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The problem statement

Generic question:

“CLASSICALITY OR QUANTUMNESS” ?

Mathematical problem:

DESCRIPTION OF THE ENTANGLEMENT SPACE
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Space of states

A complete information on a generic N-dimensional quantum system is
accumulated in N × N density matrix % .

1 self-adjoint: % = %+ ,
2 positive semi-definite: % ≥ 0 ,
3 Unit trace: Tr% = 1 ,

The set P+ , of all possible density matrices, is the space of (mixed)
quantum states.
Equivalence relation on P+ , due to the adjoint action of SU(N) group

(Ad g )% = g %g−1 , g ∈ SU(N) ,

defines the orbit space P+ |SU(N) that comprises a physically relevant
knowledge.
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Density matrix for binary composites

Composition of two subsystems represented by the Hilbert spaces HA
and HB defines tensor product space

HA∪B = HA ⊗HB .

The density matrix of joint system % acts on HA ⊗HB

For a binary system, N1 ⊗N2 , the Local Unitary (LU) equivalence, % ∼ %′ ,
means

%′ = SU(N1)× SU(N2) % (SU(N1)× SU(N2))† .

The LU equivalence decomposes P+ into the local orbits. The union of
these classes is customary to call as the “entanglement space” En .
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Entanglement

A bipartite quantum system is separable if its density matrix can be written in
the form

ρ =
M∑

j=1

qj ρ
A
j ⊗ ρB

j , qj ≥ 0
M∑

j=1

qj = 1.

where ρA
j and ρB

j are density matrices of the constituent systems.

Otherwise the bipartite system is entangled.

The property to be entangled (resp. separated) as well as the measure of
entanglement is preserved by local unitary transformations.

“The entanglement of a two-qubit system is a non-local property so that
measures of entanglement should be independent of all local transformations
of the two qubits separately. Since a mixed two-qubit system is described by
its density matrix, its nonlocal entangling properties must be described by
local invariants of the density matrix.”

King & Welsh. Qubits and invariant theory. J. Phys: Conf. Series 30, 1-8, 2006.
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P+ as semialgebraic variety

The set of all N × N Hermitian matrices with unit trace is a manifold in
hyperplane P ⊂ RN2

The positive semi-definiteness

% ≥ 0 ,

restricts manifold further to a convex (N2 − 1)-dimensional body
Since all roots of the characteristic equation

det |λI− %| = λN − S1λ
N−1 + · · ·+ (−1)NSN = 0 ,

are real, for their non-negativity it is necessary and sufficient that

Sk ≥ 0 , ∀ k .
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Example: Pairs of 2-qubits

The unit trace condition and semipositivity of % define semialgebraic set

0 ≤ Sk ≤ 1 , k = 1,2, . . . ,N .

For 2 qubit case , Sk are polynomials up to fourth order in 15 variables,
e.g., in Fano parameters

% =
1
4

(
I2 ⊗ I2 + ~a · ~σ ⊗ I2 + I2 ⊗ ~b · ~σ + cij σi ⊗ σj

)
.

Parameters cij determine the correlation matrix cij = ||C||ij
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Coefficients Sk for two qubits

S2 = 1− 1
3

(
a2 + b2 + c2

)
S3 = 1−

(
a2 + b2 + c2

)
− 2

(
c1c2c3 −

3∑
i=1

aibici

)
,

S4 =
(

1−
(

a2 + b2 + c2
))2

+ 8

(
c1c2c3 −

3∑
i=1

aibici

)

− 2

2

a2b2 + (a2
i + b2

i )c2
i −

∑
cyclic

aibicjck

+ (c2)2 − c4
i

 .
c1, c2, c3- singular numbers of correlation matrix C
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Peres–Horodecki separability criterion

Peres–Horodecki separability criterion:
The system is in a separable state iff partially transposed density matrix

%TB = I ⊗ T% , T − transposition operator

satisfies the conditions for a density operator.
Coefficients of the characteristic equation for %TB :

STB
2 = S2 ,

STB
3 = S3 −

1
4

det(C) ,

STB
4 = S4 +

1
16

det(M) ,

M = %− %A ⊗ %B −Schlienz & Mahler matrix,
%A = trB%and %B = trA% - density matrices of subsystems A , and B.
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3-parameter family of 2-qubits states

A sample density matrix (GKP, Phys. Atom. Nucl. 74(6),893-900,2011)

ρ =
1
4


1 + α 0 0 0

0 1− β iγ 0
0 −iγ 1 + β 0
0 0 0 1− α


Its partially transposed

ρTB =
1
4


1 + α 0 0 iγ

0 1− β 0 0
0 0 1 + β 0
−iγ 0 0 1− α
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Semipositivity domains

ρ ≥ 0 :

α2 ≤ 1
β2 + γ2 ≤ 1

ρTB ≥ 0 :

β2 ≤ 1
α2 + γ2 ≤ 1

Gerdt, Khvedelidze, Palii (LIT, JINR) Orbit space of composite quantum systems ACA 2015, July 20, 2015 12 / 29



Domains of Separability vs. Entanglement

Separability domain Entanglement domain
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Bipartite (r × s−dimensional) quantum system

ρ =
1

r · s

Ir ·s +
r2−1∑
i=1

ai λi ⊗ Is +
s2−1∑
i=1

bi Ir ⊗ µi +
r2−1∑
i=1

s2−1∑
j=1

cijλi ⊗ µj


ρ is an element in the universal enveloping algebra of su(r · s).

Matrix C := ||cij ||
cij = Tr(ρ · λi ⊗ µj )

accounts for correlations of parts.

Local unitary transformations:

ρ 7→ (U1 × U2) · ρ · (U1 × U2)† , U1 ∈ SU(r), U2 ∈ SU(s)

It is natural to describe the orbit space in terms of elements in the invariant
ring K [X ]G

X := {ai ,bj , cij | 1 ≤ i ≤ r2 − 1, 1 ≤ j ≤ s2 − 1} ⊂ R(r2−1)(s2−1)

Gerdt, Khvedelidze, Palii (LIT, JINR) Orbit space of composite quantum systems ACA 2015, July 20, 2015 14 / 29



Elements of Invariant Theory I
Let G be a compact Lie group. Then,

The invariant ring

R[X ]G := {p ∈ R[X ] | p(v) = p(g ◦ v) ∀v ∈ V , g ∈ G }

is finitely generated (Hilbert’s finiteness theorem).
There exist algorithms to construct generators of R[X ]G.
There exist a set of algebraically independent homogeneous primary
invariants

P := {p1, . . . ,pq} ⊂ R[X ]G

such that R[X ]G is integral over R[P] (Noether normalization lemma).
Criterion: the variety in Cq given by P is {0}.
There exist a set S := {s1, . . . , sm} of secondary invariants,
homogeneous generators of R[X ]G as a module over R[P].

Together, primary and secondary invariants (integrity basis) generate
R[X ]G.
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Elements of Invariant Theory II

R[X ]G is Cohen-Macaulay and there is a Hironaka decomposition

R[X ]G = ⊕m
k=0skR[P] .

Orbit separation: (Onishchik & Vinberg. Lie Groups and Algebraic
Groups. Springer, 1990; Th.3, Chap.3, §4)

∀u, v ∈ V s.t. G ◦ u 6= G ◦ v : ∃p ∈ R[X ]G s.t. p(u) 6= p(v) .

Syzygy ideal:

IP := {h ∈ R[y1, . . . , yq] | h(p1,p2, . . . ,pq) = 0 in R[x1, . . . , xd ] } ,

R[y1, . . . , yq] / IP ' R[X ]G .
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Algorithms to construct invariants of linear algebraic
groups

Hilbert’s algorithm, 1893. Based on computing nullcone and then passing
from invariants defining the nullcone to the complete set of generators,
which amounts to an integral closure computation (Sturmfels. Algorithm
in Invariant Theory. 2nd edition, 2008)
Derksen’s algorithm for reductive G, 1999. Implemented in Magma,
Singular.
Gatermann & Guyard, 1999. Hilbert series driven Buchberger algorithm.
Bayer, 2003. Algorithm for computation of invariants up to a given
degree. Implemented in Singular.
Müller-Quade & Beth, 1999. Implemented in Magma.
Hubert & Kogan, 2007. Algorithm for computation of rational invariants.
...............................................................
Eröcal, Motsak, Schreyer, Steenpass, 2015 (arXiv:1502.01654v1
[math.AC]). Two refined algorithms for computation of syzygies.
Implemented in Singular.

Gerdt, Khvedelidze, Palii (LIT, JINR) Orbit space of composite quantum systems ACA 2015, July 20, 2015 17 / 29



Main Theorem
(Procesi & Schwarz. Invent. Math. 81,539-554,1985) (cf. also Abud & Sartori. Phys. Lett. B 104,
147-152,1981)

Let a compact Lie group G acts linearly on R[X ], B = {p1, . . . ,pm} be an
integrity basis of R[X ]G where X = {x1, . . . , xd} ( R[X ]G = R[B] ) and
VB ⊆ Rm be the real irreducible algebraic set (variety) generated by IB. Then
B defines the polynomial mapping

X → R[B] : (x1, . . . , xd )
p−→ (p1, . . . ,pm) ,

such that
The image Z ⊆ VB of p is a semialgebraic set.
If one gives X and Z their classical topologies, then the mapping p is
proper, and it induces a homomorphism

p̄ : X/G −→ Z .

Z = { v ∈ VB | Grad(v) ≥ 0 }. where Grad is m ×m matrix

||Grad||αβ = ∂ipα · ∂ipβ .

The last positivity condition follows from (pα∂ipα) (pβ∂ipβ) ≥ 0.
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Invariants for SU(2)× SU(2) I
King, Welsh, Jarvis. J. Phys. A: Math. Gen. 40, 10083-110108, 2007

2

a a C200 = ai ai

b b C020 = bi bi

c c C002 = cij cij

3

a c b C111 = ai bj cij

ε
@
@

�
�

c
c
c

�
�

@
@
ε C003 =

1
3!
εijk εpqr cip cjq ckr
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Invariants for SU(2)× SU(2) II

4

a c c a C202 = ai aj ci,α cj,α

b c c b C022 = bα bβ ci,α ci,β

c

c

c

c
C004 = ci,α ci,β cj,α cj,β

a ε
T
T

�
�

c

c

�
�

T
T
ε b C112 =

1
2
εi,j,k εα,β,γ ai bα cj,β ck,γ

5 a c c c b C113 = ai bα ci,j ck,j ck,α
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Invariants for SU(2)× SU(2) III

6

a

a

c

c

c

c
C204 = ai aβ ci,j ck,j ck,α cβ,α

b

b

c

c

c

c
C024 = bi bβ cj,i cj,k cα,k cα,β

a ε c b

c c a
C213 = εi,j,k ai al bα cj,αck,γ cl,γ

b ε c a

c c b
C123 = εα,β,γ ai bα bδ ci,β cj,γ cj,δ
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Invariants for SU(2)× SU(2) IV

7

a ε c b

c c c b
C124 = εi,j,k ai bα bδ cj,α ck,β cγ,β cγ,δ

b ε c a

c c c a
C214 = εi,j,k aα aδ bi cα,j cβ,k cβ,γ cδ,γ

8

a ε c c a

c c c b
C215 = εi,j,k ai aβ bη cj,α ck,γ cβ,α cδ,γ cδ,η

b ε c c b

c c c a
C125 = εi,j,k aη bi bβ cα,j cγ,k cα,β cγ,δ cη,δ
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Invariants for SU(2)× SU(2) V

9

a ε c c a

c c c c a
C306 = εi,j,k ai aβ aθ cj,α ck,γ cβ,α cδ,γ cδ,η cθ,η

b ε c c b

c c c c b
C036 = εi,j,k bi bβ bθ cα,j cγ,k cα,β cγ,δ cη,δcη,θ
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Example: 5-parameter density matrix (“X”-matrix)

% =
1
4


1 + α + β + γ3 0 0 γ1 − γ2

0 1 + α− β − γ3 γ1 + γ2 0
0 γ1 + γ2 1− α + β − γ3 0

γ1 − γ2 0 0 1− α− β + γ3


Fano parameters: a3 = α, b3 = β, c11 = γ1, c22 = γ2, c33 = γ3

Partial transposition:

%Tb =
1
4


1 + α + β + γ3 0 0 γ1 + γ2

0 1 + α− β − γ3 γ1 − γ2 0
0 γ1 − γ2 1− α + β − γ3 0

γ1 + γ2 0 0 1− α− β + γ3


Peres–Horodecki separability criterion:
The two-qubit the system is in a separable state iff partially transposed
density matrix ρTb satisfies the conditions for a density operator.

Gerdt, Khvedelidze, Palii (LIT, JINR) Orbit space of composite quantum systems ACA 2015, July 20, 2015 24 / 29



Nonzero fundamental invariants

For our space of 5-parameter matrices there are 12 non-zero local invariants

C200, C020, C002, C111, C003, C202, C022, C004, C112, C113, C204, C024

of the form

Deg 2 : C200 = α2 , C020 = β2 , C002 = γ2
1 + γ2

2 + γ2
3

Deg 3 : C111 = αβγ3 , C003 = γ1γ2γ3

Deg 4 : C202 = α2γ2
3 , C022 = β2γ2

3
C004 = γ4

1 + γ4
2 + γ4

3 , C112 = αβγ1γ2

Deg 5 : C113 = αβγ3
3

Deg 6 : C204 = α2γ4
3 , C024 = α2γ4

3
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Primary invariants and syzygies

Primary invariants:

C200 ≡ a, C020 ≡ b, C002 ≡ c, C111 ≡ x , C003 ≡ y .

Solution of the syzygies

C204 =
x4

ab2 C024 =
x4

a2b
C112 =

aby
x

C022 =
x2

a
C202 =

x2

b
C113 =

x3

ab

C004 = c2 + 2
x4

a2b2 − 2
cx2

ab
− 2

aby2

x2
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Semipositivity of % and Grad

green: % ≥ 0

blue: Grad≥ 0

C111 = 1/2,
C003 = 1/128
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Separability area
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Conclusions

It is natural to describe entanglement space of mixed quantum states in
terms of local unitary invariants.
The entanglement space is a semialgebraic variety.
For 2-qubit the integrity basis of the invariant polynomial ring
R[X ]SU(2)×SU(2) has been constructed. Here X is the set of 15 Fano
parameters.
It is a challenge for computer algebra to recompute algorithmically the
integrity basis of R[X ]SU(2)×SU(2) and to derive the full set of polynomial
equations and inequalities defining the 2-qubit entanglement space.
Recent versions of MAPLE and MATHEMATICA have special built-in
routines for (numerical) solving systems of polynomial equations and
inequalities.
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