Quantum states and operations without complex numbers

J.A. Miszczak

Institute of Theoretical and Applied Informatics, Polish Academy of Sciences
ACA2015, Kalamata, 20-23.07.2015
(1) Motivation
(2) Notation

- Real representation
- Linearity
(3) Examples
- Example 1: Symbolic density matrices
- Example 2: One-qubit case
- Example 3: Werner states
- Example 4: Partial transposition
- Example 5: Partial trace

4 Summary

Motivation

- Density matrices are hermitian and contain information which is redundant.
- Encoding of data into quantum states requires only real numbers.
- Simplification in Mathematica can be very powerful as long as we specify the right assumptions.

Notation

State in quantum mechanics is represented by a positive matrix with trace 1. These properties are reflected by the properties of the quantum maps (i.e. linear maps on the space of states).

- $\rho=\rho^{\dagger} \Longrightarrow$ Kraus form
- $\rho>0 \Longrightarrow$ complete positivity
- $\operatorname{tr} \rho=1 \Longrightarrow$ trace preserving

Notation

Quantum operations are linear. As such they can be represented by matrices - so called supermatrices. For a quantum state ρ, the action of the map Φ can be expressed as

$$
\Phi(\rho)=\operatorname{res}^{-1}\left(M_{\Phi} \operatorname{res}(\rho)\right),
$$

where res maps $n \times n$ matrices onto n^{2}-dimensional vectors.
Such representation can be obtained for any linear map on quantum states (not necessary completely positive).

Notation

Real representation

The real representation of a density matrix ρ is defined as

$$
\mathcal{R}[\rho]_{i j}=\left\{\begin{array}{cc}
\boldsymbol{\operatorname { R e }} \rho_{i j} & i \leq j \\
-\boldsymbol{\operatorname { I m }} \rho_{i j} & i>j
\end{array}\right.
$$

This translates into Mathematica as
ComplexToReal[m_] := Block[\{d= Dimensions[m][[1]]\},
Array $[\mathbf{I f}[\# 1<=\# 2$,
$\boldsymbol{\operatorname { R e }}[\mathrm{m}[[\# 1, ~ \# 2]]]$,
$-\operatorname{Im}[m[[\# 1, ~ \# 2]]]]$ \&
\{d, d\}]]

Notation

Real representation

One can easily reconstruct the original density matrix from its real representation.

Assuming that m represents a real matrix obtained as a representation of the density matrix, the original density matrix is obtained by

RealToComplex[m_] := Block[\{d = Dimensions[m][[1]]\},
Array $[\mathbf{I f}[\# 1<\# 2, \mathrm{~m}[[\# 1, \# 2]]+\mathbf{I} \mathrm{m}[[\# 2, \# 1]]$,
$\mathbf{I f}[\# 1>\# 2, \mathrm{~m}[[\# 2, \# 1]]-\mathbf{I} \mathrm{m}[[\# 1, \# 2]]$,
$\mathrm{m}[[\# 1, \# 2]]]]$ \& , $\{\mathrm{d}, \mathrm{d}\}]$
]

Notation
 Linearity

Maps \mathcal{R} and \mathcal{C} are linear if one considers the multiplication by real numbers only. Thus it can be represented as a matrix on the space of density matrices as

$$
\mathcal{R}[\rho]=\operatorname{res}^{-1}\left(M_{\mathcal{R}} \operatorname{res}(\rho)\right)
$$

where res is the operation of reordering elements of the matrix into a vector.

```
Example 2: One-qubit case
Example 3: Werner states
Example 4: Partial transposition
Example 5: Partial trace
```


Examples

Example 1: Symbolic density matrices

In Mathematica it is easy to express the hermicity of a density matrix

SymbolicDensityMatrix[a_, b-, d_] := Array[
$\mathbf{I f}\left[\# 1<\# 2, a_{\# 1, \# 2}+\mathbf{I} b_{\# 1, \# 2}\right.$,
$\left.\left.\mathbf{I f}\left[\# 1>\# 2, a_{\# 2, \# 1}-\mathbf{I} b_{\# 2, \# 1}, a_{\# 1, \# 2}\right]\right] \&,\{d, d\}\right]$
Here a and b are base symbols used to construct symbolic elements of the density matrix.

```
Example 2: One-qubit case
Example 3: Werner states
Example 4: Partial transposition
Example 5: Partial trace
```


Examples

Example 1: Symbolic density matrices

However, to use this property during the symbolic manipulations, one has to include the information about $a_{i, j}$ and $b_{i, j}$ in Assumptions list
\$Assumptions $=$ Map[Element[\#, Reals] \& Flatten [Join [Table $\left[a_{i, j}, \quad\{\mathrm{i}, 1, \mathrm{~d}\}, \quad\{\mathrm{j}, \mathrm{i}, \mathrm{d}\}\right]$, Table $\left.\left.\left[b_{i, j}, \quad\{\mathrm{i}, 1, \mathrm{~d}\}, \quad\{\mathrm{j}, \mathrm{i}+1, \mathrm{~d}\}\right]\right]\right]$

This is implemented by SymbolicDensityMatrixAssume function, which accepts the same arguments as SymbolicDensityMatrix.

Examples
 Example 2: One-qubit case

For one qubit the symbolic density matrix can be obtained as SymbolicDensityMatrix $[a, b, 2]$ which results in

$$
\left(\begin{array}{cc}
a_{1,1} & a_{1,2}+i b_{1,2} \\
a_{1,2}-i b_{1,2} & a_{2,2}
\end{array}\right)
$$

The list of required assumptions can be obtained as SymbolicDensityMatrixAssume [a, b, 2]

Examples

Example 2: One-qubit case

Simplification

In Mathematica the application of map \mathcal{R} on the above matrix results in

$$
\left(\begin{array}{cc}
\boldsymbol{\operatorname { R e }}\left(a_{1,1}\right) & \boldsymbol{\operatorname { R e }}\left(a_{1,2}\right)-\mathbf{\operatorname { I m }}\left(b_{1,2}\right) \\
\boldsymbol{\operatorname { R e }}\left(b_{1,2}\right)-\mathbf{I m}\left(a_{1,2}\right) & \boldsymbol{\operatorname { R e }}\left(a_{2,2}\right)
\end{array}\right),
$$

and only after using function FullSimplify one gets the expected form of the output

$$
\left(\begin{array}{ll}
a_{1,1} & a_{1,2} \\
b_{1,2} & a_{2,2}
\end{array}\right) .
$$

```
Example 2: One-qubit case
Example 3: Werner states
Example 4: Partial transposition
Example 5: Partial trace
```


Examples

Example 2: One-qubit case

For one-qubit map \mathcal{R} is represented by the matrix

$$
M_{\mathcal{R}}^{(2)}=\frac{1}{2}\left(\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & -i & i & 0 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

Matrix representation of the map \mathcal{C} reads

$$
M_{\mathcal{C}}^{(2)}=\left(M_{\mathcal{R}}^{(2)}\right)^{-1}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & i & 0 \\
0 & 1 & -i & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Examples

Example 2: One-qubit case

The main benefit of the real representation is the smaller number of multiplications required to describe the evolution. To illustrate this let us consider a bit-flip channel defined by Kraus operators

$$
\left\{\left(\begin{array}{cc}
\sqrt{1-p} & 0 \\
0 & \sqrt{1-p}
\end{array}\right),\left(\begin{array}{cc}
0 & \sqrt{p} \\
\sqrt{p} & 0
\end{array}\right)\right\}
$$

or equivalently as a matrix

$$
M_{B F}^{(2)}=\left(\begin{array}{cccc}
1-p & 0 & 0 & p \\
0 & 1-p & p & 0 \\
0 & p & 1-p & 0 \\
p & 0 & 0 & 1-p
\end{array}\right)
$$

```
Example 2: One-qubit case
Example 3: Werner states
Example 4: Partial transposition
Example 5: Partial trace
```


Examples

Example 2: One-qubit case

The form of this channel on the real density matrices is given by

$$
M_{\mathcal{R}}^{(2)} M_{B F}^{(2)} M_{\mathcal{C}}^{(2)}=\left(\begin{array}{cccc}
1-p & 0 & 0 & p \\
0 & 1 & 0 & 0 \\
0 & 0 & 1-2 p & 0 \\
p & 0 & 0 & 1-p
\end{array}\right)
$$

This map acts on the real density matrix as

$$
\left(\begin{array}{cc}
p a_{2,2}-(p-1) a_{1,1} & a_{1,2} \\
(1-2 p) b_{1,2} & p a_{1,1}-(p-1) a_{2,2}
\end{array}\right) .
$$

Examples

Example 2: One-qubit case

Simplificaiton

In Mathematica the direct application of the map \mathcal{R} on the output of the channel, i.e. $M_{R} M_{B F}$ res ρ, results in

$$
\left(\begin{array}{cc}
\boldsymbol{\operatorname { R e }}\left(p a_{2,2}-(p-1) a_{1,1}\right) & a_{1,2}+2 \mathbf{I m}(p) b_{1,2} \\
(1-2 \boldsymbol{\operatorname { R e }}(p)) b_{1,2} & \boldsymbol{\operatorname { R e }}\left(p a_{1,1}-(p-1) a_{2,2}\right)
\end{array}\right)
$$

To get the simplified result one needs to explicitly specify assumption $\mathrm{p} \in$ Reals. This assumption has to be appended to $\$$ Assumptions variable.

```
Example 2: One-qubit case
Example 3: Werner states
Example 4: Partial transposition
Example 5: Partial trace
```


Examples

Example 3: Werner states

Let us consider the Werner states defined for two-qubit systems

$$
W(a)=\left(\begin{array}{cccc}
\frac{a+1}{4} & 0 & 0 & \frac{a}{2} \\
0 & \frac{1-a}{4} & 0 & 0 \\
0 & 0 & \frac{1-a}{4} & 0 \\
\frac{a}{2} & 0 & 0 & \frac{a+1}{4}
\end{array}\right)
$$

with partial transposition given by

$$
W(a)^{T_{A}}=\left(\begin{array}{cccc}
\frac{a+1}{4} & 0 & 0 & 0 \\
0 & \frac{1-a}{4} & \frac{a}{2} & 0 \\
0 & \frac{a}{2} & \frac{1-a}{4} & 0 \\
0 & 0 & 0 & \frac{a+1}{4}
\end{array}\right)
$$

Examples

Example 3: Werner states

The real representation reduces one element from the $W(a)$ matrix

$$
\mathcal{R}[W(a)]=\left(\begin{array}{cccc}
\frac{a+1}{4} & 0 & 0 & \frac{a}{2} \\
0 & \frac{1-a}{4} & 0 & 0 \\
0 & 0 & \frac{1-a}{4} & 0 \\
0 & 0 & 0 & \frac{a+1}{4}
\end{array}\right) .
$$

This matrix has eigenvalues

$$
\left\{\frac{1-a}{4}, \frac{1-a}{4}, \frac{a+1}{4}, \frac{a+1}{4}\right\}
$$

and the sum of smaller eigenvalues is greater than the larger eigenvalue for $a>1 / 3$.

Examples

Example 4: Partial transposition

Let us consider the partial transposition of the two-qubit density matrix

$$
\rho^{T_{A}}=\left(\begin{array}{cccc}
x_{1,1} & x_{1,2}+i y_{1,2} & x_{1,3}-i y_{1,3} & x_{2,3}-i y_{2,3} \\
x_{1,2}-i y_{1,2} & x_{2,2} & x_{1,4}-i y_{1,4} & x_{2,4}-i y_{2,4} \\
x_{1,3}+i y_{1,3} & x_{1,4}+i y_{1,4} & x_{3,3} & x_{3,4}+i y_{3,4} \\
x_{2,3}+i y_{2,3} & x_{2,4}+i y_{2,4} & x_{3,4}-i y_{3,4} & x_{4,4}
\end{array}\right)
$$

In this case

$$
\mathcal{R}\left[\rho^{T_{A}}\right]=\left(\begin{array}{cccc}
x_{1,1} & x_{1,2} & x_{1,3} & x_{2,3} \\
y_{1,2} & x_{2,2} & x_{1,4} & x_{2,4} \\
-y_{1,3} & -y_{1,4} & x_{3,3} & x_{3,4} \\
-y_{2,3} & -y_{2,4} & y_{3,4} & x_{4,4}
\end{array}\right)
$$

```
Example 2: One-qubit case
Example 3: Werner states
Example 4: Partial transposition
Example 5: Partial trace
```


Examples

Example 4: Partial transposition

However

$$
(\mathcal{R}[\rho])^{T_{A}}=\left(\begin{array}{llll}
x_{1,1} & x_{1,2} & y_{1,3} & y_{2,3} \\
y_{1,2} & x_{2,2} & y_{1,4} & y_{2,4} \\
x_{1,3} & x_{1,4} & x_{3,3} & x_{3,4} \\
x_{2,3} & x_{2,4} & y_{3,4} & x_{4,4}
\end{array}\right)
$$

SO

$$
\mathcal{R}\left[\rho^{T_{A}}\right] \neq(\mathcal{R}[\rho])^{T_{A}} .
$$

For this reason one cannot exchange the order of operations.

```
Example 2: One-qubit case
Example 3: Werner states
Example 4: Partial transposition
Example 5: Partial trace
```


Examples

Example 4: Partial transposition

The explicit form of the partial transposition on the real density matrices can be found by representing partial transposition as a matrix

ChannelToMatrix[PartialTranspose[\#, \{2, 2\}, \{1\}] \&, 4] and using formula

$$
M_{\mathcal{R}[\Phi]}=M_{\mathcal{R}} M_{\Phi} M_{\mathcal{C}}
$$

```
Example 2: One-qubit case
Example 3: Werner states
Example 4: Partial transposition
Example 5: Partial trace
```


Examples

Example 5: Partial trace

For a two-qubit density matrix its partial trace is given by
$\operatorname{tr}_{A} \rho=\left(\begin{array}{cc}x_{1,1}+x_{3,3} & x_{1,2}+x_{3,4}+i\left(y_{1,2}+y_{3,4}\right) \\ x_{1,2}+x_{3,4}-i\left(y_{1,2}+y_{3,4}\right) & x_{2,2}+x_{4,4}\end{array}\right)$.
One can verify if the operation of tracing-out the subsystem commutes with the map \mathcal{R} and in this case we have

$$
\mathcal{C}\left[\operatorname{tr}_{A} \mathcal{R}[\rho]\right]=\operatorname{tr}_{A} \rho
$$

Thus one can calculate the reduced state of the subsystem using the real value representation.

Summary

- Real quantum states can be used to reduce the amount of memory and the number of operations required during the simulation.
- In some cases (eg. partial trace) the calculations can be made using the real representation only.
- Efficient utilization of the simplification procedures requires the appropriate information about the types.
- Order of evaluation and simplification influences the final output.

Thank you!

