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1. Introduction 

Early detection of infrastructure defects like cracks of small width can lead to lowering the overall costs 

of infrastructure through the incorporation of preventive maintenance [1,2]. However, such defects 

are often omitted during manual inspections – in fact over 60% of small defects are never included in 

Infrastructure Inspectors reports [3–5], which causes invalid scores of the facilities, and thus invalid 

future infrastructure maintenance plans. While there already exists methods for automatic defect 

detection with the use of deep learning methods [6–8], it can be argued that they are not applicable 

in the reality of infrastructure maintenance. They require vast computing power for training and 

inference that excludes the use of edge or mobile devices, but still, even with vast resources are limited 

to low resolution images [9]. 

In this work we present you our path that led us to reaching practical applicability of deep learning 

algorithms for infrastructure defect detection and placed us in the fields’ state-of-the-art territory. 

Throughout our studies we developed KrakN – an end-to-end, open source and scalable framework 

for transfer learned deep learning model development intended for minimizing the training time and 

allowing the use of a single backbone CNN for multiple defect classifiers. Then we were among the first 

who tackled the problem of pruning transfer learned CNN models with our Finicky Transfer Learning 

(FTL) method, which allowed us for pruning as much as 95% of CNNs’ parameters while maintaining its 

initial accuracy. We also present our further plans for refining our work in order to push the field even 

further and match the accuracy of the computationally heaviest solutions while maintaining high 

applicability of our methods.  

2. Defect detection with transfer learning 

The main goal of our research was to enable the practical use of deep learning methods for 

infrastructure defect detection. In order to do so, we identified the basic problems that prevent the 

use of already existing methods in practice – the need of vast computing power for training the model, 

lack of scalability and versatility, and the need of expert knowledge in the field of deep learning to 

adapt the solution to specific needs. 
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The KrakN [10] framework created by us is the answer to these problems by offering end-to-end 

methods of deep learning model development suited for users without background in data science. Its 

principle of operation is shown in Figure 1. KrakN uses a single CNN as a backbone feature extractor 

for multiple defect classifiers, and offers tools for semi-automatic development of datasets. The tests 

we have carried out have shown that KrakN is characterized by a greater ability to generalize 

knowledge than analogous solutions that do not use transfer learning, when target datasets differ from 

the training one, e.g. in the appearance of a concrete surface. It scored above 90% in accuracy of 

detecting cracks with width under 0,2mm.  

 

KrakN uses sliding window method for object detection in order to be able to detect defects regardless 

of the image size – it can process large format orthomosaics obtained with photogrammetric 

reconstruction unlike methods based on single shot detectors which are limited by the size of input 

image. It also comes as an open source solution and can be easily modified. An example of such a 

modification is the add-on module prepared by us, which allows for multi-classifier approach 

presented in earlier works [11], but was never made available publicly.  

KrakN was also our initial step to further developing methods based on transfer learning and adapting 

them for use on edge devices. 

3. Transfer learning with pruning 

An extension of our methods using transfer learning is the Finicky Transfer Learning [12] – CNN 

structural pruning method that allows for limiting the demand for computing power by reducing the 

number of algorithm parameters. 

Figure 1. Workflow of KrakN framework 
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It uses the Jaccard similarity coefficient (IoU) for assessing adaptation of subsequent CNN filters 

trained on the external data set to the new type of the searched object. It is assessed to what extent 

convolutional filters are able to extract features from multiple images, within the damage area. Then, 

without retraining the CNN, only its layers with highest mean IoU score are used as feature extractor 

for the new classifier. The method of obtaining mean IOU score is described with equation 1, where 

Xseg is the set of all images with defect segmented out, fi
j(xk) is image segmented with the j-th filter of 

the i-th network layer, xs
k is image segmented manually, and m is the total number of images in 

dataset. 
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With the use of Finicky Transfer Learning we were able to reduce the total number of CNN parameters 

by up to 95% while maintaining its initial accuracy. It enabled the effective use of single board edge 

devices like Raspberry Pi computers. The comparison of image processing time with CNN pruned with 

FTL method compared to unpruned network running inference on high-performance, 6 core CPU is 

shown in Figure 2. 

 

It can be seen that single board edge devices can run inference with CNN models pruned with FTL 

method with performance matching high-performance CPU. Moreover, when considering that FLT 

uses transfer learning, the classifierpart of the CNN is also trained much faster than with the use of 

full, unpruned model.  

4. Future goals 

The experience we have gained while working on the KrakN framework and the FTL method has led us 

to start working on a method that uses scructual CNN pruning during the training of the model. We 

believe that by using our pruning method during fine tuning of the model, we will be able to raise the 

Figure 2. Comparison of pruned CNN inference times on edge devices 
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final model accuracy metrics above the initial values of the full, unpruned CNN, while greatly reducing 

its number of parameters. 

We are also considering modyfing the pruned CNN with the utilization of various micro architectures. 

By doing so we’ll be able to enrich the final feature tensor with features extracted by the initial layers 

of the model and thus increase the number of image characteristics for the classifier.  
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