

Quantum states and operations without complex numbers

J.A. Miszczak

Institute of Theoretical and Applied Informatics, Polish Academy of Sciences

ACA2015, Kalamata, 20-23.07.2015

1 Motivation

2 Notation

- Real representation
- Linearity

3 Examples

- Example 1: Symbolic density matrices
- Example 2: One-qubit case
- Example 3: Werner states
- Example 4: Partial transposition
- Example 5: Partial trace

Summary

Motivation

- Density matrices are hermitian and contain information which is redundant.
- Encoding of data into quantum states requires only real numbers.
- Simplification in *Mathematica* can be very powerful as long as we specify the right assumptions.

・ 同 ト ・ ヨ ト ・ ヨ ト

Real representation Linearity

Notation

State in quantum mechanics is represented by a positive matrix with trace 1. These properties are reflected by the properties of the quantum maps (*i.e.* linear maps on the space of states).

•
$$\rho = \rho^{\dagger} \implies$$
 Kraus form

•
$$\rho > 0 \implies$$
 complete positivity

• $tr\rho = 1 \implies trace preserving$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Real representation Linearity

Notation

Quantum operations are linear. As such they can be represented by matrices – so called *supermatrices*. For a quantum state ρ , the action of the map Φ can be expressed as

$$\Phi(\rho) = \mathbf{res}^{-1} \left(M_{\Phi} \, \mathbf{res}(\rho) \right),$$

where **res** maps $n \times n$ matrices onto n^2 -dimensional vectors.

Such representation can be obtained for any linear map on quantum states (not necessary completely positive).

(日) (四) (日) (日)

Real representation Linearity

Notation Real representation

The real representation of a density matrix ρ is defined as

$$\mathcal{R}[\rho]_{ij} = \begin{cases} \mathbf{Re}\rho_{ij} & i \leq j \\ -\mathbf{Im}\rho_{ij} & i > j \end{cases}$$

This translates into *Mathematica* as

ComplexToReal [m_] := Block [{d = Dimensions [m][[1]]}, Array [If [#1 <= #2, Re[m[[#1, #2]]], -Im [m[[#1, #2]]]] &, {d, d}]]

(日) (四) (日) (日)

Real representation Linearity

One can easily reconstruct the original density matrix from its real representation.

Assuming that m represents a real matrix obtained as a representation of the density matrix, the original density matrix is obtained by

 $\begin{array}{l} \textbf{RealToComplex} [m_{-}] &:= \textbf{Block} [\{ d = \textbf{Dimensions} [m] [[1]] \} \\ \textbf{Array} [\textbf{If} [\#1 < \#2, m[[\#1, \#2]] + \textbf{I} m[[\#2, \#1]] , \\ \textbf{If} [\#1 > \#2, m[[\#2, \#1]] - \textbf{I} m[[\#1, \#2]] , \\ m[[\#1, \#2]]]] &\&, \{ d, d \}] \end{array}$

Real representation Linearity

Maps \mathcal{R} and \mathcal{C} are linear if one considers the multiplication by real numbers only. Thus it can be represented as a matrix on the space of density matrices as

$$\mathcal{R}[\rho] = \mathbf{res}^{-1} \left(M_{\mathcal{R}} \, \mathbf{res}(\rho) \right)$$

where **res** is the operation of reordering elements of the matrix into a vector.

Motivation
Examples
Summary

Example 1: Symbolic density matrices Example 2: One-qubit case Example 3: Werner states Example 4: Partial transposition Example 5: Partial trace

In *Mathematica* it is easy to express the hermicity of a density matrix

 $\begin{aligned} \mathbf{SymbolicDensityMatrix} \left[a_{-}, b_{-}, d_{-} \right] &:= \mathbf{Array} \left[\mathbf{If} \left[\# 1 < \# 2, a_{\# 1, \# 2} + \mathbf{I} b_{\# 1, \# 2}, \right] \\ \mathbf{If} \left[\# 1 > \# 2, a_{\# 2, \# 1} - \mathbf{I} b_{\# 2, \# 1}, a_{\# 1, \# 2} \right] \right] \&, \{d, d\} \end{aligned}$

Here a and b are base symbols used to construct symbolic elements of the density matrix.

Motivation Notation Examples Summary	Example 1: Symbolic density Example 2: One-qubit case Example 3: Werner states Example 4: Partial transpos Example 5: Partial trace	matrices


```
However, to use this property during the symbolic manipulations, one has to include the information about a_{i,j} and b_{i,j} in Assumptions list
```

```
\begin{aligned} & \$ Assumptions = Map[Element[\#, Reals] \&, \\ & Flatten[Join[Table[a_{i,j}, \{i, 1, d\}, \{j, i, d\}], \\ & Table[b_{i,j}, \{i, 1, d\}, \{j, i+1, d\}]] \end{aligned}
```

This is implemented by **SymbolicDensityMatrixAssume** function, which accepts the same arguments as **SymbolicDensityMatrix**.

For one qubit the symbolic density matrix can be obtained as **SymbolicDensityMatrix**[a, b, 2] which results in

$$\left(egin{array}{cc} a_{1,1} & a_{1,2}+ib_{1,2} \\ a_{1,2}-ib_{1,2} & a_{2,2} \end{array}
ight)$$

The list of required assumptions can be obtained as SymbolicDensityMatrixAssume[a, b, 2]

(日) (四) (日) (日)

Example 1: Symbolic density matrices **Example 2: One-qubit case** Example 3: Werner states Example 4: Partial transposition Example 5: Partial trace

Simplification

In *Mathematica* the application of map \mathcal{R} on the above matrix results in

$$\begin{pmatrix} \mathbf{Re}(a_{1,1}) & \mathbf{Re}(a_{1,2}) - \mathbf{Im}(b_{1,2}) \\ \mathbf{Re}(b_{1,2}) - \mathbf{Im}(a_{1,2}) & \mathbf{Re}(a_{2,2}) \end{pmatrix}$$

and only after using function $\mathbf{FullSimplify}$ one gets the expected form of the output

$$\left(egin{array}{cc} a_{1,1} & a_{1,2} \ b_{1,2} & a_{2,2} \end{array}
ight).$$

 fotivation
 Example 1: Symbolic density mat

 Notation
 Example 3: Werner states

 Examples
 Example 4: Partial transposition

 Summary
 Example 5: Partial trace

.

Examples Example 2: One-qubit case

For one-qubit map \mathcal{R} is represented by the matrix

$$M_{\mathcal{R}}^{(2)} = \frac{1}{2} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -i & i & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

Matrix representation of the map \mathcal{C} reads

$$M_{\mathcal{C}}^{(2)} = (M_{\mathcal{R}}^{(2)})^{-1} = \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0\\ 0 & 1 & i & 0\\ 0 & 1 & -i & 0\\ 0 & 0 & 0 & 1 \end{array}\right)$$

Example 1: Symbolic density matrice Example 2: One-qubit case Example 3: Werner states Example 4: Partial transposition Example 5: Partial trace

Examples Example 2: One-qubit case

The main benefit of the real representation is the smaller number of multiplications required to describe the evolution. To illustrate this let us consider a bit-flip channel defined by Kraus operators

$$\left\{ \left(\begin{array}{cc} \sqrt{1-p} & 0 \\ 0 & \sqrt{1-p} \end{array} \right), \left(\begin{array}{cc} 0 & \sqrt{p} \\ \sqrt{p} & 0 \end{array} \right) \right\},$$

or equivalently as a matrix

$$M_{BF}^{(2)} = \left(\begin{array}{cccc} 1-p & 0 & 0 & p \\ 0 & 1-p & p & 0 \\ 0 & p & 1-p & 0 \\ p & 0 & 0 & 1-p \end{array}\right)$$

Examples Example 2: One-qubit case

The form of this channel on the real density matrices is given by

$$M_{\mathcal{R}}^{(2)}M_{BF}^{(2)}M_{\mathcal{C}}^{(2)} = \begin{pmatrix} 1-p & 0 & 0 & p \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1-2p & 0 \\ p & 0 & 0 & 1-p \end{pmatrix}$$

This map acts on the real density matrix as

$$\begin{pmatrix}
pa_{2,2} - (p-1)a_{1,1} & a_{1,2} \\
(1-2p)b_{1,2} & pa_{1,1} - (p-1)a_{2,2}
\end{pmatrix}$$

< ロト (四) (三) (三)

.

Example 1: Symbolic density matrices Example 2: One-qubit case Example 3: Werner states Example 4: Partial transposition Example 5: Partial trace

Simplification

In *Mathematica* the direct application of the map \mathcal{R} on the output of the channel, *i.e.* $M_R M_{BF} \operatorname{res} \rho$, results in

$$\begin{pmatrix} \mathbf{Re} \left(pa_{2,2} - (p-1)a_{1,1} \right) & a_{1,2} + 2\mathbf{Im}(p)b_{1,2} \\ (1 - 2\mathbf{Re}(p))b_{1,2} & \mathbf{Re} \left(pa_{1,1} - (p-1)a_{2,2} \right) \end{pmatrix}$$

To get the simplified result one needs to explicitly specify assumption $p \in Reals$. This assumption has to be appended to \$Assumptions variable.

[otivotion		
Notation		
Framplea	Example 3:	Werner states
Summer		
Summary		

Examples Example 3: Werner states

Let us consider the Werner states defined for two-qubit systems

$$W(a) = \begin{pmatrix} \frac{a+1}{4} & 0 & 0 & \frac{a}{2} \\ 0 & \frac{1-a}{4} & 0 & 0 \\ 0 & 0 & \frac{1-a}{4} & 0 \\ \frac{a}{2} & 0 & 0 & \frac{a+1}{4} \end{pmatrix},$$

with partial transposition given by

$$W(a)^{T_A} = \begin{pmatrix} \frac{a+1}{4} & 0 & 0 & 0\\ 0 & \frac{1-a}{4} & \frac{a}{2} & 0\\ 0 & \frac{a}{2} & \frac{1-a}{4} & 0\\ 0 & 0 & 0 & \frac{a+1}{4} \end{pmatrix}$$

.

 Motivation
 Example 1: Symbolic density matrices

 Notation
 Example 2: One-qubit case

 Example 3: Werner states
 Example 3: Werner states

 Summary
 Example 4: Partial transposition

.

Examples Example 3: Werner states

The real representation reduces one element from the W(a) matrix

$$\mathcal{R}[W(a)] = \begin{pmatrix} \frac{a+1}{4} & 0 & 0 & \frac{a}{2} \\ 0 & \frac{1-a}{4} & 0 & 0 \\ 0 & 0 & \frac{1-a}{4} & 0 \\ 0 & 0 & 0 & \frac{a+1}{4} \end{pmatrix}$$

This matrix has eigenvalues

$$\left\{\frac{1-a}{4}, \frac{1-a}{4}, \frac{a+1}{4}, \frac{a+1}{4}\right\}$$

and the sum of smaller eigenvalues is greater than the larger eigenvalue for a > 1/3.

 Interface
 Example 1: Symbolic density matrice

 Notation
 Example 2: One-qubit case

 Examples
 Example 3: Werner states

 Summary
 Example 4: Partial transposition

Examples Example 4: Partial transposition

Let us consider the partial transposition of the two-qubit density matrix

$$\rho^{T_A} = \begin{pmatrix} x_{1,1} & x_{1,2} + iy_{1,2} & x_{1,3} - iy_{1,3} & x_{2,3} - iy_{2,3} \\ x_{1,2} - iy_{1,2} & x_{2,2} & x_{1,4} - iy_{1,4} & x_{2,4} - iy_{2,4} \\ x_{1,3} + iy_{1,3} & x_{1,4} + iy_{1,4} & x_{3,3} & x_{3,4} + iy_{3,4} \\ x_{2,3} + iy_{2,3} & x_{2,4} + iy_{2,4} & x_{3,4} - iy_{3,4} & x_{4,4} \end{pmatrix}$$

In this case

$$\mathcal{R}[\rho^{T_A}] = \begin{pmatrix} x_{1,1} & x_{1,2} & x_{1,3} & x_{2,3} \\ y_{1,2} & x_{2,2} & x_{1,4} & x_{2,4} \\ -y_{1,3} & -y_{1,4} & x_{3,3} & x_{3,4} \\ -y_{2,3} & -y_{2,4} & y_{3,4} & x_{4,4} \end{pmatrix}$$

J.A. Miszczak States and operations without complex numbers

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example 1: Symbolic density matrice Example 2: One-qubit case Example 3: Werner states Example 4: Partial transposition Example 5: Partial trace

However

$$(\mathcal{R}[\rho])^{T_A} = \begin{pmatrix} x_{1,1} & x_{1,2} & y_{1,3} & y_{2,3} \\ y_{1,2} & x_{2,2} & y_{1,4} & y_{2,4} \\ x_{1,3} & x_{1,4} & x_{3,3} & x_{3,4} \\ x_{2,3} & x_{2,4} & y_{3,4} & x_{4,4} \end{pmatrix}$$

 \mathbf{SO}

$$\mathcal{R}[\rho^{T_A}] \neq (\mathcal{R}[\rho])^{T_A}.$$

For this reason one cannot exchange the order of operations.

Motivation	
Examples	
Summary	

Example 1: Symbolic density matrice: Example 2: One-qubit case Example 3: Werner states Example 4: Partial transposition Example 5: Partial trace

The explicit form of the partial transposition on the real density matrices can be found by representing partial transposition as a matrix

ChannelToMatrix [PartialTranspose $[\#, \{2, 2\}, \{1\}]$ &, 4] and using formula

$$M_{\mathcal{R}[\Phi]} = M_{\mathcal{R}} M_{\Phi} M_{\mathcal{C}}.$$

	Example 1:	
Netetion	Example 2:	One-qubit case
Notation	Example 3:	
Examples	Example 4:	
Summary	Example 5:	Partial trace

Examples Example 5: Partial trace

For a two-qubit density matrix its partial trace is given by

$$\operatorname{tr}_{A}\rho = \begin{pmatrix} x_{1,1} + x_{3,3} & x_{1,2} + x_{3,4} + i(y_{1,2} + y_{3,4}) \\ x_{1,2} + x_{3,4} - i(y_{1,2} + y_{3,4}) & x_{2,2} + x_{4,4} \end{pmatrix}$$

One can verify if the operation of tracing-out the subsystem commutes with the map \mathcal{R} and in this case we have

$$\mathcal{C}[\operatorname{tr}_A \mathcal{R}[\rho]] = \operatorname{tr}_A \rho.$$

Thus one can calculate the reduced state of the subsystem using the real value representation.

- Real quantum states can be used to reduce the amount of memory and the number of operations required during the simulation.
- In some cases (*eg.* partial trace) the calculations can be made using the real representation only.
- Efficient utilization of the simplification procedures requires the appropriate information about the types.
- Order of evaluation and simplification influences the final output.

(本間) (本臣) (本臣)

Thank you!

J.A. Miszczak States and operations without complex numbers

э