turing machine
is regarded as a canonical one. This fact is captured by the
Church-Turing hypothesis.

Hypothesis 1 (Church-Turing). Every function which would
be naturally regarded as computable can be computed by
a universal Turing machine.

Although stated as a hypothesis, this thesis is one of the
fundamental axioms of modern computer science. A Universal
Turing machine is a machine which is able to simulate any
other machine. The simplest method for constructing such
device is to use the model of a Turing machine with two
tapes [35].

Research in quantum information processing is motivated
by the extended version of Church-Turing thesis formulated
by Deutsch [42].

Hypothesis 2 (Church-Turing-Deutsch). Every physical
process can be simulated by a universal computing device.

In other words this thesis states that if the laws of physics
are used to construct a Turing machine, this model might pro-
vide greater computational power when compared with the
classical model. Since the basic laws of physics are formulat-
ed as quantum mechanics, this improved version of a Turing
machine should be governed by the laws of quantum physics.

In this section we review some of these computational
models focusing on their quantum counterparts. The discus-
sion of quantum programming languages, which are based on
the quantum random access machines (QRAM), is presented
in Sec. 3.

We start be recalling the basic facts concerning a Tur-
ing machine. This model allows to establish clear notion of
computational resources like time and space used during com-
putation. It is also used to define other models introduced in
this section precisely.

On the other hand for practical purposes the notion of Tur-
ing machine is clumsy. Even for simple algorithms it requires
quite complex description of transition rules. Also, program-
ming languages defined using a Turing machine [43], have
rather limited set of instructions. Thus we use more sophis-
ticated methods like Boolean circuits and programming lan-
guages based on QRAM model.

Bull. Pol. Ac.: Tech. 59(3) 2011

2.1. Turing machine. The model of a Turing machine is
widely used in classical and quantum complexity theory. De-
spite its simplicity it captures the notion of computability.

In what follows by alphabet A = {a1,...,a,} we mean
any finite set of characters or digits. Elements of A are called
letters. Set A contains all strings of length & composed from
elements of A. Elements of A* are called words and the length
of the word w is denoted by |w|. The set of all words over A
is denoted by A*. Symbol € is used to denote an empty word.
The complement of language L C A* is denoted by L and it
is the language defined as L = A* — L.

Classical Turing machine. A Turing machine can operate on-
ly using one data structure — the string of symbols. Despite its
simplicity, this model can simulate any algorithm with incon-
sequential loss of efficiency [35]. A Classical Turing machine
consists of

e an infinitely long tape containing symbols from the finite
alphabet A,

e a head, which is able to read symbols from the tape and
write them on the tape,

e memory for storing programme for the machine.

The programme for a Turing machine is given in terms of
transition function §. The schematic illustration of a Turing
machine is presented in Fig. 2.

V

x’ a | b y

a) Configuration (g;,z’a,b1y’)

V

x’ a | ba y

b) Configuration (g;,z’, ab2y’)
Fig. 2. Computational step of the Turing machine. Configuration
(gi,z'a,b1y") is presented in a). If the transition function is defined
such that 6(gs;, b1) = (g2, b2, —1) this computational step leads to
configuration (g;,x’, abay’) (see b)

Formally, the classical deterministic Turing machine is de-
fined as follows.

Definition 1. Deterministic Turing machine. A determin-
istic Turing machine M over an alphabet A is a sixtuple

(Q7 Aa 67 q0,Y4a, QT), where

e () is the set of internal control states,

® (0,4, qr € Q are initial, accepting and rejecting states,

e J:QxA— QxAx{-1,0,1} is a transition function
i.e. the programme of a machine.

By a configuration of machine M we understand a triple
(i, z,y), ¢; € Q, x,y € A*. This describes a situation where
the machine is in the state g;, the tape contains the word zy
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and the machine starts to scan the word y. If x = 2z’ and
y = b1y’ we can illustrate this situation as in Fig. 2.

The transition from the configuration ¢; to the configura-
tion co is called a computational step. We write ¢ - ¢’ if ¢
defines the transition from c to ¢’. In this case ¢’ is called the
successor of c.

A Turing machine can be used to compute values of func-
tions or to decide about input words. The computation of a
machine with input w € A* is defined as a sequence of config-
urations c¢o, ¢1, C2, . . ., such that ¢y = (g;, €, w) and ¢; b ¢;41.
We say that computation halts if some ¢; has no successor or
for configuration ¢;, the state of the machine is g, (machine
accepts input) or ¢, (machine rejects input).

The computational power of the Turing machine has its
limits. Let us define two important classes of languages.

Definition 2. A set of words L € A* is a recursively enu-
merable language if there exists a Turing machine accepting
input w iff w € L.

Definition 3. A set of words L € A* is a recursive language
if there exists a Turing machine M such that

e M accepts w iff w € L,
e MM halts for any input.

The computational power of the Turing machine is limited
by the following theorem.

Theorem 1. There exists a language [ which is recursively
enumerable but not recursive.

Language H used in the above theorem is defined in
halting problem [35]. It consists of all words composed of
words encoding Turing machines and input words for these
machines, such that a particular machine halts on a given
word. A universal Turing machine can simulate any machine,
thus for a given input word encoding machine and input for
this machine we can easily perform the required computation.

A deterministic Turing machine is used to measure time
complexity of algorithms. Note that if for some language there
exists a Turing machine accepting it, we can use this machine
as an algorithm for solving this problem. Thus we can mea-
sure the running time of the algorithm by counting the number
of computational steps required for Turing machine to output
the result.

The time complexity of algorithms can be described using
the following definition.

Definition 4. Complexity class TIME(f(n)) consists of all
languages L such that there exists a deterministic Turing ma-
chine running in time f(n) accepting input w iff w € L.

In particular complexity class P defined as

P= UTIME(nk), (1)
k

captures the intuitive class of problems which can be solved
easily on a Turing machine.

Nondeterministic and probabilistic computation. Since one
of the main features of quantum computers is their ability to
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operate on the superposition of states we can easily extend the
classical model of a probabilistic Turing machine and use it to
describe quantum computation. Since in general many results
in the area of algorithms complexity are stated in the terms
of a nondeterministic Turing machine we start by introducing
this model.

Definition 5 (Nondeterministic Turing machine). A nonde-
terministic Turing machine M over an alphabet A is a sixtuple
(Q7 Aa 67 q0;4a, QT)’ where

e () is the set of internal control states,
® 0,4a,qr € @ are initial, accepting and rejecting states,
e JCQxAXxQxAx{-1,0,1} is a relation.

The last condition in the definition of a nondeterministic
machine is the reason for its power. It also requires to change
the definition of acceptance by the machine.

We say that a nondeterministic Turing machine accepts in-
put w if, for some initial configuration (g;, €, w), computation
leads to configuration (g4, a1, as) for some words a; and as.
Thus a nondeterministic machine accepts the input if there
exists some computational path defined by transition relation
0 leading to an accepting state ¢,.

The model of a nondeterministic Turing machine is used
to define complexity classes NTIME.

Definition 6. Complexity class NTIME( f(n)) consists of all
languages L such that there exists a nondeterministic Turing
machine running in time f(n) accepting input w iff w € L.

The most prominent example of these complexity classes
is NP, which is the union of all NTIME(n*), i.e.

NP = | JNTIME(n"). )
k

A nondeterministic Turing machine is used as a theoretical
model in complexity theory. However, it is hard to imagine
how such device operates. One can illustrate the computation-
al path of a nondeterministic machine as in Fig. 3 [35].

time flow

Fig. 3. Schematic illustration of the computational paths of a nonde-

terministic Turing machine [35]. Each circle represents the configu-

ration of the machine. The machine can be in many configurations
simultaneously
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Since our aim is to provide the model of a physical de-
vice we restrict ourselves to more realistic model. We can
do that by assigning to each element of relation a number
representing probability. In this case we obtain the model of
a probabilistic Turing machine.

Definition 7 (Probabilistic Turing machine). A probabilis-
tic Turing machine M over an alphabet A is a sixtuple
(Qa A7 55 q0;4a, QT), where

e () is the set of internal control states,

® qo,qa,qr € Q are initial, accepting and rejecting states,

e 0:QxAXxQxAx{-1,0,1} — [0,1] is a transition
probability function i.e.

>

(g2,a2,d)€EQx Ax{—1,0,1}

5(611aa1aQ27G27d) =1. (3)

For a moment we can assume that the probabilities of
transition used by a probabilistic Turing machine can be rep-
resented only by rational numbers. We do this to avoid prob-
lems with machines operating on arbitrary real numbers. We
will address this problem when extending the above definition
to the quantum case.

The time complexity of computation can be measured in
terms of the number of computational steps of the Turing
machine required to execute a programme. Among important
complexity classes we have chosen to point out:

o P — the class of languages for which there exists a deter-
ministic Turing machine running in polynomial time,

o NP - the class of languages for which there exists a non-
deterministic Turing machine running in polynomial time,

e RP - the class of languages L for which there exists
a probabilistic Turing machine M such that: M accepts
input w with probability at least % if w € L and always
rejects w if w & L,

e coRP - the class of languages L for which L is in RP,

e ZPP - RPN coRP.

More examples of interesting complexity classes and com-
putational problems related to them can be found in [44].

Quantum Turing machine. A quantum Turing machine was

introduced by Deutsch [42]. This model is equivalent to a

quantum circuit model [45, 46]. However, it is very inconve-

nient for describing quantum algorithms since the state of a

head and the state of a tape are described by state vectors.
A quantum Turing machine consists of:

e Processor: M 2-state observables {n;|i €z,, }.

e Memory: infinite sequence of 2-state
{m;li € Z}.

e Observable z, which represents the address of the current
head position.

observables

The state of the machine is described by the vector
[(t)) = |z;n0,n1,...;m) in the Hilbert space H associ-
ated with the machine.

At the moment ¢ = 0 the state of the machine is described
by the vectors [1)(0)) = >, an|0;0,...,0;...,0,0,0,...)
such that

Bull. Pol. Ac.: Tech. 59(3) 2011
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The evolution of the quantum Turing machine is described
by the unitary operator U acting on H.

A classical probabilistic (or nondeterministic) Turing ma-
chine can be described as a quantum Turing machine such
that, at each step of its evolution, the state of the machine is
represented by the base vector.

The formal definition of the quantum Turing machine was
introduced in [21].

It is common to use real numbers as amplitudes when de-
scribing the state of quantum systems during quantum com-
putation. To avoid problems with an arbitrary real number we
introduce the class of numbers which can be used as ampli-
tudes for amplitude transition functions of the quantum Turing
machine.

Let us denote by C the set of complex numbers ¢ € C,
such that there exists a deterministic Turing machine, which

allows to calculate Re (c¢) and Im (c¢) with accuracy on in

time polynomial in 7.

Definition 8 (Quantum Turing Machine). A quantum Tur-
ing machine (QTM) M over an alphabet A is a sixtuple
(Q, A, 90,90, qa, qr), Where

e () is the set of internal control states,
® (0, qq,qr € Q are initial, accepting and rejecting states,
e :QxAxQxAx{-1,0,1} — C is a transition
amplitude function i.e.
0(q1, 01,02, a2,d)]* = 1. (5)
(g2,a2,d)€EQx Ax{—1,0,1}

Reversible classical Turing machines (i.e. Turing machines
with reversible transition function) can be viewed as particu-
lar examples of quantum machines. Since any classical algo-
rithm can be transformed into reversible form, it is possible
to simulate a classical Turing machine using quantum Turing
machine.

Quantum complexity. Quantum Turing machine allows for
rigorous analysis of algorithms. This is important since the
main goal of quantum information theory is to provide some
gain in terms of speed or memory with respect to classical
algorithms. It should be stressed that at the moment no formal
proof has been given that a quantum Turing machine is more
powerful than a classical Turing machine [22].

In this section we give some results concerning quantum
complexity theory. See also [21, 47] for a introduction to this
subject.

In analogy to classical case it is possible to define com-
plexity classes for the quantum Turing machine. The most
important complexity class is this case is BQP.

Definition 9. Complexity class BQP contains languages L
for which there exists a quantum Turing machine running in
polynomial time such that, for any input word z, this word is

309



J.A. Miszczak

accepted with probability at least 3/4 if = € L and is rejected
with probability at least 3/4 if « & L.

Class BQP is a quantum counterpart of the classical class
BPP.

Definition 10. Complexity class BPP contains languages L
for which there exists a nondeterministic Turing machine run-
ning in polynomial time such that, for any input word z, this
word is accepted with probability at least 3/4 if z € L and is
rejected with probability at least 3/4 if z & L.

Since many results in complexity theory are stated in
terms of oracles, we define an oracle as follows.

Definition 11. An oracle or black box is an imaginary machine
which can decide certain problems in a single operation.

We use notation AB to describe the class of problems
solvable by an algorithm in class A with an oracle for the
language B.

It was shown [21] that the quantum complexity classes are
related as follows.

Theorem 2. Complexity classes fulfil the following inequality
BPP C BQP C P#F. (©6)

Complexity class #P consists of problems of the form
compute f(x), where f is the number of accepting paths of
an NP machine. For example problem #SAT formulated
below is in #P.

Problem 1 (#SAT). For a given Boolean formula, compute
how many satisfying true assignments it has.

Complexity class P#F consists of all problems solvable
by a machine running in polynomial time which can use ora-
cle for solving problems in #P.

Complexity ZOO [44] contains the description of com-
plexity classes and many famous problems from complexity
theory. The complete introduction to the complexity theory
can be found in [35]. Theory of NP-completeness with many
examples of problems from this class is presented in [48].

Many important results and basic definitions concerning
quantum complexity theory can be found in [21]. The proof
of equivalence between quantum circuit and quantum Turing
machine was given in [45]. An interesting discussion of quan-
tum complexity classes and relation of BQP class to classical
classes can be found in [22].

2.2. Quantum computational networks. After presenting
the basic facts about Turing machines we are ready to in-
troduce more usable models of computing devices. We start
by defining Boolean circuits and extending this model to the
quantum case.

Boolean circuits. Boolean circuits are used to compute func-
tions of the form

f:{0,1}™ —{0,1}™ @)

Basic gates (functions) which can be used to define such cir-
cuits are:
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e A:{0,1}?— {0,1}, Alz,y) =1 & 2 =y = 1 (logical
and),

o vV:{0,1}2+ {0,1}, V(z,y) = 0 & = = y = 0 (logical
or),

o ~:{0,1} — {0,1}, ~ () = 1 — = (logical not).

The set of gates is called universal if all functions
{0,1}™ — {0,1} can be constructed using the gates from
this set. It is easy to show that the set of functions composed
of ~, VV and A is universal. Thus it is possible to compute any
functions {0, 1} — {0, 1}™ using only these functions. The
full characteristic of universal sets of functions was given by
Post in 1949 [49].

Using the above set of functions a Boolean circuit is de-
fined as follows.

Definition 12 (Boolean circuit). A Boolean circuit is an
acyclic direct graph with nodes labelled by input variables,
output variables or logical gates V, A or ~.

Input variable node has no incoming arrow while out-
put variable node has no outcoming arrows. The example of
a Boolean circuit computing the sum of bits x; and z2 is
given in Fig. 4.

Fig. 4. The example of a Boolean circuit computing the sum of bits
x1 and x2 [50]. Nodes labelled x1 and x2 represent input variables
and nodes labelled y; and y» represent output variables

Note that in general it is possible to define a Boolean cir-
cuit using different sets of elementary functions. Since func-
tions V, A and ~ provide a universal set of gates we defined
Boolean circuit using these particular functions.

Function f : {0,1}™ — {0,1} is defined on the bina-
ry string of arbitrary length. Let f,, : {0,1}™ — {0,1}"
be a restriction of f to {0,1}". For each such restriction
there is a Boolean circuit C,, computing f,. We say that
Co,C1,Cs, ... is a family of Boolean circuits computing f.

Note that any binary language L C {0, 1}* can be accept-
ed by some family of circuits. But since we need to know
the value of f, to construct a circuit C,, such family is not
an algorithmic device at all. We can state that there exists
a family accepting the language, but we do not know how to
build it [35].

To show how Boolean circuits are related to Turing ma-
chines we introduce uniformly generated circuits.

Definition 13. We say that language L € A* has uniformly
polynomial circuits if there exists a Turing machine M that
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an input 1...1 outputs the graph of circuit C,, using space

O(logn), and the family Cy, C1, . .. accepts L.

The following theorem provides a link between uniformly
generated circuits and Turing machines.

Theorem 3. A language L has uniformly polynomial circuit
iff L eP.

Quantum circuits model is an analogous to uniformly
polynomial circuits. They can be introduced as the straight-
forward generalisation of reversible circuits.

Reversible circuits. The evolution of isolated quantum sys-
tems is described by a unitary operator U. The main difference
with respect to classical evolution is that this type of evolution
is reversible.

Before introducing a quantum circuit we define a re-
versible Boolean circuit

Definition 14 (Reversible gate). A classical reversible func-
tion (gate) {0,1}™ — {0,1}™ is a permutation.

Definition 15. A reversible Boolean circuit is a Boolean cir-
cuit composed of reversible gates.

The important fact expressed by the following theorem al-
lows us to simulate any classical computation on a quantum
machine described using a reversible circuit

Theorem 4. All Boolean circuits can be simulated using re-
versible Boolean circuits.

Like in the case of nonreversible circuit one can introduce
the universal set of functions for reversible circuits.

X1 L 4 Y1
T2 | 4 Y2
T3 S Y3

Fig. 5. Classical Toffoli gate is universal for reversible circuits. It
was also used to provide the universal set of quantum gates [51]

The important example of a gate universal for reversible
Boolean circuits is a Toffoli gate. The graphical representa-
tion of this gate is presented in Fig. 5. The following theorem
was proved by Toffoli [52].

Theorem 5. A Toffoli gate is a universal reversible gate.

As we will see in the following section it is possible to
introduce two-bit quantum gates which are universal for quan-
tum circuits. This is impossible in the classical case and one
needs at least a three-bit gate to construct the universal set of
reversible gates.

In particular, any reversible circuit is automatically a quan-
tum circuit. However, quantum circuits offer much more di-
versity in terms of the number of allowed operations.
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Quantum circuits. The computational process of the quantum
Turing machine is complicated since data as well as control
variables can be in a superposition of base states. To provide
more convenient method of describing quantum algorithms
one can use a quantum circuits model. This model is some-
times called a quantum gate array model.

Quantum circuits model was first introduced by Deutsch
in [51] and it is the most commonly used notation for quan-
tum algorithms. It is much easier to imagine than the quantum
Turing machine since the control variables (executed steps and
their number) are classical. There are only quantum data (e.g.
qubits or qudits and unitary gates) in a quantum circuit.

A quantum circuit consists of the following elements (see
Table 2):

o the finite sequence of wires representing qubits or se-
quences of qubits (quantum registers),

e quantum gates representing elementary operations from the
particular set of operations implemented on a quantum ma-
chine,

e measurement gates representing a measurement operation,
which is usually executed as the final step of a quantum
algorithm. It is commonly assumed that it is possible to
perform the measurement on each qubit in canonical basis
{]0),]1)} which corresponds to the measurement of the .S,
observable.

The concept of a quantum circuit is the natural gener-
alisation of acyclic logic circuits studied in classical com-
puter science. Quantum gates have the same number of in-
puts as outputs. Each n-qubit quantum gate represents the
2"-dimensional unitary operation of the group SU(2"), i.e.
generalised rotation in a complex Hilbert space.

The main advantage of this model is its simplicity. It also
provides very convenient representation of physical evolution
in quantum systems.

From the mathematical point of view quantum gates are
unitary matrices acting on n-dimensional Hilbert space. They
represent the evolution of an isolated quantum system [53].

The problem of constructing new quantum algorithms re-
quires more careful study of operations used in quantum cir-
cuit model. In particular we are interested in efficient decom-
position of quantum gates into elementary operations.

We start by providing basic characteristic of unitary ma-
trices [53, 54].

Theorem 6. Every unitary 2 x 2 matrix G € U(2) can be
decomposed using elementary rotations as

G = B(9)R.(0) Ry ()R (5) ®
where
e 0
e = ).
_(eoste) sinie/2)
O\ Cante2) eonter2) )
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and

We introduce the definition of quantum gates as stated
in [50].

Definition 16. A quantum gate U acting on m qubits is a
unitary mapping on C2" =C?® ... ® C?
———

m times

U:C¥ — %, 9)

which operates on the fixed number of qubits.

Formally, a quantum circuit is defined as the unitary map-
ping which can be decomposed into the sequence of elemen-
tary gates.

Definition 17. A quantum circuit on m qubits is a unitary
mapping on C2”, which can be represented as a concatena-
tion of a finite set of quantum gates.

Any reversible classical gate is also a quantum gate. In
particular logical gate ~ (negation) is represented by quan-
tum gate NOT', which is realized by o, Pauli matrix.

As we know any Boolean circuit can be simulated by a re-
versible circuit and thus any function computed by a Boolean
circuit can be computed using a quantum circuit. Since a quan-
tum circuit operates on a vector in complex Hilbert space it
allows for new operations typical for this model.

The first example of quantum gate which has no classical
counterpart is v NOT gate. It has the following property

VNOTVNOT = NOT,

which cannot be fulfilled by any classical Boolean function
{0,1} + {0,1}. Gate V/N is represented by the unitary ma-
trix

(10)

1—1
1474

1 144
VNOT =~ [ ' 17

2\ 1-i (4o

Another example is Hadamard gate H. This gate is used
to introduce the superposition of base states. It acts on the

base state as

HJ0) = == (10) + |1).

12)

- %

H[1) = ﬁ(|0> —11).

If the gate GG is a quantum gate acting on one qubit it is
possible to construct the family of operators acting on many
qubits. The particularly important class of multiqubit opera-
tions is the class of controlled operations.

Definition 18. (Controlled gate). Let G be a 2 x 2 unitary

matrix representing a quantum gate. Operator
1){1]® G+ 10)(0| &1 (13)

acting on two qubits, is called a controlled-G gate.
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Here A @ B denotes the tensor product of gates (unitary
operator) A and B, and [ is an identity matrix. If in the above
definition we take G = NOT we get

1 0 0 0
01 0 O
W1l ®o, +[0){(0| @1 = , 14
(1@ o + [0)0) oo 1w
00 1 0

which is the definition of CNOT(controlled-NOT) gate. This
gate can be used to construct the universal set of quantum
gates. This gate also allows to introduce entangled states dur-
ing computation:

CNOT(H ®T)|00) — czvori2 (J00) + [10)) =

%

— L (jo0y + 1)),

V2
The classical counterpart of CNOT gate is XOR gate.
Table 1

Logical values for XOR gate. Quantum CNOT gate computes value of
XOR z2 in the first register and stores values of x2 in the second register

1 T2 z1 XOR z2

0 0 0

0 1 1

1 0 1

1 1 0
Table 2

Basic gates used in quantum circuits with their graphical representation and
mathematical form. Note that measurement gate is represented in Kraus
form, since it is the example of non-unitary quantum evolution

The name of the gate  Graphical representation ~ Mathematical form

classical bit

Hadamard - % ( i ll )
— 01
Pauli X Lo
Pauli Y (9 7}‘)
i
: v 10
Pauli Z . .
= 0 -
10
Phase .
- 0 i
s 10
m/ —{r 0 e/t
1000
CNOT 0100
’ I 0001
0010
1000
SWAP 0010
o 0100
0001
10 00
Measurement 0o/ Lo
qubit R wire = single qubit
n qubits — wire representing n qubits

double wire = single bit
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Other examples of single-qubit and two-qubit quantum
gates are presented in Table 2. In Fig. 6 a quantum circuit
for quantum Fourier transform on three qubits is presented.

lgo) —H [ S }—@
lg1) H S|
) Figs
Fig. 6. Quantum circuit representing quantum Fourier transform for

three qubits. Elementary gates used in this circuit are described in
Table 2

la0) ———4{H A

lq1) ﬁi ™ ’J;

ja2) xHzf
Fig. 7. Circuit for quantum teleportation. Double lines represent the

operation which is executed depending on the classical data obtained
after the measurement on a subsystem

One can extend Definition 18 and introduce quantum gates
with many controlled qubits.

Definition 19. Let G be a 2 x 2 unitary matrix. Quantum gate
defined as

[1...1)1... 1| @G+ 12 1|z><l|®]1
1£1. ..

n—1

5)

n—1 n—1

is called (n — 1)-controlled G gate. We denote this gate by
An—1(G).

This gate A,,—1(G) is sometimes referred to as a gener-
alised Toffoli gate or a Toffoli gate with m controlled qubits.
Graphical representation of this gate is presented in Fig. 8.

Fig. 8. Generalised quantum Toffoli gate acting on n qubits. Gate G
is controlled by the state of n — 1 qubits according to Definition 19

The important feature of quantum circuits is expressed by
the following universality property [54].

Theorem 7. The set of gates consisting of all one-qubit gates
U(2) and one two-qubit CNOT gate is universal in the sense
that any n-qubit operation can be expressed as the composi-
tion of these gates.

Note that, in contrast to the classical case, where one needs
at least three-bit gates to construct a universal set, quantum
circuits can be simulated using one two-qubit universal gate.

In order to implement a quantum algorithm one has to de-
compose many qubit quantum gates into elementary gates. It
has been shown that almost any n-qubit quantum gate (n > 2)
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can be used to the build a universal set of gates [55] in the
sense that any unitary operation on the arbitrary number of
qubits can be expressed as the composition of gates from this
set. In fact the set consisting of two-qubit exclusive-or (XOR)
quantum gate and all single-qubit gates is also universal [54].

Let us assume that we have the set of gates containing on-
ly CNOT and one-qubit gates. In [56] theoretical lower bound
for the number of gates required to simulate a circuit using
these gates was derived. The efficient method of elementary
gates sequence synthesis for an arbitrary unitary gate was pre-
sented in [57].

Theorem 8 (Shende-Markov-Bullock). Almost all n-qubit
operators cannot be simulated by a circuit with fewer than
[1/4[4™ — 3n — 1]] CNOT gates.

In [58] the construction providing the efficient way of
implementing arbitrary quantum gates was described. The re-
sulting circuit has complexity O(4™) which coincides with
lower bound from Theorem 8.

It is useful to provide more details about the special case,
when one uses gates with many controlled and one target
qubits. The following results were proved in [54].

Theorem 9. For any single-qubit gate U the gate A,,_1(U)
can be simulated in terms of ©(n?) basic operations.

In many situations it is useful to construct a circuit which
approximates the required circuit. We say that quantum cir-
cuits approximate other circuits with accuracy ¢ if the distance
(in terms of Euclidean norm) between unitary transformations
associated with these circuits is at most £ [54].

Theorem 10. For any single-qubit gate U and ¢ > 0
gate A,—1(U) can be approximated with accuracy € using

1
e (n log — | basic operations.
€

Note that the efficient decomposition of a quantum circuit
is crucial in physical implementation of quantum information
processing. In particular case decomposition can be optimised
using the set of elementary gates specific for target architec-
ture. CNOT gates are of big importance since they allow to
introduce entangled states during computation. It is also hard
to physically realise CNOT gate since one needs to control
physical interaction between qubits.

One should also note that for some classes of quantum
circuits it is possible to construct their classical counterparts,
which can be used to simulate quantum computation per-
formed by these circuits efficiently. The most notable class
having this property is a class of circuits CHP class, which
consists of stabilizer circuits, i.e. circuits consisting solely
of CNOT, Hadamard and phase gates [59]. This property is
known as so called Gottesman-Knill theorem.

Theorem 11 (Gottesman-Knill). Any stabilizer circuit can
be efficiently simulated on a classical machine.

It is worth noting that gates used to construct stabilizer cir-
cuits do not provide an universal set of gates. Nevertheless,
such circuits can produce highly entangled states.
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2.3. Random access machines. Quantum circuit model does
not provide a mechanism for controlling with classical ma-
chine the operations on quantum memory. Usually quantum
algorithms are described using mathematical representation,
quantum circuits and classical algorithms [60]. The model of
quantum random access machine is built on an assumption
that the quantum computer has to be controlled by a classi-
cal device [61]. Schematic presentation of such architecture
is provided in Fig. 9.

. the sequence of elementary gates
the description of

algorithm in abstract /\
model
\ _
| Ai—
A

probability distribution classical controlling device quantum memory

for futher analysis
the outcome of measurement

Fig. 9. The model of classically controlled quantum machine [61].

Classical computer is responsible for performing unitary operations

on quantum memory. The results of quantum computation are re-
ceived in the form of measurement results

Quantium Il

Quantum random access machine is interesting for us
since it provides a convenient model for developing quan-
tum programming languages. However, these languages are
our main area of interest. We see no point in providing the
detailed description of this model as it is given in [61] togeth-
er with the description of hybrid architecture used in quantum
programming.

Classical RAM model. The classical model of random ac-
cess machine (RAM) is the example of more general register
machines [36, 37].

The random access machine consists of an unbounded se-
quence of memory registers and a finite number of arithmetic
registers. Each register may hold an arbitrary integer number.
The programme for the RAM is a finite sequence of instruc-
tions IT = (my,...,7,). At each step of execution register 4
holds an integer r; and the machine executes instruction 7,
where « is the value of the programme counter. Arithmetic
operations are allowed to compute the address of a memory
register.

Despite the difference in the construction between a Tur-
ing machine and RAM, it can be easily shown that a Turing
machine can simulate any RAM machine with polynomial
slow-down only [35].

It is worth noting that programming languages can be de-
fined without using RAM model. Interesting programming
language for a Turing machine P”, providing the minimal set
of instructions, was introduced by Bohm in [43].

Quantum RAM model. Quantum random access machine
(QRAM) model is the extension of the classical RAM. QRAM
can exploit quantum resources and, at the same time, can be
used to perform any kind of classical computation. It allows
us to control operations performed on quantum registers and
provides the set of instructions for defining them.
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Recently a new model of sequential quantum random ma-
chine (SQRAM) has been proposed. Instruction set for this
model and compilation of high-level languages is discussed
in [62]. However, it is very similar to QRAM model.

The quantum part of QRAM model is used to generate
probability distribution. This is achieved by performing mea-
surement on quantum registers. The obtained probability dis-
tribution has to be analysed using a classical computer.

Quantum pseudocode. Quantum algorithms are, in most of
the cases, described using the mixture of quantum gates, math-
ematical formulas and classical algorithms. The first attempt
to provide a uniform method of describing quantum algo-
rithms was made in [63], where the author introduced a high-
level notation based on the notation known from computer
science textbooks [64].

In [60] the first formalised language for description of
quantum algorithms was introduced. Moreover, it was tightly
connected with the model of quantum machine called quan-
tum random access machine (QRAM).

Quantum pseudocode proposed by Knill [60] is based on
conventions for classical pseudocode proposed in [64, Chap-
ter 1]. Classical pseudocode was designed to be readable by
professional programmers, as well as people who had done
a little programming. Quantum pseudocode introduces op-
erations on quantum registers. It also allows to distinguish
between classical and quantum registers.

Quantum registers are distinguished by underlining them.
They can be introduced by applying quantum operations to
classical registers or by calling a subroutine which returns a
quantum state. In order to convert a quantum register into a
classical register measurement operation has to be performed.

The example of quantum pseudocode is presented in List-
ing 1. It shows the main advantage of QRAM model over
quantum circuits model — the ability to incorporate classical
control into the description of quantum algorithm.

Procedure: FOURIER(a, d)

Input: A quantum register a with d qubits. Qubits arenum-
bered from 0 to d — 1.

Output: The amplitudes of a are Fourier transformed
over Zod.

C: assign value to
i2m /24

classical variable

w4 e
C: perform sequence of gates
for i=d—-1 to i=0
for j=d—1 to j=i+1
if a; then R ,a—i-14+;(ai)
C: number of loops executing phase
C: depends on the required accuracy
C: of the procedure

H(ai)

C: change the order of qubits
for j=0 to j=£2-1
SW.A'P(%,(Ldfafj)

Listing 1. Quantum pseudocode for quantum Fourier transform on d qubits.
Quantum circuit for this operation with d = 3 is presented in Fig. 6.

Bull. Pol. Ac.: Tech. 59(3) 2011



Models of quantum computation and quantum programming languages

Operation H(a;) executes a quantum Hadamard gate on a
quantum register a; and SWAP(a;, a;) performs SWAP gate
between a; and a;. Operation R (a; )_that executes a quantum
gate R(¢) is defined as

R<¢>=(; €?¢>,

on the quantum register a;. Using conditional construction

(16)

if a; then R (a;)

it is easy to define controlled phase shift gate (see Defini-
tion 19). Similar construction exists in QCL quantum pro-
gramming language described in Sec. 3.

The measurement of a quantum register can be indicated
using an assignment a; < a;.

Quantum programming environment. Since the main aim
of this paper is to present the advantages and limitations of
high-level quantum programming languages, we need to ex-
plain how these languages are related to quantum random ac-
cess machine. Thus as the summary of this section we present
the overview of an architecture for quantum programming,
which is based on the QRAM model.

The architecture proposed in [65, 66] is designed for trans-
forming a high-level quantum programming language into the
technology-specific implementation set of operations. This ar-
chitecture is composed of four layers:

e High level programming language providing high-level
mechanisms for performing useful quantum computation;
this language should be independent from particular phys-
ical implementation of quantum computing.

e Compiler of this language providing architecture indepen-
dent optimisation; also compilation phase can be used to
handle quantum error correction required to perform useful
quantum computation.

e Quantum assembly language (QASM) — assembly lan-
guage extended by the set of instructions used in the quan-
tum circuit model.

e Quantum physical operations language (QCPOL),
which describes the execution of quantum programme in
a hardware-dependent way; it includes physical operations
and it operates on the universal set of gates optimal for
a given physical implementation.

The authors of [65, 66] do not define a specific high-level
quantum programming language. They point out, however,
that existing languages, mostly based on Dirac notation, do
not provide the sufficient level of abstraction. They also stress,
following [67], that it should have the basic set of features.
We will discuss these basic requirements in detail in Sec. 3.
At the moment quantum assembly language (QASM) is the
most interesting part of this architecture, since it is tightly
connected to the QRAM model.

QASM should be powerful enough for representing high
level quantum programming language and it should allow for
describing any quantum circuit. At the same time it must be
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implementation-independent so that it could be used to opti-
mise the execution of the programme with respect to different
architectures.

QASM uses qubits and cbits (classical bit) as basic units
of information. Quantum operations consist of unitary oper-
ations and measurement. Moreover, each unitary operator is
expressed in terms of single qubit gates and CNOT gates.

In the architecture proposed in [66] each single-qubit op-
eration is stored as the triple of rationals. Each rational mul-
tiplied by 7 represents one of three Euler-angles, which are
sufficient to specify one-qubit operation.

3. Quantum programming languages

Quantum algorithms [12, 14, 68, 69] and communication pro-
tocols [6, 70, 71] are described using a language of quantum
circuits [53]. While this method is convenient in the case of
simple algorithms, it is very hard to operate on compound
or abstract data types like arrays or integers using this nota-
tion [19, 72].

This lack of data types and control structures motivated
the development of quantum pseudocode [60, 73] and various
quantum programming languages [61, 66, 74-77].

Several languages and formal models were proposed for
the description of quantum computation process. The most
popular of them is quantum circuit model [51], which is tight-
ly connected to the physical operations implemented in the
laboratory. On the other hand the model of quantum Turing
machine is used for analysing the complexity of quantum al-
gorithms [21].

Another model used to describe quantum computers is
Quantum Random Access Machine (QRAM). In this model
we have strictly distinguished the quantum part performing
computation and the classical part, which is used to control
computation. This model is used as a basis for most quan-
tum programming languages [78—80]. Among high-level pro-
gramming languages designed for quantum computers we can
distinguish imperative and functional languages.

At the moment of writing this paper the most advanced
imperative quantum programming language is Quantum Com-
putation Language (QCL) designed and implemented by Omer
[61, 81, 82]. QCL is based on the syntax of C programming
language and provides many elements known from classical
programming languages. The interpreter is implemented us-
ing simulation library for executing quantum programmes on
classical computer, but it can be in principle used as a code
generator for classical machine controlling a quantum circuit.

Along with QCL several other imperative quantum pro-
gramming languages were proposed. Notably Q Language de-
veloped by Betteli [67, 74] and libquantum [83] have the abil-
ity to simulate noisy environment. Thus, they can be used
to study decoherence and analyse the impact of imperfec-
tions in quantum systems on the accuracy of quantum algo-
rithms.

Q Language [84] is implemented as a class library for
C++ programming language and libquantum is implement-
ed as a C programming language library. Q Language pro-
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vides classes for basic quantum operations like QHadamard,
QFourier, QNot, QSwap, which are derived from the base
class Qop. New operators can be defined using C++ class
mechanism. Both Q Language and libquantum share some
limitation with QCL, since it is possible to operate on single
qubits or quantum registers (i.e. arrays of qubits) only. Thus,
they are similar to packages for computer algebra systems
used to simulate quantum computation [85, 86].

Concerning problems with physical implementations of
quantum computers, it became clear that one needs to take
quantum errors into account when modelling quantum com-
putational process. Also quantum communication has become
very promising application of quantum information theory
over the last few years. Both facts are reflected in the design
of new quantum programming languages.

LanQ developed by Mlnafik was defined in [77, 87]. It
provides syntax based on C programming language. LanQ
provides several mechanisms such as the creation of a new
process by forking and interprocess communication, which
support the implementation of multi-party protocols. More-
over, operational semantics of LanQ has been defined. Thus,
it can be used for the formal reasoning about quantum algo-
rithms.

It is also worth to mention new quantum programming
languages based on functional paradigm. Research in func-
tional quantum programming languages started by introducing
quantum lambda calculus [88]. It was introduced in a form of
simulation library for Scheme programming language. QPL
[89] was the first functional quantum programming language.
This language is statically typed and allows to detect errors
at compile-time rather than run-time.

A more mature version of QPL is cQPL — communica-
tion capable QPL [75]. cQPL was created to facilitate the
development of new quantum communication protocols. Its
interpreter uses QCL as a backend language so cQPL pro-
grammes are translated into C++ code using QCL simulation
library.

Table 3 contains the comparison of several quantum pro-
gramming languages. It includes the most important features
of existing languages. In particular we list the underlying
mathematical model (i.e. pure or mixed states) and the support
for quantum communication.

Table 3
The comparison of quantum programming languages with information about
implementation and basic features. Based on information from [75] and [87]

QCL Q Language QPL cQPL LanQ

reference [81] [84] [89] [75] [87]
implemented v v v v v
formal semantics - - v v v
communication - - - v v
universal v v v v
mixed states - - v v v

All languages listed in Table 3 are universal and thus they
can be used to compute any function computable on a quan-
tum Turing machine. Consequently, all these language provide
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the model of quantum computation which is equivalent to the
model of a quantum Turing machine.

In this section we compare the selected quantum program-
ming languages and provide some examples of quantum al-
gorithms and protocols implemented in these languages. We
also describe their main advantages and limitations. We in-
troduce the basic syntax of three of the languages listed in
Table 3 — QCL, LanQ and cQPL. This is motivated by the
fact that these languages have a working interpreter and can
be used to perform simulations of quantum algorithms. We
introduce basic elements of QCL required to understand ba-
sic programmes. We also compare the main features of the
presented languages.

The main problem with current quantum programming
languages is that they tend to operate on very low-level struc-
tures only. In QCL quantum memory can be accessed using
only greg data type, which represents the array of qubits.
In the syntax of cQPL data type qint has been introduced,
but it is only synonymous for the array of 16 qubits. Sim-
ilar situation exists in LanQ [?], where quantum data types
are introduced using qnit keyword, where n represents a di-
mension of elementary unit (e.g. for qubits n = 2, for qutrits
n = 3). However, only unitary