
Smart SDN Management of Fog Services
Piotr Fröhlich, Erol Gelenbe, Fellow, IEEE and Mateusz P. Nowak

Institute of Theoretical & Applied Informatics (IITIS-PAN)
Polish Academy of Sciences

ul. Baltycka 5, 44100 Gliwice, Poland
{pfrohlich,seg,mateusz}@iitis.pl

Abstract—A Smart Service Manager is proposed to direct user
requests (such as those coming from IoT devices) at the edge
towards appropriate servers where the requested services can
be satisfied. Services are housed at different Fog locations, and
the system is subject to variations in workload. The approach
is based on using a Software Defined Network (SDN) controller
as the means to take decisions with measurement data based
machine learning that uses Reinforcement Learning to make the
best choices. The system we have developed is illustrated with
experimental results on a test-bed with time-varying loads that
confirm its ability to adapt to significant changes in system load
and preserve the users’ Quality of Service.

Index Terms—QoS, Edge and Fog Computing, IoT, Software
Defined Networks, Machine Learning, Cognitive Packet Network,
Random Neural Networks

I. INTRODUCTION

Fog computing extends the Cloud [1] to allow edge devices
to take over substantial computation, storage and networking,
to facilitate the operation of services between edge devices
and Cloud data centers [2]. It is particularly suited to manage
services and tasks in the Internet of Things (IoT) [3]–[6].

Service virtualization is a characteristic of many computing
platforms, and the Fog infrastructure offers computing nodes
that run virtualized services that satisfy client requests. Thus
the distribution or location of Fog nodes/servers in a network,
and the placement of services on Fog servers are key issues.
Since most networks may have a large variability of workload
over time, the configuration of Fog servers and services cannot
be static, and a dynamic approach is needed to adapt to
changing workloads. Such issues are not specific to the Fog
and have long been studied in the context of distributed and
networked computer systems [7]–[12].

However, the servers and lightweight edge devices in the
Fog call for simple dynamic algorithms without excessive
decision making overhead. Thus we develop a fast decision al-
gorithm for directing requests that originate at different devices
towards multiple servers where services are located, without
significant overhead for the edge devices and the servers,
by exploiting the presence of Software Defined Network
(SDN) controllers [13], [14] to provide a Service Management
function in addition to packet routing.

The most advanced but costly approach is to migrate ser-
vices between Fog nodes. This solution is worth using if there
are very significant changes in network and server load, and
in memory occupancy of the servers. Indeed service migration

takes time and bandwidth; it limits the availability of services
during migration and reduces the resources available to end
users. In IoT networks in particular [3], due to the relatively
steady nature of monitoring and actuating on cyberphysical
infrastructures, significant changes in network usage are rel-
atively infrequent. Therefore it may suffice to locate each
service in a few replicate locations and optimally select its
location for a given client’s request. Different instances of
a service can also be activated on-the-fly when replicas are
installed at different system nodes. However, replicating ser-
vices raises the issue of data consistency [15], and consistency
control algorithms lead to overhead [16]. The optimization of
such systems with respect to Quality of Service (QoS) and
Energy Consumption using queueing theory was studied in
[17]. The allocation of tasks to Cloud servers was considered
in [18], [19] using Reinforcement Learning (RL) [20] and
Deep Learning [21].

This paper discusses the allocation of users’ requests for
access to a given service s which is located at several
N(s) > 1 different servers or Fog nodes. Our approach, which
has been developed as part of a larger European project on
smart and secure IoT network management [22], defines a
relevant cost or Goal Function which includes the measured
QoS, to make decisions in real time regarding the choice
of the service’s location, using reinforcement learning (RL)
[20] to optimize the user’s perceived QoS. We implement
the algorithm as a Service Manager (SM) platform installed
in a SDN controller, which is transparent to the end use.
Its performance is illustrated with experiments which show
its effectiveness in the presence of dynamic time-dependent
changes in workload.

In the sequel, in Section II we first present a formalization
of the optimization problem for the selection of an instance of
a service for the request made by some user, when multiple
instances of several services are located at the nodes of a
Fog platform. Section III discusses the ML method that we
use, and in Section III-B we detail the RL algorithm that
is at the heart of the system that we have designed and
tested. Section IV presents the specific example that we have
experimentally tested in this paper, where the SM is in charge
of selecting a particular location where a service request
formulated by some user will be executed with the objective
of optimizing the resulting QoS. The experimental results that
we present show how the service requests are dynamically
allocated, and re-allocated to another server if a given server978-1-7281-6728-2/20/$31.00 © 2020 IEEE

becomes overloaded due to excessive workload. The final
section is devoted to drawing some conclusions and suggesting
directions for further work.

II. THE DECISION SYSTEM

We consider a system consisting of N nodes {1, ... , N}
where the nodes can be connected via an underlying multi-
hop Internet topology. Thus the N nodes can be viewed as an
overlay network, or as Fog servers. Any two Fog nodes can
communicate and transfer data and tasks to each other.

Services, such as data storage systems, named data servers,
content providers or services that execute tasks, are located at
these Fog nodes. Service requests are formulated by users, and
can then be directed towards one of these nodes by the “Fog
Manager” (FM) which is a decision system that may reside at
each of the nodes, or which may itself reside at some other
node. For the purposes of this paper, we do not dwell on where
the FM resides and we viewed it as some form of transparent
instantaneous decision system.

The general problem we formulate is about placing the set
of users U and the set of services S at the various nodes
or locations. Some user u at location l(u) ∈ {1, ... , N}
generates requests R(u) to some service s so that R(u) = s.
The location of s will be denoted l(s) ∈ {1, ... , N}. Generally
users may be mobile, but will make a request from a specific
location. On the other hand, a service s may be duplicated at
a set of locations L(s) ⊂ {1, ... , N(s)}.

The request from u to s ∈ L(R(u)) is satisfied with after
some transfer delay T (l(u), l(R(u)) which depends on the
nodes where the user and service are located, and on the
currently used network paths between them. Furthermore, the
queueing plus service delay D(.) needed to satisfy the request
will also depend on the node l(R(u) that services the request,
and on its current load that we denote by K(l(R(u))). Thus
we will have some non-linear dependency D(K(l(R(u))), to
which we should add the load-dependent local delay at the
node where u is connected, which we will denote d(K(l(u))).

Therefore when a user u makes a request for a service s =
R(u) the purpose of the FM s to try to minimize an objective
or Goal function of the form:

G(u, l(R(u))) = T (l(u), l(R(u))) +D(K(l(R(u)))(1)
+d(K(l(u))) + αI(u, l(R(u))) (2)
+βE(u,R(u)),

where α, β ≥ 0 are constants that weigh the relative
importance of security and energy consumption within the
overall cost, with respect to the other factors that concern the
QoS. The security and energy consumption terms are defined
as:

• I(.) refers to a non-negative numerical value that char-
acterizes the “insecurity” of having user u access service
R(u) at location l(R(u)). We note that this insecurity
can actually be due to the user or its sensitivity, rather
than the location, or it can be interpreted as depending

on some risks or attacks that are related to the location
l(R(u)), which is the more likely case.

• E(.) refers to the resulting energy consumption, and:

E(u,R(u)) = E(l(u), l(R(u))) + E(K(l(R(u)))

+ E(K(l(u))).

The examples we provide in the sequel will be limited to QoS
related optimization, so that we will not dwell on the values
of α, β in the sequel.

The minimization of G(u,R(u)) will be carried out over all
possible locations l(R(u)) ∈ L(R(u)). When we are free to
instantiate the service s = R(u) on any of the servers of the
system, then we will obviously have L(R(u)) = {1, ... , N}.

The minimization of G(u,R(u)) is the optimization prob-
lem that is discussed in this paper, and we would tend to
allocate the request s = R(u) of user u to the node:

i∗(u, s) = arg min{G(u, i) : s.t. i ∈ L(R(u))} . (3)

More restricted cases of this problem have been considered
in earlier work. In [19], the services are duplicated at all the
nodes, and requests emanate from a single node and are then
dispatched to any one of the nodes using a recurrent Random
Neural Network (RNN) [23] based RL scheme. Other work
[18] uses a RNN based algorithm that considers both remote
and local nodes so that the transfer of requests to remote nodes
incurs a communication delay plus a processing delay, while
local nodes have a congestion based queueing delay plus a
request processing time. Note that in (2) each of the terms
D(K(l(R(u))) and d(K(l(u))) can include both a queueing
delay waiting for service at the node, and a service time.

III. RANDOM NEURAL NETWORK AND REINFORCEMENT
LEARNING

Because the parameters in the Goal function can only be
learned or estimated through measurement over some period
of time, we propose a machine learning approach, and we first
introduce the neural network model that will be used, which
is recurrent, i.e. it contains feedback between its nodes. In
fact, its adjacency graph is a fully connected directed graph
on identical to the topology of the possible IP connections
between nodes in the real system.

We use the RNN [24] because of its two important mathe-
matical properties: it has a convenient closed form analytical
solution in “product form”, and it has an unique numerical
solution despite its recurrent non-linear structure. Thus for a
given set of input parameters it is guaranteed to provide a
unique state and output value. We will associate one distinct
neuron of the RNN for each of the N distinct nodes or servers
where services may be placed, and the RNN will be used to
compute the node to which a service request is directed.

An N neuron RNN is a probabilistic dynamical system
whose state is represented by the vector of non-negative inte-
gers K(t) = (K1(t), ... ,KN (t)) at time t ≥ 0, where K(t)
is a vector random process. A particular value taken by K(t)
is denoted by the deterministic vector k = (k1, ... kN). Ki(t)

Fig. 1. The topology of a 5-node packet network with 6 inter-node links, and
5 attached servers, two of which support services and the three others support
end users. The SDN controller communicates with every node and acts not
just to establish network paths, but also to decide which service location or
instance will be used by the service requests. This system is used as a test-bed
for the experiments reported in this paper.

represents the “voltage” or potential of neuron i. The neurons
are interconnected via excitatory and inhibitory weights that
are denoted by W+

ij ≥ 0, W−ij ≥ 0, respectively. These
weights can be viewed as rates of spiking from any neuron i
to any neuron j.

Each excitatory spike sent from i and arriving at time t to
j will increase the value of Kj(t) by +1, i.e. its effect will
be Kj(t

+) = Kj(t) + 1. Similarly, each inhibitory spike sent
from i to j at time t will have the following effect: Kj(t

+) =
max[Kj(t)−1, 0]. However a neuron i cn only send out spikes
if its potential is positive, i.e. when Ki(t) > 0. Furthermore,
when neuron i sends a spike to neuron j, then its own potential
drops by 1, i.e. Ki(t

+) = ki(t)− 1.
The key theorem concerning the RNN [23] states that:

lim
t→∞

Prob[K(t) = k] =

N∏
i=1

qki
i (1− qi), where (4)

qi =
Λi +

∑N
j=1 qjW

+
ji

λi +
∑N

j=1[W+
ij +W−ij] +

∑N
j=1 qjW

−
ji

. (5)

We also use ri to denote the quantity ri =
∑N

j=1[W+
ij +W−ij],

and we call it the “total firing rate” of neuron i.
Note that each decision is user and service dependent, and

different users may have different locations in the network.
Therefore in general we may have a distinct RNN for each
user and service, and we can write:

qi(u, s) =
Λi(u, s) +

∑N
j=1 qj(u, s)W

+
ji (u, s)

λi(u, s) + ri(u, s) +
∑N

j=1 qjW
−
ji (u, s)

, (6)

where ri(u, s) =
∑N

j=1[W+
ij (u, s) + W−ij (u, s)], is the “total

firing rate” of neuron i.
Let i∗(u, s) = arg max i{qi(u, s)}: we will consider that

i∗(u, s) is the node that is preferred by the decision algorithm
to select the location of the service s = R(u) requested by
user u; hence it is in some sense the node that is estimated
to provide the best performance to the current service request
from user u for the service s = R(u).

A. Initialisation of the Recurrent RNN

Before any data has been gathered, and before they are
updated using the RL algorithm that we describe in the
following section, the RNN weights should be set in a manner
that makes all the qi(u, s) = 0.5 to represent a situation where
all possible choices are equally likely, and all weights are
identical, i.e.

w = W+
ij (u, s) = W−ij (u, s), (7)

λ = Λi(u, s) = λi(u, s), ∀ i, j, u, s,

which will yield the equation:

0.5 =
λ+ 0.5Nw

λ+ 2.5Nw
, or λ = 1.5Nw. (8)

Thus to obtain qi(u, s) = 0.5, we can set w to any value, as
long as we also set λ = 1.5Nw.

B. The Reinforcement Learning Algorithm

The Goal function G or G′ of (2) or (19) will be used
with the RNN and a Reinforcement Learning (RL) algorithm
to optimize the system. The objective is to choose the best
node i where the service s = R(u) requested by user u
should be instantiated or located. We first define the Reward
R(u, s) = G(u, s)−1 or R(u, s) = G′(u, s)−1 which must be
maximized when the Goal is minimized. Successive values
of R(u, s) are measured, or measured and estimated. For
instance, transfer times between the location of u and the
different nodes in the network can be measured, and they do
not depend on actually executing a user request for a service.
Similarly, the execution time of a service at different locations
for other users u′, other than the actual user u, can be used to
estimate D(K(l(R(u))), while d(K(l(u))) can be estimated
by measuring the performance related to the local node where
u is residing.

Successive values of the “reward” Rl(u, s) = Gl(u, s), l =
1, 2, ... will be obtained from the successive measured Goal
values Gl(u, s), l = 1, 2, ... that are brought back by SPs
and are used them compute “historical value” of the reward:

Tl(u, s) = δ ∗Tl−1(u, s) + (1− δ) ∗Rl(u, s), 0 < δ < 1, (9)

where 0 < δ < 1 is a responsiveness parameter that determines
the importance of past historical values. Setting it to a high
value will prevent the RNN from taking hasty decisions. The
RNN weights are then updated as follows.

First save the current values of the sum of the weights
ri(u, s) =

∑N
j=1[W+

ij (u, s) + W−ij (u, s)]. Let k be the most

recent selected “best” choice of the location for service s with
regard to user u, i.e. k = i∗(u, s) or k = I∗(u, s). Then:

If Rl(u, s) >= Tl−1(u, s) then for j 6= k : (10)

∀i 6= k : W+
ik(u, s)←W+

ik(u, s) +Rl(u, s), (11)
W−ij (u, s)←W−ij (u, s) +Rl(u, s),

If Rl(u, s) < Tl−1(u, s) then for j 6= k : (12)

∀i 6= k : W−ik(u, s)←W−ik(u, s) +Rl(u, s), (13)
W+

ij (u, s)←W+
ij (u, s) +Rl(u, s).

After these updates, a normalization is carried out for all the
weights, preventing them from constantly increasing:

W+
ij (u, s)←W+

ij (u, s)
ri(u, s)∑N

j=1[W+
ij (u, s) +W−ij (u, s)]

, (14)

W−ij (u, s)←W−ij (u, s)
ri(u, s)∑N

j=1[W+
ij (u, s) +W−ij (u, s)]

. (15)

Now with these updated values of the weights, we compute
all the qi(u, s) using the system of equations (6), and obtain
the new value of the “best location”:

i∗(u, s) = arg max{qi(u, s)}. (16)

IV. SERVICE DUPLICATION AT SEVERAL LOCATIONS

In our current implementation and experiments, we use a
simpler Goal Function (2), where we aggregate the network
transfer time and service delay into a single term:

Q(u, l(R(u))) = T (l(u), l(R(u))) +D(u, l(R(u))), (17)

because these two quantities are measured in our experiments
as one single value, which use as the Goal for the RL
algorithm:

G(u, l(R(u))) = Q(u, l(R(u)) + αI(u, l(R(u)) (18)
+βE(u, l(R(u))).

The experimental platform on which these ideas have been
implemented and tested is represented in Figure 1 where the
five network nodes can be used to support either users or
services. In this case we see that three nodes support users,
while two nodes support services, and the six links that exist
between nodes are also explicitly shown. Both the services and
the users are in fact on separate machines which are connected
to the network nodes.

A. Network Level Path Control

The system, both for network routing and for accessing
services by specific users, is run by a SDN controller [2],
[25] via a switch which is connected to each of the five
network nodes as shown in Figure 1. The SDN controller
uses OpenFlow Version 1.2-1.5 [26]. The SDN system in
our test-bed was extended using the “cognitive packet routing
algorithm” [27] to conduct smart measurements of network
delays using “smart packets” (SP) so as to find network

paths that minimize packet delays, similar to the approach
in [28]. The SDN controller checks the network state each
5 seconds, and network paths can be changed at those times
if significantly better paths are found that improve previously
measured source-to-destination delay by over 30%.

B. Service Management

The SDN controller in our system is also in charge of the
allocation of a user u’s requests R(u) to the locations l(R(u)).
where the requested service is resident and may be satisfied.
Within the SDN controller, for each user-service pair (u, s),
we install a RNN which has a number of neurons identical to
the number of locations where the service can be found, which
we denote N(s). For instance, in Figure 1 we have N(s) = 2.

The weights of the RNN for the pair (u, s) are updated using
Reinforcement Learning as described in Section III-B, based
on measurements sent to the SDN controller by each user, and
specifically the user’s own perceived average total response
time, from the instant when the request R(u) is sent by u to the
location l(R(u)), to the instant when the successful response
was received by the user u, which corresponds to the quantity
Q(u, l(R(u))) previously defined. Thus these experiments are
based on learning using:

G′(u, l(R(u))) = Q(u, l(R(u))), (19)

without using either the “insecurity factor” or the energy
consumption. The RNN weights are updated according to the
algorithm in Section III-B, where the choice of the optimum
location from the values qi(u, s) for 1 ≤ i ≤ N(s).

From the user point of view this solution is completely
transparent. The user u is given a configuration file which
includes an IP address and the port (IP, Port) on which the
service s can be found. Note that this is an IP address which is
unavailable at the network level. Each time u wants to connect
to s, it connects to (IP, Port). On the edge node where u is
connected, the SDN controller changes (IP, Port) to the IP
address of the real location l(s) of s. When the service ends
and the resulting reply goes back from the location of the
service to the user, the real IP address is changed back to the
original “dummy’ IP address provided in the configuration file.

C. Experimental Results

Our experiments show the ability of the system we have
designed, to provide rapid adaptation to changes in the mea-
sured QoS at the nodes, is varied by turning on or off an
additional program that overloads the processors at each server
where the service is located. We have conducted numerous
experiments on the test-bed of Figure 1, with and without the
SM being turned on, where the user requests are generated
by to the server in node FD1 (at the top of the figure)
and generate a steady sequence of successive requests for
service at a rate of 10 requests per second. The services are
processed by the servers attached to nodes FD2 and FD5,
and service requests have an approximate response time of
100 milliseconds when a server only deals with the service
request without any additional load.

We first show the resulting measured response times, the SM
is turned off in the upper curve (in orange) of Figure 2: with a
sudden increase in workload due to an additional internal load
on the server attached to node FD5 of Figure 1. When the
SM is in use, the user will experience a sudden increase in its
total response when the workload at the server is increased. In
the lower curve of the same figure, another experiment shows
the results when the SM is constantly turned: when the load at
node FD5 suddenly increases, the response time for the user
requests first increases, but after a transient of approximately
2, 000 ms, the total average response perceived by the user
drops back to normal, because the SM changes the IP address
that the user accesses to node FD2.

Figure 3 shows an experiment where the response time to
service requests is measured at the user end is plotted against
elapsed time for a large number of successive service requests.
The SM is turned on throughout the experiment, and initially
the service requests are being assigned to the server attached
to node FD5. At roughly 40, 000 ms after the start of the
experiment, the users’ response time rises steeply because an
additional external load is imposed on the server attached to
node FD5, and then drops because the SM has transferred
the user’s requests from the server at node FD5 to the server
at node FD2. At roughly 100, 000 ms, the overload at the
server at node FD5 is turned off, and a similar overload is
turned on at the server at node FD2: again we observe a
high increase in measured response time and then a drop to
“normal” because the SM has transferred the request to the
server attached to node FD5. A similar switch occurs in the
opposite direction at roughly 270, 000 ms showing that the SM
reacts appropriately. Indeed, the SM that uses the algorithm
we have described, effectively preserves the end users’ QoS,
in the presence of sudden changes in the additional load at
the servers. In Figure 4 we show the result of an experiment
where we attach a Raspberry Pi3B+ to node FD2, and an
Intel NUC with i7 processor and 16 GB ram with Ubuntu
18.04 to the FD5 node, the latter being roughly four times
faster than the Raspberry. The workload of each user is a
program which computes the prime factors of a large random
integer, and each job has a distinct compute times. The upper
orange curve shows the average response time when the SM is
disabled. The response time when the SM is enabled is shown
on the blue curve, where the SM dynamically allocates the
workload to the most lightly loaded server, resulting in lower
response time after a transitory period.

V. CONCLUSIONS

We have presented a novel control algorithm and its imple-
mentation as a “Service Manager” (SM) that dynamically al-
locates service requests from end users to the location that can
satisfy the service and minimize the overall average response
time, using RL with a RNN. The system can also to minimize
an objective or Goal Function, that includes Quality of Service,
Energy Consumption and Security. An experimental test-bed
based on a SDN controller that implements the SM has been
used to test the resulting system’s performance. Experiments

0 10000 20000 30000 40000 50000
Time [ms]

0

100

200

300

400

500

600

700

Re
sp

on
se

 ti
m

e
[m

s]

Fig. 2. The upper orange curve shows the increase in response times perceived
by the end user when the SM is disabled, and the additional workload at the
server attached to node FD5 is turned on. The blue curve shows the same
experiment when the SM is enabled: after a brief transitory period, the user’s
measured response time drops to “normal” because the SM redirects the user
requests to the server attached to node FD2.

0 50000 100000 150000 200000 250000 300000 350000 400000
Time [ms]

0

100

200

300

400

500

600

Re
sp

on
se

 ti
m

e
[m

s]

Fig. 3. We show that 40, 000 ms after the start of the experiment, the users’
response time rises due to an additional external load on the server at node
FD5, and later drops because the SM senses the overlaod and automatically
transfers the users’ requests to node FD2. At roughly 100, 000 ms, the
overload at node FD5 is turned off, and the overload is turned on at node
FD2, creating a sharp increase in response time and then a drop when the
SM automatically transfers the requests to the server at node FD5. The
experiment is repeated at roughly 270, 000 ms.

0 1000 2000 3000 4000 5000 6000 7000
TIME [ms]

0

100

200

300

400

500

Av
er

ag
e

re
sp

on
se

 ti
m

e
[m

s]

Fig. 4. This figure shows two experiments over the same time scale with a
“small server” at FD2 and a more powerful server at FD5 of Figure 1. The
measurements show response times to service requests with the SM disabled
and service requests addressed at random with equal probability to the servers
at FD2 and FD5. The measurement in orange show the response times when
the SM is enabled, and the SM automatically allocates the service requests
to the server that is more lightly loaded.

have illustrated the ability of our system to adapt in real time
to the incoming load generated by the users, both with medium
and high loads.

Currently, the IoT appears to be the main potential user
of Fog services, however our proposed approach may also be
used to support Base Stations for mobile users’ video or other
needs. For large systems we expect that the SDN router will
avoid being congested by proactively distributing its advice
at times when it is not re-routing the usual traffic rather
than respond individually to each request. Future work will
also address the effect of energy consumption and security,
investigate the system’s ability to adapt in the presence of
competing end-users and multiple services, and develop a
more general approach for handling multiple services.

ACKNOWLEDGEMENT

This work was supported by EU H2020 Program for the
SerIoT Research & Innovation Project under G.A. No. 780139.

REFERENCES

[1] R. Buyya et al., “A manifesto for future generation cloud computing:
Research directions for the next decade,” ACM Comput. Surv.,
vol. 51, no. 5, pp. 105:1–105:38, 2019. [Online]. Available:
https://doi.org/10.1145/3241737

[2] A. Levin, K. Barabash, S. G. Y. Ben-Itzhak, and L. Schour, “Networking
architecture for seamless cloud interoperability,” in 2015 IEEE 8th
International Conference on Cloud Computing, New York, NY, 2015,
pp. 1021–1024.

[3] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing. ACM, August 2012, p.
13–16.

[4] R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya,
“Profit-aware application placement for integrated fog-cloud computing
environments,” J. Parallel Distrib. Comput., vol. 135, pp. 177–190,
2020. [Online]. Available: https://doi.org/10.1016/j.jpdc.2019.10.001

[5] C. Radoslav, “Cloud computing statistics 2019.” [Online]. Available:
https://techjury.net/stats-about/cloud-computing/#gref

[6] L. Goasduff, “Gartner says 5.8 billion enterprise and automotive iot
endpoints will be in use in 2020,” Gartner Report.

[7] C. Kim and H. Kameda, “An algorithm for optimal static load balancing
in distributed computer systems,” IEEE Trans. Computers, vol. 41, p.
381–384, 1992.

[8] H. Topcuouglu, S. Hariri, and M.-Y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE
Trans. Parallel Distributed Systems, vol. 13, no. 3, p. 260–274, 2002.

[9] X. Zhu, X. Qin, and M. Qiu, “Qos-aware fault-tolerant scheduling for
real-time tasks on heterogeneous clusters,” IEEE Trans. Computers,
vol. 60, no. 6, p. 800–812, 2011.

[10] W. Tian, Y. Zhao, Y. Zhong, M. Xu, and C. Jing, “A dynamic and
integrated load-balancing scheduling algorithm for cloud datacenters,”
pp. 311–315, 2011.

[11] Z. Zhang and X. Zhang, “A load balancing mechanism based on
ant colony and complex network theory in open cloud computing
federation,” in Proc. 2nd Int. Conf. Industrial Mechatronics Automation,
vol. 2, 2010, p. 240–243.

[12] S. Dobson et al., “A survey of autonomic communications,” ACM
Transactions on Autonomous and Adaptive Systems (TAAS), vol. 1, no. 2,
pp. 223–259, 2006.

[13] S. Bera, S. Misra, and A. V. Vasilakos, IEEE Internet of Things Journal,
vol. 4, no. 6, pp. 1994–2008, 2017.

[14] J. Mambretti, J. Chen, and F. Yeh, “Next generation clouds, the
chameleon cloud testbed, and software defined networking (sdn), 2015
international conference on cloud computing research and innovation
(icccri),” pp. 73–79, 2015.

[15] E. Gelenbe and G. Hebrail, “A probability model of uncertainty in
data bases,” in 1986 IEEE Second International Conference on Data
Engineering. IEEE, 1986, pp. 328–333.

[16] E. Gelenbe and K. C. Sevcik, “Analysis of update synchronization for
multiple copy data bases,” IEEE Trans. Computers, vol. 28, no. 10, pp.
737–747, 1979. [Online]. Available: https://doi.org/10.1109/TC.1979.
1675241

[17] E. Gelenbe and R. Lent, “Energy-qos trade-offs in mobile service
selection,” Future Internet, vol. 5, no. 2, pp. 128–139, 2013. [Online].
Available: https://doi.org/10.3390/fi5020128

[18] L. Wang, O. Brun, and E. Gelenbe, “Adaptive workload distribution for
local and remote clouds,” in 2016 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), 2016, pp. 3984–3988.

[19] L. Wang and E. Gelenbe, “Adaptive dispatching of tasks in the cloud,”
IEEE Trans. Cloud Computing, vol. 6, no. 1, pp. 33–45, 2018. [Online].
Available: https://doi.org/10.1109/TCC.2015.2474406

[20] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 2nd Ed., 2018.

[21] Y. Yin, “Deep learning with the random neural network and its
applications,” CoRR, vol. abs/1810.08653, 2018. [Online]. Available:
http://arxiv.org/abs/1810.08653

[22] J. Domanska et al., “Research and innovation action for the security
of the internet of things: The seriot project,” in Recent Cybersecurity
Research in Europe: Proceedings of the 2018 ISCIS Security Workshop,
Imperial College London. Lecture Notes CCIS No. 821, Springer Verlag,
vol. 821, 2018.

[23] E. Gelenbe, “Random neural networks with negative and positive signals
and product form solution,” Neural Computation, vol. 1, no. 4, pp. 502–
510, 1989.

[24] ——, “Learning in the recurrent random neural network,” Neural
Computation, vol. 5, pp. 154–164, 1993.

[25] S. Basterrech and G. Rubino, “A tutorial about random neural networks
in supervised learning,” in Neural Network World, vol. 25, no. 5, 2016,
pp. 457–499.

[26] “Home page of onosproject - open source sdn controller.” [Online].
Available: https://onosproject.org

[27] E. Gelenbe, “Steps toward self-aware networks,” Communications of the
ACM, vol. 52, no. 7, pp. 66–75, 2009.

[28] F. François and E. Gelenbe, “Towards a cognitive routing engine for
software defined networks,” in 2016 IEEE International Conference
on Communications (ICC), Kuala Lumpur, May 22-27, 2016, pp. 1–6.
[Online]. Available: https://doi.org/10.1109/ICC.2016.7511138

