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Efficiency optimization 
in quantum computing: 
balancing thermodynamics 
and computational performance
Tomasz Śmierzchalski 1, Zakaria Mzaouali 1*, Sebastian Deffner 2,3 & Bartłomiej Gardas 1

We investigate the computational efficiency and thermodynamic cost of the D-Wave quantum 
annealer under reverse-annealing with and without pausing. Our demonstration on the D-Wave 
2000Q annealer shows that the combination of reverse-annealing and pausing leads to improved 
computational efficiency while minimizing the thermodynamic cost compared to reverse-annealing 
alone. Moreover, we find that the magnetic field has a positive impact on the performance of the 
quantum annealer during reverse-annealing but becomes detrimental when pausing is involved. 
Our results, which are reproducible, provide strategies for optimizing the performance and energy 
consumption of quantum annealing systems employing reverse-annealing protocols.
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Large-scale investments in quantum technologies are usually justified with promised advantages in sensing, 
communication, and  computing1. Among these, quantum computing is probably the most prominent applica-
tion since it has the potential to revolutionize information processing and computational capabilities. For cer-
tain tasks, quantum computers exploit the fundamental principles of quantum mechanics to perform complex 
calculations exponentially faster than classical  computers2–4. The tremendous computational power offered by 
quantum systems has fueled excitement and exploration in various scientific, industrial, and financial  sectors1,5–12. 
Consequently, there have been significant developments in the pursuit of quantum advantage that have propelled 
quantum computing from theoretical speculation to practical  implementation13–23.

Major technology companies such as IBM, Google, Microsoft, Intel, and Nvidia have been investing massively 
in quantum research and development, leading to the establishment of quantum computing platforms and open-
source frameworks, that enable researchers and developers to demonstrate and explore the potential of quantum 
algorithms and  applications24. These advancements have been driven by breakthroughs in both hardware and 
algorithmic techniques, bringing us closer to realizing the potential of quantum  computers25,26.

However, the rapid development of quantum technologies also raises critical questions about the energy 
requirements and environmental implications of quantum  computation27,28. Energy consumption has become 
a focal point for researchers, policymakers, and society at large as the demand for computing power continues 
to rise, and concerns about climate change and sustainability intensify. Consequently, assessing the energy 
consumption of quantum computers is vital for evaluating their feasibility, scalability, and identifying potential 
 bottlenecks29.

The energy consumption of quantum computers stems from various sources, including the cooling systems 
needed to maintain the delicate quantum states, the control and manipulation of qubits, and the complex infra-
structure required to support quantum  operations30,31. The superposition characteristic of qubits demands a 
sophisticated physical environment, with precise temperature control and isolation, leading to significant energy 
expenditures. These challenges call for synergic work between quantum information science, quantum engineer-
ing, and quantum physics to develop an interdisciplinary approach to tackle this  problem32.

The theoretical framework to quantify the energy consumption of quantum computation is through quan-
tum thermodynamics, which provides the necessary tools to quantify and characterize the efficiency of emerg-
ing quantum technologies, and therefore is crucial in laying a roadmap to scalable  devices27,33,34. The field of 
quantum thermodynamics provides a theoretical foundation to understand the fundamental limits of quantum 

OPEN

1Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, 
Poland. 2Department of Physics, University of Maryland, Baltimore County, Baltimore, MD 21250, USA. 3National 
Quantum Laboratory, College Park, MD 20740, USA. *email: zmzaouali@iitis.pl

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-55314-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4555  | https://doi.org/10.1038/s41598-024-55314-z

www.nature.com/scientificreports/

technologies, macroscopically, in terms of energy consumption and efficiency, by identifying the thermody-
namic resources required to process and manipulate quantum information at the microscopic  level27,35,36, such 
as quantum versions of Landauer’s  principle37–41. The exploration of the thermodynamics of information is not 
limited to the equilibrium settings, as recent research has delved into the nonequilibrium aspects of quantum 
computation, particularly in the context of quantum algorithms and quantum  simulation42,43. Understanding the 
thermodynamics of quantum systems, including the generation of entropy, heat dissipation, and non-equilibrium 
dynamics, serves to optimize the algorithmic performance, energy consumption, and resource  utilization44.

The study of the thermodynamics of quantum computers has been an active research area with notable results 
that deepen our understanding of the energy landscapes, heat dissipation, and efficiency of quantum computation 
while also addressing challenges related to noise, decoherence, and thermal  effects45–48. The optimization of the 
energy efficiency of quantum computers has been approached from several angles, for instance, to eluciate the 
minimization of the energy dissipation during computations, and to develop energy-efficient algorithms and 
 architectures49–57. The focus is on reducing energy requirements and increasing the computational efficiency of 
quantum systems, paving the way for sustainable and practical quantum computing technologies. As quantum 
computers generate heat during operation, effective thermal management becomes essential to maintain qubit 
stability and mitigate thermal errors.

In this paper, we study the interplay between thermodynamic and computational efficiency in quantum 
annealing. In recent years, thermodynamic considerations of the D-Wave quantum annealer have become preva-
lent. For instance, some of us used the quantum fluctuation theorem to assess the performance of  annealing48. 
Furthermore, the working mechanism of the D-Wave chip was shown to be equivalent to that of a quantum 
thermal machine, e.g. thermal accelerator, under the reverse-annealing  schedule58. Here, we take a step further 
and analyze the energetic and computational performance of quantum annealing under reverse-annealing, and 
how to optimize it through the introduction of pausing in the annealing schedule. We demonstrate our approach 
on the D-Wave 2000Q quantum annealer and we show that a pause in the annealing schedule allows us to achieve 
better computational performance at a lower energetic cost. Additionally, we discuss the role and impact of the 
magnetic field on the performance of the chip.

Theory & figures of merit
We start by briefly outlining notions and notations. Quantum annealing consists of mapping the optimization 
problem to a mathematical model, that can be described using qubits, i.e. the Ising  model59. The quantum 
annealer is initialized in a quantum state that is easy to prepare. The system is then evolved according to a time-
varying Hamiltonian, which is a mathematical operator representing the problem’s objective function, and can 
be expressed as,

where σα
i  , with α = (x, z) are Pauli matrices, and hi is the local magnetic field. st = t/τ describes the annealing 
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j  , with τ ∈ [0, t] . On the D-Wave machine, the 

annealing time t can be chosen from microseconds ( ∼2µs ) to milliseconds ( ∼2000µs).
The usual quantum annealing process, called forward annealing, starts with initializing the qubits in a known 

eigenstate of σ x . The system is then driven adiabitically by varying the Hamiltonian parameters, the adiabatic 
evolution is a requirement for the system to remain in its instantaneous ground  state60. Initially, the driver 
Hamiltonian H0 dominates, and the qubits are in a quantum superposition. As the annealing progresses, the 
problem Hamiltonian Hp gradually becomes dominant, and the qubits tend to settle into the low-energy states 
that correspond to the optimal solution of the problem.

In this work, we employ a different protocol called reverse-annealing as depicted in Fig. 1, where the processor 
initially starts with a classical solution defined by the user, to explore the local space around a known solution 
to find a better one. Reverse-annealing has been shown to be more effective than forward annealing in some 
specific use cases, including nonnegative/binary matrix  factorization61, portfolio optimization  problems62, and 
industrial  applications63. Moreover, reverse-annealing has unique thermodynamic characteristics with typically 
enhanced  dissipation58,64.

To quantify the thermodynamic efficiency of the D-Wave 2000Q chip, we initialize the quantum annealer in 
the spin configuration described by a thermal state at inverse temperature β1 = 1 , and we assume that initially 
the system (S)+environment (E) state is given by the joint density matrix,

where HS and HE denote, respectively, the Hamiltonian of the system and environment, while ZS and ZE describe, 
respectively, the partition function of the system and environment. β2 is the inverse temperature of the environ-
ment. The energy transfer between two quantum systems, initially at different temperatures, is described by the 
quantum exchange fluctuation  theorem65,66,
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where �Ei , i = 1, 2 are, respectively, the energy changes of the processor and its environment during the anneal-
ing time t, and p(�E1,�E2) is the joint probability of observing them in a single run of the annealing schedule. 
Equation (3) can be re-written in terms on the entropy production � = β1�E1 + β2�E2  as67,68,

Note that during our demonstrations, we have only access to the energy change of the processor �E1 . There-
fore, the thermodynamic quantities: entropy production 〈�〉 , average work 〈W〉 , and average heat 〈Q〉 are not 
directly accessible. However, they can be lower bounded by thermodynamic uncertainty  relations70 as shown 
in Appendix B,

where g(x) = x tanh−1 (x) , and β2 is the inverse temperature of the environment which can be estimated using 
the pseudo-likelihood method introduced  in71. The factors influencing the tightness of the lower bounds, Eqs. (5), 
(7), are measurement errors and calibration issues, which we minimize by considering a large number of anneal-
ing runs (10000). Accordingly, the upper bound on the thermodynamic efficiency can be determined from

which is not upper bounded by the Carnot efficiency that is defined for heat engines, as quantum annealers 
under reverse-annealing protocols behave like thermal  accelerators58. Moreover, we are interested in analyzing 
the computational efficiency of the quantum annealer, which we define as

and where have introduced the probability that ground state s⋆ is found in the given annealing run,

This quantity is computed by dividing the number of successful runs (i.e., those which have found the ground 
state) by the total number of runs. We emphasize here that the definition Eq. (9), is not a universal metric for 
computational performance. It is specifically tailored to capture the unique computational characteristics of 
quantum annealers, which operate based on principles akin to the thermodynamic cycle of a thermal accelerator. 
The definition, Eq. (9), provides a contextual tool to evaluate the performance of quantum annealers in terms 
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Figure 1.  Quantum annealing protocols used in our demonstrations. st is an annealing parameter, st = t/τ , t 
represent time and τ is the total annealing time in µs.
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of energy consumption relative to computational output. Hence the dimension of 1/energy. Since information 
is physical, expressing computational efficiency in terms of energy provides a direct link to the physical process 
occurring during quantum annealing. The efficiencies defined by Eqs. (8) and (9) are the main figures of merit 
of our analysis.

It is also instructive to analyze the ratio of the theoretical ( Eth = −299 ) ground state energy and the value 
read from the machine ( Eexp),

which is averaged over the number of samples. The quality, Eq. (11), measures the accuracy between the experi-
mentally obtained ground state energy from the quantum annealer and its theoretically predicted counterpart, 
normalized over the number of samples.

Results and discussion
All our demonstrations were performed on a D-Wave 2000Q quantum annealer. The physical properties of this 
machine are presented in Table 1 of Appendix A72. We considered an antiferromagnetic (i.e. ∀i Ji,i+1 = 1 ) Ising 
chain on N=300 spins, with Hamiltonian as defined in (1). However, one must first embed the given problem 
into the target quantum processing unit (QPU) architecture to perform quantum annealing. Here, embedding 
means finding a mapping between physical qubits presented in the machine and logical qubits (i.e. σ z

i  ) repre-
senting our problem. Figure 2 shows an example embedding of this Ising problem onto the QPU with Chimera 
architecture.

We used annealing schedules shown in Fig. 1. The system was initialized for both schedules by taking a 
sample thermal state at β = 1 using Gibbs  sampling73. For reverse annealing, with a given annealing time τ , we 
ran st → 1/2 for t ∈ (0, τ/2) and st → 1 for the remaining time. In reverse annealing with pausing st → 1/2 
for t ∈ (0, τ/3) , next for t ∈ (τ/3, 2τ/3) st = 1/2 , as we pause the annealing process. Lastly, for t ∈ (2τ/3, 1) we 
let st → 1.

Zero magnetic field – “naked performance”
We start with the case where the magnetic field h is turned off.

Reverse‑annealing without pausing
Figure 3a,b report data from reverse-annealing demonstrations without the introduction of the pause. The suc-
cess probability, Eq. (10), is shown in panel (a) where we see that under reverse-annealing without the pause, 
the success probability of finding the ground state energy is very low and does not exceed 10% in the whole 
annealing time. This means that in all 10000 samples taken in the demonstration, only less than 1000 samples 
provided the ground state energy. However, although the probability to reach the ground state energy is low, its 
quality, Eq. (11), which is shown in the same panel is very high and saturates at 0.95.

(11)QGS =

〈Eexp

Eth

〉

,

Figure 2.  Example of the embedding of the 300−spin Ising chain onto D-Wave 2000Q quantum processing unit 
(QPU) with the chimera  architecture69. White-blue dots and lines are active qubits, and grey ones are inactive. 
This is one-to-one embedding, such that every physical qubit corresponds to one logical qubit.
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The results shown in panel (a) are consistent with the thermodynamic and computational efficiency, Eqs. (8) 
and  (9) respectively, reported in panel (b). We see that under reverse-annealing without the pause, the com-
putational efficiency of the chip ηcomp grows with the annealing time t while being very low and not exceeding 
4% in the whole annealing time, which follows the behavior of the success probability PGS . Energetically, the 
thermodynamic efficiency ηth decays exponentially with τ and remains at a high value close to 1.

Reverse‑annealing with pausing
The low computational performance of the chip for the simple Hamiltonian, Eq. (1), shows that the reverse-
annealing protocol does not exploit the energetics of the chip efficiently. Ideally, one aims at finding the protocol 
that provides a high computational efficiency at the lowest possible thermodynamical cost. For this reason, we 
introduce a pause in the reverse-annealing protocol, as depicted in Fig. 1. Introducing a pause in the annealing 
schedule in quantum annealing has been shown to offer several benefits, such as: enhancing the probability of 
finding better solutions by efficient exploration of the solution space, which allows for a broader range of poten-
tial solutions to a given  problem74,75. Furthermore, since the pausing duration can be manipulated by the user, 
this offers the ability to balance between exploration and exploitation, which allow for the fine-tuning of the 
solution quality. The flexibility offered by the pausing strategy also allows for adaptation to the characteristics 
of specific problem instances, which enhances the efficiency and effectiveness of quantum annealing for a wide 
range of  applications76.

Figure 3c,d presents the results of applying a pause during the reverse-annealing schedule, as shown in Fig. 1. 
The success probability PGS improves dramatically as shown in panel (c), where it grows quickly to 0.8 during 
the annealing schedule, which means that 80% of the 1000 annealing runs taken during the demonstration 
returned the ground state energy. The quality, Eq. (11), shown in the same panel also benefits from introducing 
the pause, where the overlap between the theoretical value and the energy read from the machine is almost unity. 
The power of pausing is even more significant for the thermodynamic and computational efficiency, Eqs. (8) 
and  (9) respectively, reported in panel (d). We see that pausing allows for achieving high computational effi-
ciency at a moderate thermodynamic cost, which is due to the concept of thermalization. Introducing a pause 
in the annealing schedule allows the chip to relax and thermalize after being excited by quantum or thermal 
effects near the minimum gap. However, pausing is not always beneficial, and it depends on several factors such 
as the relaxation rate, the pause duration, and the annealing schedule. The optimal protocol corresponds to a 
pause right after crossing the minimum gap and its duration should be no less than the thermalization  time75.

Magnetically assisted annealing
Next, we perform demonstrations with the magnetic field switched on, under reverse-annealing with and without 
pausing. The local magnetic field plays a crucial role in shaping the energy landscape and controlling the behavior 
of the qubits during the annealing process. By manipulating the local magnetic field, quantum annealers can 
explore and optimize complex problem spaces more effectively.

Assisted reverse‑annealing without pausing
The benefit of introducing the magnetic field is clear from the behavior of the success probability PGS , Eq. (10), 
reported in Fig. 4. In this case, without introducing a pause in the annealing schedule, the success probability 
of the ground state of the problem Hamiltonian is very high compared to the case when the magnetic field is off 
(c.f. Fig. 3a). Introducing the magnetic field influences the shape of the energy landscape that the qubits explore 
during the annealing  process77. The landscape can be adjusted to promote or discourage certain configurations 
of the qubits, which can help guide the system toward the desired solution, and explains the slight improvement 
in the quality, Eq. (11), reported in the same panel. This dramatic improvement reflects itself on the thermody-
namic and computational efficiency Eqs. (8) and (9) respectively, of the chip as reported in Fig. 5. In this case, 
introducing the magnetic field allows to guide the system in the energy landscape which is a more efficient 
strategy to exploit energy to perform computation.

(a) Success probability GS (blue),
Eq. (10), and Quality QGS (red),
Eq. (11), without the pause

(b) Thermodynamic and
computational efficiency, th (blue)
Eq. (8) and comp (red), Eq. (9),
respectively without the pause.

(c) Success probability GS (blue),
Eq. (10), and Quality QGS (red),
Eq. (11), with pause

(d) Thermodynamic and
computational efficiency, th (blue)
Eq. (8) and comp (red), Eq. (9),
respectively with pause.

Figure 3.  Figures of merit under reverse-annealing with respect to the total anneal time t. (a+b) without the 
pause and (c+d) with pause for N = 300 spins, ferromagnetic couplings J, and zero magnetic field. Each point is 
averaged over 1000 annealing runs with 10 samples each.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4555  | https://doi.org/10.1038/s41598-024-55314-z

www.nature.com/scientificreports/

Assisted reverse-annealing with pausing. Interestingly, in comparison with the case for h=0 reported in 
Fig. 3c,d, introducing a pause in the annealing schedule with the magnetic field being present decreases the suc-
cess probability PGS , Eq. (10), as can be seen from Fig. 6. Consequently, it decreases also the thermodynamic 
and computational efficiency, ηth Eq. (8) and ηcomp Eq. (9) respectively, as can be seen from Fig. 7. Switching on 
the magnetic field in quantum annealing changes the qubit energy levels, and structure. On the other hand, for 
pausing to work it needs to be carefully applied while taking into account the energy level structure variation 
with the magnetic field. For this reason, the pause needs to be performed right after the minimum gap character-
ized by the value of the magnetic field h74,75.

Concluding remarks
We have investigated the optimization of the computational efficiency and the thermodynamic cost in the 
D-Wave quantum annealing systems employing reverse-annealing. By combining reverse-annealing with paus-
ing, we have demonstrated improved computational efficiency while operating at a lower thermodynamic cost 
compared to reverse-annealing alone. Our results highlight the potential benefits of strategically incorporating 
pausing into the annealing process to enhance overall computational and energetic performance. Furthermore, 
our results indicate that the magnetic field plays a crucial role in enhancing computational efficiency during 

(a) h= 0.1 (b) h= 0.5 (c) h= 1.0

Figure 4.  The success probability PGS (blue), Eq. (10), and the Quality QGS (red), Eq. (11), under reverse-
annealing without the pause for different values of the magnetic field h and with respect to the total anneal time 
t. Each point is averaged over 100 annealing runs with 10 samples each.

(a) h= 0.1 (b) h= 0.5 (c) h= 1.0

Figure 5.  The thermodynamic and computational efficiency, ηth (blue) Eq. (8) and ηcomp (red) Eq. (9) 
respectively, under reverse-annealing without the pause for different values of the magnetic field h and with 
respect to the total anneal time t. Each point is averaged over 100 annealing runs with 10 samples each.

(a) h= 0.1 (b) h= 0.5 (c) h= 1.0

Figure 6.  The success probability PGS (blue), Eq. (10), and the Quality QGS (red), Eq. (11), under reverse-
annealing with the pause for different values of the magnetic field h and with respect to the total anneal time t. 
Each point is averaged over 100 annealing runs with 10 samples each.
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reverse-annealing. However, when pausing is involved, the magnetic field becomes detrimental to the overall 
performance. This suggests the need for careful consideration of the magnetic field configuration and its impact 
on the energy gap of the system during the annealing process.

While our demonstrations were performed on the D-Wave Chimera architecture, it will be interesting to 
extend our approach to the Pegasus and Zephyr architectures. These two models offer high tolerance to noise 
and a more complex structure, which allows us to investigate the trade-off between energetic performance and 
computational complexity. Additionally, exploring the scalability of these findings to larger-scale quantum sys-
tems and real-world applications remains a promising avenue for future research.

Data availability
The code of the demonstrations is publically available in the Githu b repos itory78.

Appendix

Appendix A: Physical properties of the D-Wave 2000Q
We report in this appendix the physical properties of the 2000Q  chip72

Appendix B: Derivation of lower bounds
The thermodynamic uncertainty relation (TUR) relates the amount of energy a system dissipates to the uncer-
tainty of a certain observable in that system. For a process described by a joint probability distribution p(σ ,φ) , 
the fluctuation relation is given by:

where p(σ ,φ) is the probability of observing simultenously σ and φ during the forward process, while p(−σ ,−φ) 
describe the same probablity but during the backward process. Then applying TUR  gives70:

(12)
p(σ ,φ)

p(−σ ,−φ)
= eσ ,

(a) h= 0.1 (b) h= 0.5 (c) h= 1.0

Figure 7.  The thermodynamic and computational efficiency, ηth (blue) Eq. (8) and ηcomp (red) Eq. (9) 
respectively, under reverse-annealing with the pause for different values of the magnetic field h and with respect 
to the total anneal time t. Each point is averaged over 100 annealing runs with 10 samples each..

Table 1.  Physical properties of the D-Wave 2000Q machine.

Parameter Value

Qubits 2041

Couplers 5974

Qubit temperature (mK) 13.5± 1.0

MAFM (pH) 1.795

Programming time ( µs) 8767.90

Default post programming thermalization ( µs) 1000.0

Average single qubit thermal width (Ising units) 0.103

Single qubit freezeout (scaled time) 0.719

Readout time ( µs) 349.44

Readout error rate 0.0

Default post readout thermalization ( µs) 0.0

Annealing slope range ( µs−1) −1.0–1.0

Maximum anneal schedule points 12

https://github.com/tomsmierz/dwave-thermodynamics
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with f (x) = tanh2 (x/2) , and h−1 = (x tanh (x/2))−1 . The bound on 〈σ 〉 follows by manipulating Eq. (13):

with g(x) = x tanh−1(x) . Applying Eq. (14) on the fluctuation relation Eq. (4) gives:

Making use of � = β1�E1 + β2�E2 and �W� = �E1 +�E2 yields to

Figures 8, 9, 10, 11 report the behavior of the average work 〈W〉 , heat 〈Q〉 , and the entropy production 〈�〉 , 
Eqs. (5), (6), under the annealing protocols in Fig. 1.
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(a) Average work 〈W 〉, Eq. (7). (b) Average heat −〈 〉, Eq. (6). (c) Entropy production 〈 〉, Eq. (5).

Figure 8.  Figures of merit, Eqs. (5), (6), versus the total annealing time t under reverse-annealing with zero 
magnetic field.

(a) Average work 〈W 〉, Eq. (7). (b) Average heat −〈Q〉, Eq. (6). (c) Entropy production 〈 〉, Eq. (5).

Figure 9.  Figures of merit, Eqs. (5), (6), versus the total annealing time t under reverse-annealing and pausing 
with zero magnetic field.



9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4555  | https://doi.org/10.1038/s41598-024-55314-z

www.nature.com/scientificreports/

Received: 27 October 2023; Accepted: 22 February 2024

References
 1. Raymer, M. G. & Monroe, C. The us national quantum initiative. Quantum Sci. Technol. 4, 020504. https:// doi. org/ 10. 1088/ 2058- 

9565/ ab0441 (2019).
 2. McMahon, D. Quantum Computing Explained (Wiley, 2007).
 3. Nielsen, M. A. & Chuang, I. Quantum computation and quantum information. Phys. Todayhttps:// doi. org/ 10. 1017/ CBO97 80511 

976667 (2002).
 4. Sanders, B. C. How to Build a Quantum Computer 2399–2891 (IOP Publishing, 2017).
 5. Riedel, M., Kovacs, M., Zoller, P., Mlynek, J. & Calarco, T. Europe’s quantum flagship initiative. Quantum Sci. Technol. 4, 020501. 

https:// doi. org/ 10. 1088/ 2058- 9565/ ab042d (2019).
 6. Yamamoto, Y., Sasaki, M. & Takesue, H. Quantum information science and technology in japan. Quantum Sci. Technol. 4, 020502. 

https:// doi. org/ 10. 1088/ 2058- 9565/ ab0077 (2019).
 7. Sussman, B., Corkum, P., Blais, A., Cory, D. & Damascelli, A. Quantum Canada. Quantum Sci. Technol. 4, 020503. https:// doi. org/ 

10. 1088/ 2058- 9565/ ab029d (2019).
 8. Knight, P. & Walmsley, I. Uk national quantum technology programme. Quantum Sci. Technol. 4, 040502. https:// doi. org/ 10. 1088/ 

2058- 9565/ ab4346 (2019).
 9. Roberson, T. M. & White, A. G. Charting the Australian quantum landscape. Quantum Sci. Technol. 4, 020505. https:// doi. org/ 10. 

1088/ 2058- 9565/ ab02b4 (2019).
 10. Ur Rasool, R. et al. Quantum computing for healthcare: A review. Future Internethttps:// doi. org/ 10. 3390/ fi150 30094 (2023).
 11. Herman, D. et al. A survey of quantum computing for finance (2022). arXiv: 2201. 02773.
 12. Domino, K. et al. Quantum annealing in the NISQ era: Railway conflict management. Entropyhttps:// doi. org/ 10. 3390/ e2502 0191 

(2023).
 13. Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137. https:// doi. org/ 10. 1038/ 30156 (1998).
 14. Marx, R., Fahmy, A. F., Myers, J. M., Bermel, W. & Glaser, S. J. Realization of a 5-bit nmr quantum computer using a new molecular 

architecture (1999). arXiv: quant- ph/ 99050 87.
 15. Negrevergne, C. et al. Benchmarking quantum control methods on a 12-qubit system. Phys. Rev. Lett. 96, 170501. https:// doi. org/ 

10. 1103/ PhysR evLett. 96. 170501 (2006).
 16. Lanyon, B. P. et al. Experimental demonstration of a compiled version of shor’s algorithm with quantum entanglement. Phys. Rev. 

Lett. 99, 250505. https:// doi. org/ 10. 1103/ PhysR evLett. 99. 250505 (2007).
 17. Tame, M. S. et al. Experimental realization of deutsch’s algorithm in a one-way quantum computer. Phys. Rev. Lett. 98, 140501. 

https:// doi. org/ 10. 1103/ PhysR evLett. 98. 140501 (2007).
 18. Johnson, M. W. et al. Quantum annealing with manufactured spins. Nature 473, 194–198. https:// doi. org/ 10. 1038/ natur e10012 

(2011).
 19. Saeedi, K. et al. Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28. Science 342, 

830–833. https:// doi. org/ 10. 1126/ scien ce. 12395 84 (2013).
 20. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510. https:// doi. org/ 10. 

1038/ s41586- 019- 1666-5 (2019).

(a) Average work 〈W 〉, Eq. (7). (b) Average heat −〈Q〉, Eq. (6). (c) Entropy production 〈 〉, Eq. (5).

Figure 10.  Figures of merit versus the total annealing time t under reverse-annealing with non-zero magnetic 
field.

(a) Average work 〈W 〉, Eq. (7) (b) Average heat −〈Q〉, Eq. (6) (c) Entropy production 〈 〉, Eq. (5)

Figure 11.  Figures of merit versus the total annealing time t under reverse-annealing and pausing with non-
zero magnetic field.

https://doi.org/10.1088/2058-9565/ab0441
https://doi.org/10.1088/2058-9565/ab0441
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1088/2058-9565/ab042d
https://doi.org/10.1088/2058-9565/ab0077
https://doi.org/10.1088/2058-9565/ab029d
https://doi.org/10.1088/2058-9565/ab029d
https://doi.org/10.1088/2058-9565/ab4346
https://doi.org/10.1088/2058-9565/ab4346
https://doi.org/10.1088/2058-9565/ab02b4
https://doi.org/10.1088/2058-9565/ab02b4
https://doi.org/10.3390/fi15030094
http://arxiv.org/abs/2201.02773
https://doi.org/10.3390/e25020191
https://doi.org/10.1038/30156
http://arxiv.org/abs/quant-ph/9905087
https://doi.org/10.1103/PhysRevLett.96.170501
https://doi.org/10.1103/PhysRevLett.96.170501
https://doi.org/10.1103/PhysRevLett.99.250505
https://doi.org/10.1103/PhysRevLett.98.140501
https://doi.org/10.1038/nature10012
https://doi.org/10.1126/science.1239584
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5


10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:4555  | https://doi.org/10.1038/s41598-024-55314-z

www.nature.com/scientificreports/

 21. Unden, T. K., Louzon, D., Zwolak, M., Zurek, W. H. & Jelezko, F. Revealing the emergence of classicality using nitrogen-vacancy 
centers. Phys. Rev. Lett. 123, 140402. https:// doi. org/ 10. 1103/ PhysR evLett. 123. 140402 (2019).

 22. Cho, A. Quantum darwinism seen in diamond traps. Science 365, 1070–1070. https:// doi. org/ 10. 1126/ scien ce. 365. 6458. 1070 
(2019).

 23. Krutyanskiy, V. et al. Entanglement of trapped-ion qubits separated by 230 meters. Phys. Rev. Lett. 130, 050803. https:// doi. org/ 
10. 1103/ PhysR evLett. 130. 050803 (2023).

 24. Hassija, V. et al. Present landscape of quantum computing. IET Quantum Commun. 1, 42–48. https:// doi. org/ 10. 1049/ iet- qtc. 2020. 
0027 (2020).

 25. Gyongyosi, L. & Imre, S. A survey on quantum computing technology. Comput. Sci. Rev. 31, 51–71 (2019).
 26. National Academies of Sciences, Engineering, and Medicine, Quantum Computing: Progress and Prospects (Washington, DC: The 

National Academies Press, 2019).
 27. Deffner, S. & Campbell, S. Quantum Thermodynamics 2053–2571 (Morgan & Claypool Publishers, 2019).
 28. Auffèves, A. Quantum technologies need a quantum energy initiative. PRX Quantum 3, 020101. https:// doi. org/ 10. 1103/ PRXQu 

antum.3. 020101 (2022).
 29. Elsayed, N., Maida, A. S. & Bayoumi, M. A review of quantum computer energy efficiency. In 2019 IEEE Green Technologies Con‑

ference (GreenTech), 1–3, https:// doi. org/ 10. 1109/ Green Tech. 2019. 87671 25 (IEEE, 2019).
 30. Ikonen, J., Salmilehto, J. & Möttönen, M. Energy-efficient quantum computing. npj Quantum Inform. 3, 17. https:// doi. org/ 10. 

1038/ s41534- 017- 0015-5 (2017).
 31. Fellous-Asiani, M. et al. Optimizing resource efficiencies for scalable full-stack quantum computers (2022). arXiv: 2209. 05469.
 32. Likharev, K. K. Classical and quantum limitations on energy consumption in computation. Int. J. Theor. Phys. 21, 311–326. https:// 

doi. org/ 10. 1007/ BF018 57733 (1982).
 33. Gemmer, J., Michel, M. & Mahler, G. Quantum thermodynamics: Emergence of thermodynamic behavior within composite quantum 

systems Vol. 784 (Springer, 2009).
 34. Vinjanampathy, S. & Anders, J. Quantum thermodynamics. Contemp. Phys. 57, 545–579 (2016).
 35. Goold, J., Huber, M., Riera, A., Del Rio, L. & Skrzypczyk, P. The role of quantum information in thermodynamics-a topical review. 

J. Phys. A: Math. Theor. 49, 143001. https:// doi. org/ 10. 1088/ 1751- 8113/ 49/ 14/ 143001 (2016).
 36. Binder, F., Correa, L. A., Gogolin, C., Anders, J. & Adesso, G. Thermodynamics in the quantum regime. Fund. Theories Phys. 195, 

1–2 (2018).
 37. Gea-Banacloche, J. Minimum energy requirements for quantum computation. Phys. Rev. Lett. 89, 217901. https:// doi. org/ 10. 1103/ 

PhysR evLett. 89. 217901 (2002).
 38. Bedingham, D. J. & Maroney, O. J. E. The thermodynamic cost of quantum operations. New J. Phys. 18, 113050. https:// doi. org/ 

10. 1088/ 1367- 2630/ 18/ 11/ 113050 (2016).
 39. Cimini, V. et al. Experimental characterization of the energetics of quantum logic gates. npj Quantum Inform. 6, 96. https:// doi. 

org/ 10. 1038/ s41534- 020- 00325-7 (2020).
 40. Timpanaro, A. M., Santos, J. P. & Landi, G. T. Landauer’s principle at zero temperature. Phys. Rev. Lett. 124, 240601. https:// doi. 

org/ 10. 1103/ PhysR evLett. 124. 240601 (2020).
 41. Deffner, S. Energetic cost of hamiltonian quantum gates. EPL (Europhys. Lett.) 134, 40002. https:// doi. org/ 10. 1209/ 0295- 5075/ 

134/ 40002 (2021).
 42. Lamm, H. & Lawrence, S. Simulation of nonequilibrium dynamics on a quantum computer. Phys. Rev. Lett. 121, 170501. https:// 

doi. org/ 10. 1103/ PhysR evLett. 121. 170501 (2018).
 43. Chertkov, E. et al. Characterizing a non-equilibrium phase transition on a quantum computer (2022). arXiv: 2209. 12889.
 44. Meier, F. & Yamasaki, H. Energy-consumption advantage of quantum computation (2023). arXiv: 2305. 11212.
 45. Gardas, B. & Deffner, S. Thermodynamic universality of quantum Carnot engines. Phys. Rev. E 92, 042126. https:// doi. org/ 10. 

1103/ PhysR evE. 92. 042126 (2015).
 46. Gardas, B., Deffner, S. & Saxena, A. PT -symmetric slowing down of decoherence. Phys. Rev. A 94, 040101. https:// doi. org/ 10. 

1103/ PhysR evA. 94. 040101 (2016).
 47. Gardas, B., Dziarmaga, J., Zurek, W. H. & Zwolak, M. Defects in quantum computers. Sci. Rep. 8, 4539 (2018).
 48. Gardas, B. & Deffner, S. Quantum fluctuation theorem for error diagnostics in quantum annealers. Sci. Rep. 8, 17191 (2018).
 49. Mzaouali, Z., Puebla, R., Goold, J., El Baz, M. & Campbell, S. Work statistics and symmetry breaking in an excited-state quantum 

phase transition. Phys. Rev. E 103, 032145. https:// doi. org/ 10. 1103/ PhysR evE. 103. 032145 (2021).
 50. Soriani, A., Nazé, P., Bonança, M. V. S., Gardas, B. & Deffner, S. Three phases of quantum annealing: Fast, slow, and very slow. 

Phys. Rev. A 105, 042423. https:// doi. org/ 10. 1103/ PhysR evA. 105. 042423 (2022).
 51. Soriani, A., Nazé, P., Bonança, M. V. S., Gardas, B. & Deffner, S. Assessing the performance of quantum annealing with nonlinear 

driving. Phys. Rev. A 105, 052442. https:// doi. org/ 10. 1103/ PhysR evA. 105. 052442 (2022).
 52. Coopmans, L., Campbell, S., De Chiara, G. & Kiely, A. Optimal control in disordered quantum systems. Phys. Rev. Res. 4, 043138. 

https:// doi. org/ 10. 1103/ PhysR evRes earch.4. 043138 (2022).
 53. Kazhybekova, A., Campbell, S. & Kiely, A. Minimal action control method in quantum critical models. J. Phys. Commun. 6, 113001. 

https:// doi. org/ 10. 1088/ 2399- 6528/ aca3fa (2022).
 54. Xuereb, J., Campbell, S., Goold, J. & Xuereb, A. Deterministic quantum computation with one-clean-qubit model as an open 

quantum system. Phys. Rev. A 107, 042222. https:// doi. org/ 10. 1103/ PhysR evA. 107. 042222 (2023).
 55. Carolan, E., Çakmak, B. & Campbell, S. Robustness of controlled hamiltonian approaches to unitary quantum gates (2023). arXiv: 

2304. 14667.
 56. Kiely, A., O’Connor, E., Fogarty, T., Landi, G. T. & Campbell, S. Entropy of the quantum work distribution. Phys. Rev. Res. 5, 

L022010. https:// doi. org/ 10. 1103/ PhysR evRes earch.5. L0220 10 (2023).
 57. Zawadzki, K., Kiely, A., Landi, G. T. & Campbell, S. Non-gaussian work statistics at finite-time driving. Phys. Rev. A 107, 012209. 

https:// doi. org/ 10. 1103/ PhysR evA. 107. 012209 (2023).
 58. Buffoni, L. & Campisi, M. Thermodynamics of a quantum annealer. Quantum Sci. Technol. 5, 035013. https:// doi. org/ 10. 1088/ 

2058- 9565/ ab9755 (2020).
 59. Kadowaki, T. & Nishimori, H. Quantum annealing in the transverse ising model. Phys. Rev. E 58, 5355–5363. https:// doi. org/ 10. 

1103/ PhysR evE. 58. 5355 (1998).
 60. Albash, T. & Lidar, D. A. Adiabatic quantum computation. Rev. Mod. Phys. 90, 015002. https:// doi. org/ 10. 1103/ RevMo dPhys. 90. 

015002 (2018).
 61. Golden, J. & O’Malley, D. Reverse annealing for nonnegative/binary matrix factorization. PLoS One 16, e0244026 (2021).
 62. Venturelli, D. & Kondratyev, A. Reverse quantum annealing approach to portfolio optimization problems. Quantum Mach. Intell. 

1, 17–30 (2019).
 63. Yarkoni, S., Raponi, E., Bäck, T. & Schmitt, S. Quantum annealing for industry applications: Introduction and review (Rep. Prog, 

Phys, 2022).
 64. Campisi, M. & Buffoni, L. Improved bound on entropy production in a quantum annealer. Phys. Rev. E 104, L022102. https:// doi. 

org/ 10. 1103/ PhysR evE. 104. L0221 02 (2021).
 65. Jarzynski, C. & Wójcik, D. K. Classical and quantum fluctuation theorems for heat exchange. Phys. Rev. Lett. 92, 230602. https:// 

doi. org/ 10. 1103/ PhysR evLett. 92. 230602 (2004).

https://doi.org/10.1103/PhysRevLett.123.140402
https://doi.org/10.1126/science.365.6458.1070
https://doi.org/10.1103/PhysRevLett.130.050803
https://doi.org/10.1103/PhysRevLett.130.050803
https://doi.org/10.1049/iet-qtc.2020.0027
https://doi.org/10.1049/iet-qtc.2020.0027
https://doi.org/10.1103/PRXQuantum.3.020101
https://doi.org/10.1103/PRXQuantum.3.020101
https://doi.org/10.1109/GreenTech.2019.8767125
https://doi.org/10.1038/s41534-017-0015-5
https://doi.org/10.1038/s41534-017-0015-5
http://arxiv.org/abs/2209.05469
https://doi.org/10.1007/BF01857733
https://doi.org/10.1007/BF01857733
https://doi.org/10.1088/1751-8113/49/14/143001
https://doi.org/10.1103/PhysRevLett.89.217901
https://doi.org/10.1103/PhysRevLett.89.217901
https://doi.org/10.1088/1367-2630/18/11/113050
https://doi.org/10.1088/1367-2630/18/11/113050
https://doi.org/10.1038/s41534-020-00325-7
https://doi.org/10.1038/s41534-020-00325-7
https://doi.org/10.1103/PhysRevLett.124.240601
https://doi.org/10.1103/PhysRevLett.124.240601
https://doi.org/10.1209/0295-5075/134/40002
https://doi.org/10.1209/0295-5075/134/40002
https://doi.org/10.1103/PhysRevLett.121.170501
https://doi.org/10.1103/PhysRevLett.121.170501
http://arxiv.org/abs/2209.12889
http://arxiv.org/abs/2305.11212
https://doi.org/10.1103/PhysRevE.92.042126
https://doi.org/10.1103/PhysRevE.92.042126
https://doi.org/10.1103/PhysRevA.94.040101
https://doi.org/10.1103/PhysRevA.94.040101
https://doi.org/10.1103/PhysRevE.103.032145
https://doi.org/10.1103/PhysRevA.105.042423
https://doi.org/10.1103/PhysRevA.105.052442
https://doi.org/10.1103/PhysRevResearch.4.043138
https://doi.org/10.1088/2399-6528/aca3fa
https://doi.org/10.1103/PhysRevA.107.042222
http://arxiv.org/abs/2304.14667
http://arxiv.org/abs/2304.14667
https://doi.org/10.1103/PhysRevResearch.5.L022010
https://doi.org/10.1103/PhysRevA.107.012209
https://doi.org/10.1088/2058-9565/ab9755
https://doi.org/10.1088/2058-9565/ab9755
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1103/PhysRevE.104.L022102
https://doi.org/10.1103/PhysRevE.104.L022102
https://doi.org/10.1103/PhysRevLett.92.230602
https://doi.org/10.1103/PhysRevLett.92.230602


11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4555  | https://doi.org/10.1038/s41598-024-55314-z

www.nature.com/scientificreports/

 66. Sone, A., Soares-Pinto, D. O. & Deffner, S. Exchange fluctuation theorems for strongly interacting quantum pumps. AVS Quantum 
Sci. 5, 032001. https:// doi. org/ 10. 1116/5. 01521 86 (2023).

 67. Deffner, S. & Lutz, E. Nonequilibrium entropy production for open quantum systems. Phys. Rev. Lett. 107, 140404. https:// doi. 
org/ 10. 1103/ PhysR evLett. 107. 140404 (2011).

 68. Touil, A. & Deffner, S. Information scrambling versus decoherence–two competing sinks for entropy. PRX Quantum 2, 010306. 
https:// doi. org/ 10. 1103/ PRXQu antum.2. 010306 (2021).

 69. McGeoch, C. & Farré, P. Advantage processor overview. Tech. Rep. 14-1058A-A, D-Wave Quantum Inc. (2022).
 70. Uffink, J. & Van Lith, J. Thermodynamic uncertainty relations. Found. Phys. 29, 655–692 (1999).
 71. Benedetti, M., Realpe-Gómez, J., Biswas, R. & Perdomo-Ortiz, A. Estimation of effective temperatures in quantum annealers for 

sampling applications: A case study with possible applications in deep learning. Phys. Rev. A 94, 022308. https:// doi. org/ 10. 1103/ 
PhysR evA. 94. 022308 (2016).

 72. Qpu-specific physical properties: Dw_2000q_6. Tech. Rep. D-Wave User Manual 09-1215A-D, D-Wave Quantum Inc. (2022).
 73. Mossel, E. & Sly, A. Exact thresholds for Ising–Gibbs samplers on general graphs. Ann. Probab. 41, 294–328. https:// doi. org/ 10. 

1214/ 11- AOP737 (2013).
 74. Chen, H. & Lidar, D. A. Why and when pausing is beneficial in quantum annealing. Phys. Rev. Appl. 14, 014100. https:// doi. org/ 

10. 1103/ PhysR evApp lied. 14. 014100 (2020).
 75. Marshall, J., Venturelli, D., Hen, I. & Rieffel, E. G. Power of pausing: Advancing understanding of thermalization in experimental 

quantum annealers. Phys. Rev. Appl. 11, 044083. https:// doi. org/ 10. 1103/ PhysR evApp lied. 11. 044083 (2019).
 76. Gonzalez Izquierdo, Z. et al. Advantage of pausing: Parameter setting for quantum annealers. Phys. Rev. Appl. 18, 054056. https:// 

doi. org/ 10. 1103/ physr evapp lied. 18. 054056 (2022).
 77. Watabe, S., Seki, Y. & Kawabata, S. Enhancing quantum annealing performance by a degenerate two-level system. Sci. Rep. 10, 146 

(2020).
 78. Smierzchalski, T., Mzaouali, Z. & Gardas, B. Dwave-thermodynamics.

Acknowledgements
We would like to thank L. Buffoni and M. Campisi for valuable discussions. T.Ś. and Z.M. acknowledge support 
from the National Science Center (NCN), Poland, under Project No. 2020/38/E/ST3/00269. S.D. acknowledges 
support from the U.S. National Science Foundation under Grant No. DMR-2010127 and the John Templeton 
Foundation under Grant No. 62422. B.G. acknowledges support from Foundation for Polish Science (grant no 
POIR.04.04.00-00-14DE/ 18-00 carried out within the Team-Net program co-financed by the European Union 
under the European Regional Development Fund).

Author contributions
The authors confirm their contribution to the paper as follows: study conception and data collection: T.Ś., Z.M.; 
analysis and interpretation of results: T.Ś., Z.M., S.D., B.G.; draft manuscript preparation: T.Ś., Z.M., S.D., B.G. 
All authors reviewed the results and approved the final version of the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Z.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

https://doi.org/10.1116/5.0152186
https://doi.org/10.1103/PhysRevLett.107.140404
https://doi.org/10.1103/PhysRevLett.107.140404
https://doi.org/10.1103/PRXQuantum.2.010306
https://doi.org/10.1103/PhysRevA.94.022308
https://doi.org/10.1103/PhysRevA.94.022308
https://doi.org/10.1214/11-AOP737
https://doi.org/10.1214/11-AOP737
https://doi.org/10.1103/PhysRevApplied.14.014100
https://doi.org/10.1103/PhysRevApplied.14.014100
https://doi.org/10.1103/PhysRevApplied.11.044083
https://doi.org/10.1103/physrevapplied.18.054056
https://doi.org/10.1103/physrevapplied.18.054056
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Efficiency optimization in quantum computing: balancing thermodynamics and computational performance
	Theory & figures of merit
	Results and discussion
	Zero magnetic field – “naked performance”
	Reverse-annealing without pausing
	Reverse-annealing with pausing

	Magnetically assisted annealing
	Assisted reverse-annealing without pausing
	Assisted reverse-annealing with pausing. 



	Concluding remarks
	Appendix
	Appendix A: Physical properties of the D-Wave 2000Q
	Appendix B: Derivation of lower bounds
	References
	Acknowledgements


