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Non-hermitian quantum 
thermodynamics
Bartłomiej Gardas1,2, Sebastian Deffner1,3 & Avadh Saxena1,3

Thermodynamics is the phenomenological theory of heat and work. Here we analyze to what 
extent quantum thermodynamic relations are immune to the underlying mathematical formulation 
of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all 
non-hermitian quantum systems with real spectrum. This equality expresses the second law of 
thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit 
however, the second law leads to the Carnot bound which is fulfilled even if some eigenenergies are 
complex provided they appear in conjugate pairs. Furthermore, we propose two setups to test our 
predictions, namely with strongly interacting excitons and photons in a semiconductor microcavity and 
in the non-hermitian tight-binding model.

More and more non-hermitian systems are becoming experimentally accessible1. Therefore, it has become evident 
that questions concerning foundations of quantum mechanics are no longer only of academic interest. Recent 
experiments have demonstrated that hermiticity may not be as fundamental as mandated by quantum mechan-
ics2,3. For instance, in4 a spontaneous PT -symmetry breaking has been observed indicating a condition weaker 
than hermiticity (namely PT 5) being realized in nature. Furthermore, in6 exceptional eigenenergies of complex 
value have been measured challenging the reality of the spectrum imposed by hermiticity.

Conventional quantum mechanics is built upon the Dirac-von Neumann axioms2,3. These state that if  is a 
complex Hilbert space of countable, infinite dimension, then (i) observables of a quantum system are defined as 
hermitian operators O on , (ii) quantum states φ  are unit vectors in , and (iii) the expectation value of an 
observable O in a state φ  is given by the inner product, 〈 O〉  =  〈 φ|Oφ〉 . Interestingly, only axioms (ii) and (iii) are 
of mathematical necessity needed for a proper probabilistic, physical theory. To demand, however, that any quan-
tum mechanical theory has to be built on hermitian operators is rather mathematically convenient than being 
fundamentally necessary5,7.

In particular, the restriction to hermitian observables excludes the description of, for instance, quantum field 
theories with PT -symmetry, cases where the language of quantum mechanics is used for problems within classi-
cal statistical mechanics or diffusion in biological systems, or cases where effective complex potentials are intro-
duced to describe interactions at edges8. Particularly striking examples are optical systems with complex index of 
refraction. Imagine, for instance, polarized light in a stratified, nontransparent, biaxially anisotropic, dielectric 
medium warped cyclically along the propagation direction. For such systems it has been shown9 that not only a 
non-hermitian description becomes necessary, but also that physical intuition has to be invoked carefully. For 
instance, Berry highlighted9 that adiabatic intuition can be countered dramatically for systems with 
non-hermitian Hamiltonians.

Very recently, it has become evident that for a special class of non-hermitian systems, namely in PT
-symmetric quantum mechanics10, the quantum Jarzynski equality holds without modification11. For isolated 
quantum systems evolving under unitary dynamics the so-called two-time energy measurement approach has 
proven to be practical and powerful. In this paradigm, quantum work is determined by projective energy meas-
urements at the beginning and the end of a process induced by an externally controlled Hamiltonian. The 
Jarzynski equality12 together with subsequent Nonequilibrium Work Theorems, such as the Crooks fluctuation 
theorem13, is undoubtedly among the most important breakthroughs in modern Statistical Physics14. Jarzynski 
showed that for isothermal processes the second law of thermodynamics can be formulated as an equality, no 
matter how far from equilibrium the system is driven12, 〈 exp(− βW)〉  =  exp(− βΔF). Here β is the inverse tem-
perature of the environment, and ΔF is the free energy difference, i.e., the work performed during an infinitely 
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slow process. The angular brackets denote the average over an ensemble of finite-time realizations of the process 
characterized by their nonequilibrium work W.

The present study is dedicated to an even more fundamental question. In the following we will analyze to what 
extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum 
mechanics. Contrary to different studies (see e.g.11) conducted on a similar subject we present the broadest possi-
ble class of non-hermitian systems that still allows a thermodynamic theory in the “conventional” sense.

As a main result we will prove that equilibrium as well as non-equilibrium identities of quantum thermody-
namics hold, without modification also for quantum systems described by pseudo-hermitian Hamiltonians15. 
Those systems have either entirely real spectrum or complex eigenvalues appear in complex conjugate pairs. In 
particular, we will show that the Carnot statement of the second law of thermodynamics holds for any such system 
and that the quantum Jarzynski equality is not violated as long as the eigenvalue spectrum is real. If the two-time 
energy measurement could be realized e.g. in a microcavity6, then the Jarzynski equality for pseudo-hermitian 
systems could be put into a test (see Discussion).

Fundamentals of Pseudo-Hermitian Quantum Mechanics
To address physical properties of recent experiments4,6 we start by briefly reviewing the mathematical foundations 
of pseudo-hermitian quantum mechanics8. Let H be a general, non-hermitian Hamiltonian of a physical system, 
and we assume for the sake of simplicity that the spectrum of H, {En}, is discrete (possibly degenerate). Such a 
Hamiltonian is of physical relevance only if it is measurable, i.e., if a representation of the eigenbasis αEn,  is 
experimentally accessible. Then H is diagonal in this basis. Here n is the quantum number and α counts possible 
degeneracy. Diagonalizability of H is equivalent to the existence of biorthonormal set of left, φ αn, , and right, 
ψ αn, , eigenvectors16. In general, the energy eigenvalues are complex, and the eigenvalue problem reads15

ψ ψ φ φ= =α α α α
† ⁎H E H E, , (1)n n n n n n, , , ,

with 〈 ψn,α|φm,β〉  =  δmnδαβ and ψ φ∑ =α α αn n n, , , . A non-hermitian Hamiltonian such as (1) is called 
pseudo-hermitian if a g exists such that

= = .−† †H gHg g gand (2)1

It does exist if and only if either all eigenenergies are real or complex ones appear in conjugate pairs with the same 
degeneracy15. If none of those criteria are met H is generally non-hermitian8; yet it still can be useful, e.g. for an 
effective description of open quantum systems17. However, when heat is exchanged the two-time energy meas-
urement can no longer describe the work done during a thermodynamic process. Therefore we shall not focus on 
such cases here. Another interesting class relates to systems that interact with environments, but do not exchange 
heat. This phenomenon is called dephasing (loss of information)18. For such systems, work can still be determined 
by the two-time energy measurement and the Jarzynski equality holds as well19–21.

Condition (2) assures that H is, in fact, hermitian however with respect to a new inner product, namely

ψ φ ψ φ= .g: , (3)g

Note that g always exists such that 〈 ψ|φ〉 g is positive-definite (this is a genuine inner product), and it can be found 
if and only if the spectrum of H is real. To make a consistent definition of work for a quantum system within the 
two–time energy measurement paradigm its spectrum has to be real. Therefore, unless stated otherwise, we shall 
always assume this to be the case. Then, Eq. (2) can be fulfilled by the following positive-definite operators (g is a 
proper metric operator)22

∑ ∑φ φ ψ ψ= = .
α

α α
α

α α
−g g,

(4)n
n n

n
n n

,
, ,

1

,
, ,

Often, g fulfilling (2) can be deduced easily from physical properties such as the parity reflection or time rever-
sal23. Nevertheless, only Eq. (4) assures that 〈 ψ|ψ〉 g >  0 for all states ψ ≠ 0. This means that the proper metric may 
reflect “symmetries” that are hidden from the observer24,25. For instance, if a rotation V exists such that V−1HV is 
diagonal in an orthonormal basis, then g =  V†V. This follows directly from Eq. (4). The last formula is especially 
useful in practice. It allows one to find the metric by analyzing an experimental setup (e.g. inspecting the orienta-
tion of the axis, etc.).

In the following we only consider cases where changes of the Hamiltonian are induced by a time–dependent 
thermodynamic process λt, that is to say Ht =  H(λt). If such changes occur then the metric operator satisfying 
Eq. (2) is time-dependent. Nevertheless, the dynamics is still governed by a time-dependent Schrödinger equa-
tion. However, a slight modification becomes necessary to preserve unitarity26,27,

∂ = + = − ∂ .−i U H G U G i g g( ) ,
2 (5)t t t t t t t t t

1 

Above, ∂ t denotes the derivative with respect to time t. The Schrödinger equation (5) can also be rewritten in the 
standard form, that is, with Ht being the generator. Indeed, it is sufficient to replace ∂ t with a covariant derivative 
= ∂ + ∂−D g g: /2t t t t t

1  28. By construction the unique solution to Eq. (5) obeys the relation

= = .−
=

†U g g U g g, where : (6)t t o t t
1

0 0
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This relation can be viewed as the corresponding unitarity condition similar to the “standard” one, i.e., = −†U Ut t
1.

For pseudo-hermitian systems an average value of a non-hermitian observable A, tr{A}, can be computed as

∑ ψ ψ= 〈 | | 〉.
γ

γ γA gAtr{ }
(7)k

k k
,

, ,

Formally, this suggests one to use the following Dirac correspondence between bra and ket vectors ψ ψ↔ g 16.

Pseudo–hermitian Jarzynski equality. Having analyzed the mathematical structure of pseudo-hermitian 
quantum systems, we turn to the physical description to analyze the Jarzynski equality. Without loss of generality 
and to simplify our notation we assume the spectrum to be non-degenerate.

For an isolated quantum system, the work done during a thermodynamic process λt of duration τ is com-
monly determined by a two-time energy measurement29. At t =  0 a projective energy measurement is performed. 
Next, the system evolves unitarily under the generalized time-dependent Schrödinger equation (5) only to be 
measured again at t =  τ. By averaging over an ensemble of realizations of such processes one can reconstruct the 
distribution of work values30,31,

 ∑δ= − .w w w p( ) ( )
(8)n m

nm nm
,

Above, pnm denotes a probability that a specific transition ψ λ ψ λ→ τ( ) ( )n m0  will occur, whereas 
= −τw E Enm m n is the corresponding work done during this transition. It is important to stress that this work is 

associated with Ht rather than Ht +  Gt as Gt is a gauge field, and hence it can have no influence on physical 
observables32.

The transition probability pnm can be seen as the joint probability that the first measurement will yield the 
energy value En given the system has been initially prepared in a state ρ0, and the probability that the outcome of 
the second measurement will be τEm given the initial state ψn. Therefore,

ρ ψ ψ= Π × τ
τ τp g Utr{ } , , (9)nm n m n0

2

where Uτ denotes the evolution operator generated by Ht +  Gt at time t =  τ, whereas Π n =  〈 ψn, g0 ⋅ 〉 ψn is the pro-
jector into the space spanned by the nth eigenstate. Since Π n is not hermitian the formula for probabilities pnm 
accounts for the metric g, and hence differs from the one usually adopted for hermitian systems31.

Assume the system is initially in a Gibbs state, that is ρ0 =  exp(− βH0)/Z0 with Z0 =  tr{exp(− βH0)} being the 
partition function, then

ψ ψ= Π .
β

τ τ
τ

τ
τ

−
−†p e

Z
U g U,

(10)nm

E

m n m
0

1n

To obtain the last expression for pnm we have also invoked the unitarity condition (6). Now, the average exponen-
tiated work can be expressed as

∫ ∑β ψ ψ= − = Π .β β
τ
τ

τ τ
τ− − −τ

e dw w w
Z

e g U U( )exp( ) 1 ,
(11)

W

m n

E
m n m

0 ,

1m

Finally, summing out all projectors Π n and taking into account that ψ ψ =τ
τ τg , 1m m  we arrive at

∑= = =β β τ β− − − ∆τ
e

Z
e Z

Z
e1 ,

(12)
W

m

E F

0 0

m

where F =  (−1/β) ln(Z) is the system’s free energy.
The last equation shows that the Jarzynski equality holds also for non-hermitian systems that admit real spec-

trum. This is our first main result. Jarzynski has shown that the second law of thermodynamics for isothermal 
processes can be expressed as an equality arbitrarily far from equilibrium. Our analysis has shown that his result 
is true for all non-hermitian systems with real spectrum.

Carnot bound. In the preceding section we argued that if the two-time energy measurement can be per-
formed on a non-hermitian quantum system, then the Jarzynski equality holds as long as the eigenenergies are 
real. Now, we will prove that the Carnot statement of the second law is also true for all pseudo-hermitian systems.

Consider a generic system that operates between two heat reservoirs with hot, Th, and cold, Tc, temperatures, 
respectively. Then, the Carnot engine consists of two isothermal processes during which the system absorbs or 
exhausts heat and two thermodynamically adiabatic, that is, isentropic strokes while the extensive control param-
eter λ is varied33,34. It is well established that the maximum efficiency η for classical systems, attained in the qua-
sistatic limit, is given by the Carnot bound35–37:

η = − < .
T
T

1 1
(13)

c

h

Recent years have witnessed an abundance of research38–40 investigating whether quantum correlations can 
be harnessed to break this limit. Recently, the Carnot limit has been proven to be universal within the usual 
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framework33. This limit can be seen as yet another formulation of the second law of thermodynamics for qua-
sistatic processes. We will show that it holds for all pseudo-hermitian systems whether their spectrum is real or 
not.

We begin by proving that both the energy E =  tr{ρH} and entropy S are real in our present framework. Indeed, 
from (2) it immediately follows that

ρ= =− −⁎E g g gHg Etr{ } , (14)1 1

with ρ being a Gibbs thermal state. Interestingly, this result holds true even if some of the eigenvalues En are com-
plex. Note, in that case g exists but is not positive definite and thus cannot be expressed like in Eq. (4).

To understand why Eq.  (14) holds when complex eigenvalues appear in conjugate pairs note that 
ψ φ=α α

−gn n,
1

, , and consider

ψ φ ψ= =α α α
− † ⁎H g H E , (15)n n n n,
1

, ,

showing that if En is in the spectrum of H so is ⁎En . Moreover g−1 maps the subspace spanned by all eigenvectors 
belonging to En to that belonging to ⁎En . Since g−1 is invertible, the mapping is one-to-one, and the multiplicity of 
both En and ⁎En  is the same. An interesting realization of such systems is the non-hermitian tight-binding model41.

The result (14) can also be obtained directly, that is, without invoking the metric g explicitly. Indeed, we have

∑ ∑ρ
β

= = = −
∂
∂

+ = .β β β− − − ⁎⁎
E H

Z
E e

Z
e e Etr{ } 1 1

2
( )

(16)n
n

E

n

E E

/2

n n n

In the present case, the thermodynamic entropy is given by the von Neumann entropy42. The latter can be 
further simplified and it takes the well known form S =  β(E −  F)33. Since the partition function Z is real so is the 
free energy F. Hence, we conclude that the entropy S is real.

According to the first law of thermodynamics43, dE =  δQ +  δW, there are two forms of energy: heat δQ is the 
change of internal energy associated with a change of entropy, whereas work δW is the change of internal energy 
due to the change of an extensive parameter, i.e., change of the Hamiltonian of the system. To identify those con-
tributions we write33

δρ ρ δ= + .E H Hd tr{ } tr{ } (17)

In the quasistatic regime, the second law of thermodynamics for isothermal processes states that dS =  βδQ. 
Combining the latter with (17) proves that (i) δQ and thus δW are real and (ii) the intuitive definitions of heat and 
work introduced in Ref. 44 apply also to pseudo-hermitian systems.

After completing a cycle, a quantum pseudo-hermitian heat engine has performed work 〈 W〉  =  〈 Qh〉  −  〈 Qc〉  
and exhausted a portion of heat 〈 Qc〉  to the cold reservoir. Therefore, the efficiency of such a device is given by33

η = = − .
W
Q

T
T

1
(18)c

c

h

In conclusion, we have shown that the Carnot bound, which expresses the second law of thermodynamics for 
quasistatic processes, holds for all pseudo-hermitian systems. In contrast, the second law for arbitrarily fast pro-
cesses encoded in the Jarzynski equality (12), only holds for all non-hermitian systems with real spectrum.

Discussion
Example 1a.  We begin with a model for localization effects in solid state physics41. The general form of its 
Hamiltonian in one dimension reads

ξ
=

−
+H p i

m
V x( )

2
( ), (19)

2

where V(x) is a confining potential, and p and x are the momentum and position operators respectively. They 
obey the canonical commutation relation [x, p] =  iħ. Real parameter ξ expresses an external magnetic field and m 
is the mass. Using the Baker-Campbell-Hausdorff formula one can verify that

ξ ξ ξ= + + + … = + .ξ ξ−e pe p x p x x p p i2 [ , ] 2 [ , [ , ]] 2 (20)x x2 2 2

Therefore, since [V(x), e2ξx] =  0, we conclude that H is pseudo-hermitian. The metric g =  e2ξx is positive definite 
and thus the spectrum of (19) is real. Further, we assume that the corresponding classical potential Vc(x) has a 
non-vanishing second derivative, and a minimum at x =  0 (e.g. ′ =V (0) 0c ). Then

δ ω= ′ + ″ + ≈V x V x V x O x m x( ) (0) 1
2

(0) ( ) 1
2

, (21)c c c
2 3 2 2

where ω′ =V m(0)c
1
2

2 has been introduced. After quantization, the eigenvalues and eigenvectors of this 
non-hermitian harmonic oscillator read (for the sake of simplicity we set m =  ħ =  1 throughout)
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ψ
π

ω ω= =


 +





ω ξ− −x
n

H x e E n( ) : 1
2 !

( ) , 1
2

,
(22)

n n n
x x

n
2

where Hn(x) are the Hermite polynomials.
Now we assume that the size of this harmonic trap (e.g. ω) is changed, and thus g does not depend on time. 

Experimentally, harmonic traps are sensitive to initial excitations resulting for a discontinuity of the protocol itself 
at the beginning45. The most common way to minimize this effect, while quenching between ωi, and ωf, is to use 
functions smooth enough at the “edges”, for instance,

ω
ω ω ω ω

τ τ τ=
+

+
−

− < <t t N t N( )
2 2

erf( / ), (23)
i f i f

where erf(⋅ ) denotes the error function, τ is a time scale, and N is an integer emulating infinity. The transition 
probabilities (9) can be expressed via the following integral

∫
βω
βω

ψ ψ τ=
− + ξ τ

−∞

∞ ⁎p n e x x N dxexp( ( 1/2))
sinh( /2)

( ) ( , ) ,
(24)nm

i

i

x
n
N

m
2

where the partition function Z0 =  1/sinh(βωi/2) has been calculated exactly; and ψm(x, Nτ) =  UNτψn(x) is the 
solution of Eq. (5), with the initial condition given by (22), at t =  Nτ. Although ψm(x, Nτ) cannot be obtained 
analytically, a closed form expressed in terms of a solution to the corresponding classical equation of motion can 
be found (see e.g. Ref. 46).

Figure 1 (Left panel) shows the average exponentiated work 〈 e−βW〉  (blue curve) as a function of the number 
of terms Nmax included in the summation (11). This function quickly converges to e−βΔF proving that the Jarzynski 
equality (12) holds. On the right panel we have depicted the irreversible work 〈 Wirr〉  =  〈 W〉  −  ΔF (blue curve) as a 
function of τ which determines the speed at which the energy is supplied to the system. When τ →  ∞  the system 
enters its quasistatic regime and the irreversible work becomes negligible, that is 〈 Wirr〉  →  047,48. The inset (red 
curve) shows the irreversible work calculated for a linear protocol, ω(t) =  ωi +  (ωf −  ωi)t/τ. As we can see, it takes 
longer for the system to reach its quasistatic regime. Moreover, the oscillatory behavior is a signature of the initial 
excitation which dominates for fast quenches (small τ).

Example 1b.  Another class of systems that is used to explain localization effects relates to non-hermitian 
tight-binding models49,50. For example

∑∑ ∑= − + +
ν

α α

=

⋅
+

− ⋅
+

ν
ν

ν
ν

† † †H t e a a e a a V a a
2

,
(25)

d

x

e
x e x

e
x x e

x
x x x

1

where, †ax  and ax are bosonic creation and annihilation operators respectively, eν are the unit lattice vectors, and t 
is the hopping parameter, and Vx denotes the on-site potential. Interestingly, the complex eigenvectors appear in 
conjugate pairs (see Eq. (2) in Ref. 41 and the discussion that follows). Therefore, this model provides another 
example for a building block of a non-hermitian Carnot engine.

Example 2.  The remainder of the present work is dedicated to a careful study of a second, experimentally 
relevant example6. Consider a two level system described by the Hamiltonian

Figure 1. Left panel: Average exponentiated work 〈e−βW〉 (blue curve) as a function of the number of terms 
Nmax included in the summation (11) for the protocol (23). The function quickly converges to e−βΔF (red curve) 
showing that the Jarzynski equality (12) holds. Right panel: 〈 Wirr〉  =  〈 W〉  −  ΔF as a function of τ which relates 
to the speed at which the energy is supplied to the system. The irreversible work 〈 Wirr〉  →  0 as τ approaches 
the quasistatic regime. The inset (red curve) shows the irreversible work calculated for a linear protocol, 
ω(t) =  ωi +  (ωf −  ωi)t/τ. We see that it takes longer for the system to reach its quasistatic regime. Parameters 
used in the numerical simulations are: wi =  0.2, wf =  0.6, Nτ =  1.5 (left panel) and Nτ =  3. (right panel); the 
remaining parameters were set to 1.
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λ σ σ λ σ σ γσ γ σ= + + ++ − − + + −
⁎ ⁎H , (26)t t t

where λt is a complex control parameter, and γ is a complex constant, whereas σ+ and σ− are the raising and low-
ering fermionic operators. This simple model (26) has been extensively studied in the literature11,51,52, and it has 
been also realized experimentally both in optics4 and semiconductor microcavities6.

To make the spectrum of (26) real we set λt to be purely imaginary (λt →  iλt); and without any loss of gen-
erality we choose γ =  1. This corresponds to the following parameters E1,2 =  0, Γ 1,2 =  ± λt, and q =  γ =  1 for the 
hybrid light–matter system of quasiparticles investigated in Ref. 6. Such systems are formed as a result of a strong 
interaction between excitons and photons in a semiconductor microcavity53. They are commonly referred to as 
exciton–polaritons54.

A simple calculation shows that σ σ=†H Ht x t x, where σx is the Pauli matrix in x direction. Thus Ht is indeed 
pseudo-hermitian. However, the corresponding σx is not a metric. For instance 〈 e1, σxe1〉  =  0, where =e (1, 0)t1 . 
Nevertheless, we can easily find one by rewriting Ht in its diagonal form,

λ=










= ± − .−V H V

E
E

E
0

0
, 1

(27)
t t t

t

t
t

t
1 1

2
1,2

2

Note, both E t
1,2 are real as long as λt ≤  1, otherwise = ⁎E Et t

1 2 . Therefore, the Carnot bound (13) holds in both 
these regimes, whereas the Jarzynski equality (12) only in the first one. Now, the proper metric can be defined via 
the similarity transformation Vt

λ
λ

= =





− 



.†g V V

i
i2
1

1 (28)t t t
t

t

To investigate the dynamics of (26) we assume that λt changes on a time scale τ in a linear manner, that is 
λt =  λi +  (λf −  λi)t/τ. The linearity does not pose any restriction on our analysis as the Jarzynski equality holds for 
all protocols λt

11. Figure 2 (Left panel) depicts the relaxation time Tr =  Δ−1, where ∆ = −τ τE E1 2 , as a function 
of the final value λf

55. The relaxation time diverges as λf approaches the critical point at λ =  1. Similar behavior has 
been observed for the irreversible work 〈 Wirr〉  :=  〈 W〉  −  ΔF in PT -symmetric systems11. The critical point sepa-
rates the unbroken domain, where energies are real, from the broken one characterized by complex energy values. 
The energetic cost associated with a potential crossover between those two regimes becomes infinite, and the 
system “freezes out” before even having a chance to cross to the other regime56,57.

In the broken regime, Eq. (28) no longer reflects pseudo-hermiticity of the system, that is Vt does not fulfill 
Eq. (4). In fact, all operators g for which the latter equation is true, σx being an example (see Fig. 2, Right panel), 
lead to indefinite inner product spaces. Note that in Fig. 2 (Right panel) the norm can be both positive and 
negative. Therefore, the evolution within those spaces cannot be unitary and the two-time energy measurement 
paradigm can no longer be applied58. In the quasistatic limit, however, quantum work can still be defined, and we 
have shown that the second law still holds for all pseudo-hermitian systems.

Conclusions
In summary, we have carefully studied thermodynamic properties of quantum systems that do not satisfy one of 
the basic requirements imposed on them by the axiom of quantum mechanics - hermiticity. We have shown that 
if quantum work can be determined by the two-time projective energy measurements, then the Jarzynski equality 
still holds for non-hermitian systems with real spectrum. Note, this equality expresses the second law of thermo-
dynamics for isothermal processes arbitrarily far from equilibrium.

Figure 2. Left panel: Relaxation time = −τ τ −T E Er 1 2
1, as a function of the final value λf for the linear 

quench λt = λi + (λf − λi)t/τ. Parameters are λi =  0, β =  ħ =  τ =  1. Inset: numerical confirmation of the Jarzynski 
equality (12). Right panel: In the broken regime quantum work can no longer be determined by the two-time 
energy measurement as 〈 ψ, gψ〉  can be both positive and negative. To construct the plot we set g =  σx. States 
ψ(n) have been chosen randomly; and n is an integer that has been assigned to them.
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We have also argued that the Carnot bound is attained for all pseudo-hermitian systems in the quasistatic 
limit. Furthermore, we have also proposed an experimental setup to test our predictions. As elaborated in the 
previous section, the system in question consists of strongly interacting excitons and photons in a semiconduc-
tor microcavity6. Moreover, we have investigated two non-hermitian models that were originally introduced to 
explain localization effects in solid state physics41. The first one, a non-hermitian harmonic oscillator that admits 
real spectrum was used to demonstrate the Jarzynski equality. The second one, the so called non-hermitian 
tight-binding model was given as an example of a quantum system having complex eigenenergies that appear 
in conjugate pairs. This model provides another example of a building block of a non-hermitian Carnot engine.
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