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The quantum Fourier transform (QFT) is a unitary transformation UFT that
can be written in the computational basis |x⟩n ≡ |xn−1 . . .x1x0⟩, where the set of
numbers x j = 0,1 ( j = 0,1, . . . ,n− 1) provides the binary representation of the
integer x (x = 0,1, ...,2n−1), as
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1
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Here n is a number of qubits in the memory register.
Note that the QFT can be carried out efficiently by a quantum circuit built

entirely out of single-qubit and two-qubit gates. Actually, only n the Hadamard
gates, n(n−1)/2 controlled phase shift gates Rk, and ⌊n/2⌋ Swap gates are required
to build such a circuit (see, for example, [1]). The execution time of the QFT grows
only as n2 and, therefore, the QFT is executed exponentially faster that the classical
fast Fourier transform.

However, in case of a large number of qubits the phase shift 2π/2k becomes
exponentially small, while a practical implementation of the high precision con-
trolled phase shift gates Rk may be very difficult. So it would be very useful if the
full Fourier transform (1) could be replaced by the approximate QFT, where only
finite degree phase shift gates Rk are involved (k ≤ m < n). Analysis of different
quantum algorithms has shown that applying the approximate QFT can yield even
better results than the full Fourier transform [2].

In the present paper we discuss an approximate QFT that was first proposed
in [3] and can be represented as
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Applying the approximate QFT, one can expect that an accuracy of computa-
tion decreases in comparison to the case of the full QFT, and probability of getting
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a correct result reduces, as well. The main purpose of the present paper is to esti-
mate a probability of successful solution of a problem in case of the replacement of
the full QFT by the approximate QFT and to demonstrate the results by simulation
of some quantum algorithms, using the Wolfram Mathematica package "Quantum-
Circuit" (see [4, 5]). Recall that the package provides a user-friendly interface to
specify a quantum circuit, to draw it, and to construct the corresponding unitary
matrix for quantum computation defined by the circuit. Using this matrix, one can
find the final state of the quantum memory register by its given initial state and to
check the operation of the algorithm determined by the quantum circuit.

As examples we consider here two known quantum algorithms, where the QFT
plays an essential role. The first one is the quantum algorithm for phase estimation
based on the QFT [6]. We have obtained the lower bound on the probability of
the successful phase estimation in both cases of the full and approximate QFT and
shown that the decrease in the accuracy of phase estimation results in increasing
the probability of the successful problem solution [7].

The second example is the Shor algorithm for order finding [8]. Our calcula-
tions show that using the approximate QFT gives the same results as in case of the
full QFT even for small enough degree m of approximation. At the same time the
probability to obtain correct result decreases only a little bit in comparison to the
case of the full QFT. The validity of the results is demonstrated by simulation of
the algorithm using the package "QuantumCircuit".
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