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We study the discrimination of von Neu-
mann measurements in the scenario when
we are given a reference measurement and
some other measurement. The aim of the
discrimination is to determine whether the
other measurement is the same as the first
one. We consider the cases when the ref-
erence measurement is given without the
classical description and when its classical
description is known. Both cases are stud-
ied in the symmetric and asymmetric dis-
crimination setups. Moreover, we provide
optimal certification schemes enabling us
to certify a known quantum measurement
against the unknown one.

1 Introduction
The need for appropriate certification tools is
one of the barriers to the development of large-
scale quantum technologies. [1] In this work, we
propose tests that verify if a given device corre-
sponds to either its classical description or the
reference device.

But why should we care about the discrimi-
nation of devices which descriptions we do not
know? A lot is known about discrimination
of quantum states, channels and measurements,
which descriptions we do know. In the standard
discrimination problem, there are two quantum
objects, and one of them is secretly chosen. The
goal of discrimination is to decide which of the
objects was chosen. (See [2, Chapter 11], [3, 4, 5]
for the pedagogical reviews of the discrimination
problems and their applications). These objects
can be quantum states but also quantum chan-
nels and measurements. However, what if we
were given a reference quantum measurement or
channel instead of its classical description? Then,

Aleksandra Krawiec: aaleksandra.krawiec@gmail.com

we may want to discriminate them regardless of
their classical descriptions. Therefore, we arrive
at the new problem of discrimination of unknown
objects.

Discrimination of known quantum channels
was mainly studied for certain classes of chan-
nels like unitary channels [6, 7, 8]. Advantage
of using entangled states for minimum-error dis-
crimination of quantum channels was studied
in [9, 10, 11]. General conditions when quantum
channels can be discriminated in the minimum
error, unambiguous and asymmetric scenarios,
were derived in [12], [13] and [14] respectively.
Another formalism used for studying discrimi-
nation of quantum channels is based on process
POVM (PPOVM) [15]. It was applied to discrim-
ination of unitary channels in [16, 17]. A practi-
cal approach to discrimination of noisy quantum
gates without assistance of entanglement was re-
cently studied in [18].

Discrimination of unknown unitary channels
was first studied in the work [19] in both
minimum-error and unambiguous setups. The
authors calculated that the probability of suc-
cessful minimum-error discrimination between
two random qubit unitary channels equals 7/8
and they made use of the input state |ψ−⟩ =

1√
2 (|01⟩ − |10⟩). The authors of [20] proved that

the probability 7/8 is optimal in the sense that
it cannot be improved by the use of any (even
adaptive) discrimination strategy for the qubit
case. Recent results concerning discrimination of
unknown unitary channels can be found in [21].

In this work we are mainly interested in the
discrimination of von Neumann measurements,
which are the most commonly used in practical
applications. Von Neumann measurements are
a special subclass of general projective measure-
ments, in the sense that they are fine-grained
measurements. These measuements are at the
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crux of most schemes and protocols appearing in
quantum information and computing. Further-
more, thanks to the Naimark construction [22]
any measurement can be implemented as a pro-
jective measurement on a larger Hilbert space.
Minimum error discrimination of von Neumann
measurements was studied in single-shot [23] and
multiple-shot [24] regimes. Asymmetric discrimi-
nation of measurements was studied in [25]. The
advantage of using entangled stated for single-
shot discrimination between qubit measurements
was experimentally shown in [26]. Application of
process POVMs for discrimination of quantum
measurements can be found in [27, 28].

Possible extensions of the study of discrimina-
tion of quantum states and measurements include
discrimination between process matrices which
are a universal method defining a causal struc-
ture. For instance [29] provides an exact expres-
sion for the optimal probability of correct distinc-
tion of process matrices. Finally, the problem of
discrimination of quantum states has also been
studied in much broader approach in the case
of general contextual and non-contextual theo-
ries [30].

In this work we study discrimination of un-
known von Neumann measurements in sym-
metric and asymmetric scenarios. We begin
with preliminaries in Section 2 and detailed se-
tups for symmetric and asymmetric discrimina-
tion of quantum measurements will be presented
therein. Next, we will study the problem when
one of the measurements is given without classi-
cal description and we want to verify if the other
measurement is a copy of the same measurements
or it is some other one. This problem will be
studied in Section 3. Later, we will assume that
one copy of a measurement is given with its clas-
sical description and we want to know whether
the other measurement is a copy of the same
measurement. This problem will be studied in
Section 4. We will conclude in Section 5.

2 Preliminaries

Let X , Y and Z be Hilbert spaces where
dim(X ) = dim(Y) = d, dim(Z) = d2. Let
L(X ) be a set of linear operators acting from X
to X . Let U(X ) denote the set of unitary op-
erators. Let D(X ) denote the set of quantum
states, C(X ) denote the set of quantum channels

and T (X ) denote the set of quantum operations.
For U ∈ U(X ), a unitary channel will be denoted
ΦU (·) := U · U †. We will also utilize two special
quantum channels. The first one is the depolar-
izing channel, which transforms every quantum
state into the maximally mixed state. Formally,
it is defined for X ∈ L(X ) as

Φ∗(X) := Tr(X) 1l
dim(X ) .

The second one is the dephasing channel defined
as

∆(X) :=
∑
i

|i⟩⟨i|X|i⟩⟨i|.

A quantum measurement is defined as a col-
lection of positive semidefinite operators P =
{E1, . . . , Em} which satisfy

∑m
i=1 = 1l, where 1l

is the identity operator. Operators Ei are called
effects. When a quantum state ρ is measured
by the measurement P, then we obtain a label i
with probability p(i) = tr (Eiρ) and the state ρ
ceases to exist. We will be particularly interested
in von Neumann measurements, which effects are
of the form PU = {|u1⟩⟨u1|, . . . , |ud⟩⟨ud|}, where
|ui⟩ = U |i⟩ is the i-th column of the unitary ma-
trix U . Every quantum measurement can be as-
sociated with a quantum channel

P(ρ) =
∑
i

|i⟩⟨i| tr(Eiρ), (1)

which outputs a diagonal matrix where i-th entry
on the diagonal corresponds to the probability of
obtaining i-th label.

The Choi-Jamio lkowski representation of
quantum operation Ψ ∈ T (X ) is defined as
J (Ψ) := (Ψ ⊗ 1lX ) (|1l⟩⟩⟨⟨1l|), where 1lX is the
identity channel on the space L(X ) and |X⟩⟩
denotes the (lexicographical) vectorization of the
operator X.

The diamond norm of a quantum operation
Ψ ∈ T (X ) is defined as

∥Ψ∥⋄ := max
X:∥X∥1=1

∥(Ψ ⊗ 1lX ) (X)∥1 , (2)

where 1lX is, as previously, the identity channel
on the space L(X ). We will often use the bounds
on the diamond norm [22, 31]

1
d

∥J(Ψ)∥1 ≤ ∥Ψ∥⋄ ≤ ∥ Tr1 |J(Ψ)|∥. (3)

In this work we will focus on two approaches to
discrimination of quantum measurements, which
are symmetric and asymmetric discrimination.
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2.1 Symmetric discrimination
The goal of symmetric discrimination is to max-
imize the probability of correct discrimination.
It is also known as minimum-error discrimina-
tion. The schematic representation of symmetric
discrimination of quantum measurements is de-
picted in Figure 1.

X P0 •

Y P? •

Z Ω decision

|ψ〉

Figure 1: Entanglement-assisted discrimination of von
Neumann measurements

There are two black boxes. In the first black
box there is a measurement P0. In the second
box there is a measurement P?, which can either
be the same measurement P0, or some other mea-
surement, P1. In other words P? ∈ {P0,P1}. As
the input state to the discrimination procedure
we will take a state |ψ⟩ ∈ X ⊗ Y ⊗ Z and we
will write ψ := |ψ⟩⟨ψ| for the sake of simplicity.
The measurement in the first black box acts on
the register X and the second black box acts on
the register Y. Basing on the outcomes of both
measurements in the black boxes, we prepare a
final measurement on the register Z. Having the
output of the final register, we make a decision
whether P? = P0 or P? = P1.

To calculate the probability of the successful
discrimination between quantum measurements,
we will make use of the Holevo-Helstrom theo-
rem. [32] It states that the optimal probability of
successful discrimination between any quantum
channels Ψ0 and Ψ1 ∈ C(X ) is upper-bounded
by

psucc ≤ 1
2 + 1

4 ∥Ψ0 − Ψ1∥⋄ (4)

and this bound can be saturated. This optimal
probability of successful discrimination will be
denoted pHsucc := 1

2 + 1
4 ∥Ψ0 − Ψ1∥⋄.

2.2 Asymmetric discrimination
Asymmetric discrimination is based on the hy-
pothesis testing. The null hypothesis H0 cor-
responds to the situation when P? = P0. The
converse situation, P? = P1 corresponds to alter-
native hypothesis H1. The scheme of asymmet-

ric discrimination is as follows. We begin with
preparing an input state |ψ⟩ ∈ L(X ⊗ Y ⊗ Z)
and apply P0 and P? on registers X and Y re-
spectively. Therefore, in the case when P? =
P0, we obtain as the output (P0 ⊗ P0 ⊗ 1l) (ψ)
and if P? = P1, then the output state yields
(P0 ⊗ P1 ⊗ 1l) (ψ). Having the output states, we
prepare a binary measurement {Ω, 1l − Ω}, where
the effect Ω accepts the null hypothesis and the
effect 1l − Ω accepts the alternative hypothesis.

The type I error (false positive) happens when
we reject the correct null hypothesis. In other
words, this error happens when in both black
boxes there were the same measurements, but
we made a erroneous decision and said that in
the measurements the black boxes were different.
When the input state ψ and measurement Ω are
fixed, then the probability of making the type I
error is given by the expression

p
(ψ,Ω)
I := Tr ((1l − Ω) (P0 ⊗ P0 ⊗ 1l) (ψ))

= 1 − Tr (Ω (P0 ⊗ P0 ⊗ 1l) (ψ)) .
(5)

The optimized probability of the type I error
yields

pI := min
ψ,Ω

p
(ψ,Ω)
I (6)

The probability of making the type II error (also
known as false negative) for fixed input state and
measurement equals

p
(ψ,Ω)
II = Tr (Ω (P0 ⊗ P1 ⊗ 1l) (ψ)) (7)

and corresponds to the situation when we accept
the null hypothesis when the alternative one was
correct. In other words, this error corresponds
to the situation when the measurements in the
black boxes were different but we made a mistake
and said that in both black boxes there were the
same measurements. The optimized probability
of making the type II error yields

pII := min
ψ,Ω

p
(ψ,Ω)
II . (8)

For both symmetric and asymmetric schemes
we will study two cases. First we will assume that
both measurements are unknown. Later, we will
assume that we know the description of the ref-
erence measurement and the other measurement
is unknown. We will be also interested whether
the additional register is necessary for optimal
discrimination. The summary of results is pre-
sented in the following table.
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pHsucc pHerr pI pII ancilla
both
un-
known

1
2 + 1

2d
1
2 − 1

2d 0 1 − 1
d no

one
fixed

1 − 1
2d

1
2d 0 1

d yes

Table 1: Summary of for symmetric and asymmetric
discrimination of unknown von Neumann measurements.

We would like to remark that in the literature
the task of certification often refers to asymp-
totic asymmetric discrimination where objects
are repeated in the iid manner, see for instance
[33, 34, 35, 36]. However, in this work we will
not consider the asymptotic case and focus on
the scenario depicted in Fig. 1.

3 Discrimination of both unknown von
Neumann measurements

In this section we will study a situation when
we are given a von Neumann measurement P0
but no classical description of it. This measure-
ment will be our reference. We also have another
von Neumann measurement P1, which can be the
same as the reference one, but it does not have
to. In this section we will study the problem how
to verify whether the second measurement is the
same as the first one or not. Similar problem of
discrimination of both unknown unitary channels

was recently studied in [21].

3.1 Symmetric discrimination
We will be calculating the success probability
for the discrimination of von Neumann measure-
ments in the scenario depicted in Fig. 1. There-
fore, we will be actually discriminating between
P0 ⊗P0 and P0 ⊗P1 in the entanglement-assisted
scenario. Thus, in order to use Holevo-Helstrom
theorem we will need to calculate the value of the
diamond norm. As we do not have classical de-
scription of either P0 or P1, we will assume that
both measurement are Haar-random, that is we
will be discriminating between

∫
PU ⊗PUdU and∫

PU ⊗ PV dUdV . The probability of successful
discrimination is formulated as the following the-
orem.

Theorem 1. Let P0 be a reference von Neumann
measurement of dimension d given without classi-
cal description. Let P1 be another von Neumann
measurement of the same dimension, also given
without classical description. The optimal prob-
ability of correct verification if P1 is the same as
the reference channel in the scheme described in
Subsection 2.1 equals

pHsucc = 1
2 + 1

2d. (9)

Remark 1. The above theorem is a direct ap-
plication of the Holevo-Helstrom Theorem (see
Eq. (4)) for discrimination between channels∫

PU ⊗ PUdU and
∫

PU ⊗ PV dUdV , that is

pHsucc = 1
2 + 1

4

∥∥∥∥∫ PU ⊗ PUdU −
∫

PU ⊗ PV dUdV
∥∥∥∥

⋄
= 1

2 + 1
2d. (10)

Proof. Let U ∈ U(X ), V ∈ U(Y) be unitary
operators and dim(X ) = dim(Y) = d. The
probability of successful discrimination is given
by the Holevo-Helstrom theorem. To calculate
this probability (Eq. (4)), we need to calculate
the diamond norm distance between the averaged
channels∥∥∥∥∫ PU ⊗ PUdU −

∫
PU ⊗ PV dUdV

∥∥∥∥
⋄
. (11)

As the von Neumann measurement PU can be

seen as ∆ΦU† , where ∆ is a dephasing channel
defined in Eq. (2), we will actually be discrimi-
nating between∫

(∆ ⊗ ∆)(ΦU† ⊗ ΦU†)dU and∫
(∆ ⊗ ∆)(ΦU† ⊗ ΦV †)dUdV.

(12)

Using [37, 38] we calculate the Choi-
Jamio lkowski representations of averaged unitary
channels
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J

(∫
ΦU ⊗ ΦUdU

)
= 1
d2 − 1 (1l ⊗ 1l + S ⊗ S) − 1

d(d2 − 1) (S ⊗ 1l + 1l ⊗ S) ,

J

(∫
ΦU ⊗ ΦV dUdV

)
= 1
d2 1l ⊗ 1l,

(13)

where, unless said otherwise, S is the Swap ma-
trix of two d-dimensional systems and identity
matrices are of dimension d2.

Using the above, we can calculate the Choi-
Jamio lkowski representations of the averaged
measurements, that is

J

(∫
PU ⊗ PUdU

)
= 1
d2 − 1

(
1l ⊗

(
1l − 1

d
S

)
+ T ⊗

(
S − 1

d
1l
))

(14)

where T := ∆(S), and

J

(∫
PU ⊗ PV dUdV

)
= 1
d2 1l ⊗ 1l. (15)

For later convenience, we introduce J ∈
L (X ′ ⊗ Y ′ ⊗ X ⊗ Y) as a difference of Choi ma-
trices of both randomized measurements, where
the registers X ⊗ Y correspond to input spaces
and X ′ ⊗ Y ′ correspond to the output spaces

J := J

(∫
PU ⊗ PUdU

)
− J

(∫
PU ⊗ PV dUdV

)
= 1
d2 − 1

(
1l ⊗

( 1
d2 1l − 1

d
S

)
+ T ⊗

(
S − 1

d
1l
))

.

(16)

The remaining part of the proof goes as fol-
lows. We will first calculate the upper bound
on the diamond norm ∥

∫
PU ⊗ PUdU −

∫
PU ⊗

PV dUdV ∥⋄ ≤ ∥TrX ′⊗Y ′ |J |∥ from Eq. (3) and
next find an input state that saturates it.

To calculate the upper bound we first need to
find |J | =

√
J†J . From Lemma 1 in Appendix A,

taking W := (2T − 1l) ⊗S it holds that (WJ)2 =
J2, and this gives a polar decomposition of J and
we have ∥TrX ′⊗Y ′ |J |∥ = ∥TrX ′⊗Y ′ WJ∥. Hence:

TrX ′⊗Y ′(WJ) = 1
d2 − 1 TrX ′⊗Y ′

(1
d

1l ⊗ 1l − 1
d2 1l ⊗ S + d− 2

d
T ⊗ 1l − d− 2

d2 T ⊗ S

)
= 1
d2 − 1

(
d2

d
1l − d2

d2S + d(d− 2)
d

1l − d(d− 2)
d2 S

)

= 1
d2 − 1

(
(2d− 2)1l − 2d− 2

d
S

)
= 2
d+ 1

(
1l − 1

d
S

) (17)

and eventually we have

∥TrX ′⊗Y ′ |J |∥ =
∥∥∥∥ 2
d+ 1

(
1l − 1

d
S

)∥∥∥∥
= 2
d+ 1

∥∥∥∥1l − 1
d
S

∥∥∥∥ = 2
d
.

(18)

Now we proceed to proving that the upper
bound is saturated. Let us take an input state

L(X ⊗ Y) ∋ ρ := |a⟩⟨a| which satisfies

Sρ = −ρ, ρ⊤ = ρ. (19)

As the vector |a⟩ we can take any X ⊗ Y ∋ |a⟩ =
1√
2 (|ij⟩ − |ji⟩).
We calculate
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TrX ⊗Y J
(
1l ⊗ ρ⊤

)
= 1
d2 − 1 TrX ⊗Y

(
1l ⊗

( 1
d2 1l − 1

d
S

)
+ T ⊗

(
S − 1

d
1l
))

(1l ⊗ ρ)

= 1
d2 − 1

(
1l · 1

d
Tr
(

1 + 1
d

)
ρ− T · Tr

(
1 + 1

d

)
ρ

)
= 1
d2 − 1

(1
d

(
1 + 1

d

)
1l −

(
1 + 1

d

)
T

)
= 1
d(d− 1) (1l − T ) − 1

d2 1l.

(20)

Simple calculations show that the trace norm
of the above matrix equals 2

d , hence the upper
bound is saturated. The construction of the in-
put stat ρ also shows that this upper bound can
be achieved without an additional register.

3.2 Asymmetric discrimination

In the asymmetric discrimination we will consider
two types of errors separately. We would like to
verify whether measurements in both black boxes
are the same (which corresponds to H0 hypothe-
sis) or they are different (which corresponds to
H1 hypothesis). Formally, when the measure-
ment in the first black box, P0, is unknown, we
say that P0 =

∫
PUdU . The measurement in

the second black box can be either the same as
in the first black box (P? = P0) or it can be
some other measurement, that is P? =

∫
PV dV .

When performing asymmetric discrimination, we
prepare an input state |ψ⟩ ∈ X ⊗ Y ⊗ Z. If
in both black boxes there were the same mea-
surements, then the output state yields ρ

(ψ)
0 =∫

(PU ⊗ PU ⊗ 1lZ) (ψ)dU. If the measurements in
the black boxes were different, when the out-

put state is ρ
(ψ)
1 =

∫
(PU ⊗ PV ⊗ 1lZ) (ψ)dUdV.

Next, we measure the output state by a binary
measurement {Ω, 1l − Ω}. We will focus on the
case when the type I error cannot occur. The
optimal probability of the type II error is formu-
lated as the following theorem.

Theorem 2. Let P0 be a reference von Neumann
measurement of dimension d given without clas-
sical description. Let P1 be another von Neu-

mann measurement of the same dimension, also
given without classical description. Consider the
hypotheses testing problem described in Subsec-
tion 2.2. Let H0 hypothesis state that P? = P0
and let the alternative H1 hypothesis state that
P? = P1. If no false positive error can occur,
then the optimal probability of false negative er-
ror yields

pII = 1 − 1
d
. (21)

Moreover, no additional register is needed to ob-
tain this value.

Proof. As the input state to the discrimination
procedure we take some state |ψ⟩ ∈ X ⊗ Y. Note
that we assumed that this state is only on two
registers. In this proof we will calculate the prob-
ability of the type II error assuming that the reg-
ister Z is trivial. Later, we will prove that this
gives the optimal probability and the additional
register is not needed.

If both measurements are the same, then the
output state will be

ρ
(ψ)
0 =

∫
(PU ⊗ PU ) (ψ)dU. (22)

If the measurements in the black boxes are dif-
ferent, then the output state will be

ρ
(ψ)
1 =

∫
(PU ⊗ PV ) (ψ)dUdV. (23)

We begin with calculating
∫

(PU ⊗ PU ) (ψ)dU
by the use of formula for recovering the action of
a quantum channel given its Choi matrix. Using
the formula for the Choi matrix from Eq. (14)
and using the notation T := ∆(S) we calculate

ρ
(ψ)
0 = TrZ

(
J

(∫
PU ⊗ PUdU

)(
1l ⊗ ψ⊤

))
= 1
d(d2 − 1)

((
d− tr

(
Sψ⊤

))
1l +

(
d tr

(
Sψ⊤

)
− 1

)
T
)
.

(24)
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Let us take the input state to be antisymmet-
ric, that is it satisfies tr

(
Sψ⊤

)
= −1. We calcu-

late

ρ
(ψ)
0 = 1

d(d2 − 1) ((d+ 1) 1l − (d+ 1)T )

= 1
d(d− 1) (1l − T ) .

(25)

By similar calculation, using the antisymmetric
input state we have

ρ
(ψ)
1 = TrZ

(
J

(∫
PU ⊗ PV dU

)(
1l ⊗ ψ⊤

))
= TrZ

(( 1
d2 1l ⊗ 1l

)(
1l ⊗ ψ⊤

))
= 1
d2 TrZ

(
1l ⊗ ψ⊤

)
= 1
d2 1l.

(26)

As the measurement effect we take Ω := 1l − T .
Hence

p
(ψ,Ω)
I = 1 − tr

(
Ωρ(ψ)

0

)
= 1 − 1

d(d− 1) tr ((1l − T ) (1l − T ))

= 0,

(27)

and

p
(ψ,Ω)
II = tr

(
Ωρ(ψ)

1

)
= 1
d2 tr (1l − T )

= d(d− 1)
d2 = 1 − 1

d
.

(28)

From Appendix B we know that the probabil-
ity of erroneous discrimination is the symmetric
scheme (which equals 1 − pHsucc) is never bigger
than the arithmetic mean of probabilities of the
type I and type II errors. As

1
2
(
p

(ψ,Ω)
I + p

(ψ,Ω)
II

)
= 1

2 − 1
2d, (29)

then we conclude that our value of p(ψ,Ω)
II = 1− 1

d

is optimal and hence pII = p
(ψ,Ω)
II .

Finally, note that the optimal value pII can be
achieved for the input state |ψ⟩ ∈ X ⊗ Y, that is
when the register Z is trivial. Hence, the addi-
tional register is not needed for asymmetric dis-
crimination in this case.

4 Discrimination between a fixed and
unknown von Neumann measurements
In this section we assume that instead of the un-
known reference measurement from the previous
section, we are given P0 as a fixed von Neumann
measurement PU . We will begin with studying
symmetric discrimination and later proceed to
studying the asymmetric discrimination scheme.

4.1 Symmetric discrimination
Now we focus on the situation when we want to
distinguish between a fixed von Neumann mea-
surement PU and a Haar-random measurement∫

PV dV . The probability of successful discrimi-
nation is formulated as a theorem.

Theorem 3. Let P0 = PU be a reference von
Neumann measurement of dimension d. Let P1
be another von Neumann measurement of the
same dimension, but given without classical de-
scription. The optimal probability of correct ver-
ification whether P1 = P0 or P1 ̸= P0 in the
scheme described in Subsection 2.1 equals

pHsucc = 1 − 1
2d. (30)

Proof. Without loss of generality we can take
U = 1l. To calculate the bound from Holevo-
Helstrom theorem (4), we want to calculate the
diamond norm distance between quantum mea-
surements∥∥∥∥P1l ⊗ P1l − P1l ⊗

∫
PV dV

∥∥∥∥
⋄
. (31)

Using properties of the diamond norm [22] we
calculate

∥∥∥∥P1l ⊗ P1l − P1l ⊗
∫

PV dV
∥∥∥∥

⋄
=
∥∥∥∥P1l ⊗

(
P1l −

∫
PV dV

)∥∥∥∥
⋄

= ∥P1l∥⋄

∥∥∥∥P1l −
∫

PV dV
∥∥∥∥

⋄

=
∥∥∥∥P1l −

∫
PV dV

∥∥∥∥
⋄
.

(32)
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To do this, we use the fact that PV = ∆ΦV † .
Moreover, we know that J(Φ1l) = |1l⟩⟩⟨⟨1l| and
J(Φ⋆) = 1l/d, where Φ⋆ is the depolarizing chan-
nel defined in Eq. (2). Therefore, calculating di-
rectly both lower and upper bounds for the dia-
mond norm from Eq. (3), we obtain∥∥∥∥P1l −

∫
PV dV

∥∥∥∥
⋄

= 2 − 2
d
. (33)

Finally

pHsucc = 1
2 + 1

4

(
2 − 2

d

)
= 1 − 1

2d. (34)

4.2 Asymmetric discrimination

In this subsection we will focus on asymmet-
ric discrimination between a fixed von Neumann
measurement PU and a Haar-random measure-
ment PV . We will be interested in the scenario
when the false positive error cannot occur. The
optimized probability of the false negative error
is formulated as a theorem.

Theorem 4. Let P0 = PU be a fixed von Neu-
mann measurement and P1 be some other von
Neumann measurement given without classical
description. Let the H0 hypothesis correspond
to the case when P? = P0 and H1 hypothesis
correspond to the case when P? = P1. Consider
the discrimination scheme described in Subsec-
tion 2.2. If no false positive error can occur,
then the optimal probability of false negative er-
ror yields

pII = 1
d
. (35)

Proof. This proof goes similar as the proof of
Theorem 2. We will choose a fixed input state on
only two registers. We will also fix the final mea-
surement and calculate the probabilities of mak-
ing the false positive and false negative errors.

Later, from inequality between errors in symmet-
ric and asymmetric schemes in Appendix B we
will see that the calculated pII is the optimal one.

As the input state we take ψ := 1
d |1l⟩⟩⟨⟨1l|. We

calculate the output states

ρ
(ψ)
0 := (PU ⊗ 1l) (ψ) = 1

d
(PU ⊗ 1l) (|1l⟩⟩⟨⟨1l|)

= 1
d

∑
i

|i⟩⟨i| ⊗ |ui⟩⟨ui|⊤

(36)
and

ρ
(ψ)
1 :=

∫
(PV ⊗ 1l) (ψ)dV

= 1
d

∫
(PV ⊗ 1l) (|1l⟩⟩⟨⟨1l|)dV

= 1
d

∫ ∑
i

|i⟩⟨i| ⊗ |vi⟩⟨vi|⊤dV

= 1
d

∑
i

|i⟩⟨i| ⊗
∫

|vi⟩⟨vi|⊤dV

= 1
d2 1l ⊗ 1l.

(37)

Recall that the measurement effect Ω corre-
spond to H0 hypothesis and 1l − Ω correspond to
H1 hypothesis. Hence we have probabilities of
false positive and false negative errors (for given
input state) equal

p
(ψ,Ω)
I = 1 − tr

(
Ωρ(ψ)

0

)
,

p
(ψ,Ω)
II = tr

(
Ωρ(ψ)

1

)
.

(38)

Without loss of generality we can consider Ω
in the block-diagonal form, ie.

Ω :=
∑
i

|i⟩⟨i| ⊗ Ω⊤
i . (39)

As the unitary matrix U is known, we can use it
to construct the final measurement. Let

Ωi := |ui⟩⟨ui| (40)

for every i = 1, . . . , d.
Then

tr
(
Ωρ(ψ)

0

)
= tr

(∑
i

|i⟩⟨i| ⊗ |ui⟩⟨ui|⊤
)1

d

∑
j

|j⟩⟨j| ⊗ |uj⟩⟨uj |⊤


= 1
d

∑
i

tr (|ui⟩⟨ui|ui⟩⟨ui|) = 1
d

∑
i

|⟨ui|ui⟩|2 = 1
(41)
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and hence

p
(ψ,Ω)
I = 1 − tr

(
Ωρ(ψ)

0

)
= 0. (42)

Eventually

p
(ψ,Ω)
II = tr

(
Ωρ(ψ)

1

)
= tr

((∑
i

|i⟩⟨i| ⊗ |ui⟩⟨ui|⊤
)( 1

d2 1l ⊗ 1l
))

= 1
d2

∑
i

tr (|ui⟩⟨ui|) = 1
d
.

(43)

It remains to explain why p
(ψ,Ω)
II = pII. Note

that the arithmetic mean of probabilities of both
types of errors equals 1

2d which is equal to the
probability of erroneous discrimination in the
symmetric scheme (see Theorem 3). From the
inequality between errors in the symmetric and
asymmetric schemes in Appendix B we conclude
that pII = 1

d .

5 Conclusion
We were studying the problem whether the given
von Neumann measurement is the same as the
reference one. We were considering the situation
when the reference measurement is given with-
out classical description and when its classical
description is known. Both situations were stud-
ied in the symmetric and asymmetric scenarios.
We proved that in both cases one can achieve the
probability of false positive error equal zero, and
we calculated optimal probabilities of false nega-
tive errors. We also calculated the probabilities
of successful discrimination in the symmetric dis-
crimination scheme.
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A Lemma 1
Lemma 1. Let J be as defined in Eq. (16), T :=
∆(S) and W := (2T−1l)⊗S, where S is the swap
matrix of dimension d2. Then J2 = (WJ)2.

Proof. As

J2 =
( 1
d2 − 1

)2 ( 1
d2 1l ⊗ 1l − 1

d
1l ⊗ S + T ⊗ S − 1

d
T ⊗ 1l

)2
, (44)

we calculate

( 1
d2 1l ⊗ 1l − 1

d
1l ⊗ S + T ⊗ S − 1

d
T ⊗ 1l

)2

= 1
d4 1l ⊗ 1l − 1

d3 1l ⊗ S + 1
d2T ⊗ S − 1

d3T ⊗ 1l

− 1
d3 1l ⊗ S + 1

d2 1l ⊗ 1l − 1
d
T ⊗ 1l + 1

d2T ⊗ S

+ 1
d2T ⊗ S − 1

d
T ⊗ 1l + T ⊗ 1l − 1

d
T ⊗ S

− 1
d3T ⊗ 1l + 1

d2T ⊗ S − 1
d
T ⊗ S + 1

d2T ⊗ 1l

= d2 + 1
d4 1l ⊗ 1l − 2

d3 1l ⊗ S +
(

1 + 1
d2 − 2

d
− 2
d2

)
T ⊗ 1l +

( 4
d2 − 2

d

)
T ⊗ S

= d2 + 1
d4 1l ⊗ 1l − 2

d3 1l ⊗ S + (d2 + 1)(d− 2)
d3 T ⊗ 1l + 4 − 2d

d2 T ⊗ S,

(45)

and eventually

J2 =
( 1
d2 − 1

)2
(
d2 + 1
d4 1l ⊗ 1l − 2

d3 1l ⊗ S + (d2 + 1)(d− 2)
d3 T ⊗ 1l + 4 − 2d

d2 T ⊗ S

)
. (46)

On the other hand

WJ = (2T ⊗ S − 1l ⊗ S) 1
d2 − 1

( 1
d2 1l ⊗ 1l − 1

d
1l ⊗ S + T ⊗ S − 1

d
T ⊗ 1l

)
. (47)

Hence we calculate
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(2T ⊗ S − 1l ⊗ S)
( 1
d2 1l ⊗ 1l − 1

d
1l ⊗ S + T ⊗ S − 1

d
T ⊗ 1l

)
= 2
d2T ⊗ S − 2

d
T ⊗ 1l + 2T ⊗ 1l − 2

d
T ⊗ S

− 1
d2 1l ⊗ S + 1

d
1l ⊗ 1l − T ⊗ 1l + 1

d
T ⊗ S

= 1
d

1l ⊗ 1l − 1
d2 1l ⊗ S + d− 2

d
T ⊗ 1l − d− 2

d2 T ⊗ S,

(48)

and thus

(1
d

1l ⊗ 1l − 1
d2 1l ⊗ S + d− 2

d
T ⊗ 1l − d− 2

d2 T ⊗ S

)2

= 1
d2 1l ⊗ 1l − 1

d3 1l ⊗ S + d− 2
d2 T ⊗ 1l − d− 2

d3 T ⊗ S

− 1
d3 1l ⊗ S + 1

d4 1l ⊗ 1l − d− 2
d3 T ⊗ S + d− 2

d4 T ⊗ 1l

+ d− 2
d2 T ⊗ 1l − d− 2

d3 T ⊗ S + (d− 2)2

d2 T ⊗ 1l − (d− 2)2

d3 T ⊗ S

− d− 2
d3 T ⊗ S + d− 2

d4 T ⊗ 1l − (d− 2)2

d3 T ⊗ S + (d− 2)2

d4 T ⊗ 1l

= d2 + 1
d4 1l ⊗ 1l − 2

d3 1l ⊗ S + (d2 + 1)(d− 2)
d3 T ⊗ 1l + 4 − 2d

d2 T ⊗ S.

(49)

Eventually

(WJ)2 =
( 1
d2 − 1

)2
(
d2 + 1
d4 1l ⊗ 1l − 2

d3 1l ⊗ S + (d2 + 1)(d− 2)
d3 T ⊗ 1l + 4 − 2d

d2 T ⊗ S

)
(50)

and hence (WJ)2 = J2.

B Inequality between errors
We will show that

pHe ≤ 1
2(p1 + p2), (51)

where pHe = 1 − pHsucc is the probability of error
from the Holevo-Helstrom Theorem.

Let us recall that from Holevo-Helstrom The-
orem we have

1
2 Tr(Ω0ρ0) + 1

2 Tr(Ω1ρ1) ≤ 1 − pHe , (52)

hence

pHe ≤ 1 − 1
2 (Tr(Ω0ρ0) + Tr(Ω1ρ1)) . (53)

On the other hand we know that

Tr(Ω0ρ0) + Tr(Ω1ρ0) = 1,
Tr(Ω0ρ1) + Tr(Ω1ρ1) = 1.

(54)

and hence

Tr(Ω0ρ0) + Tr(Ω1ρ1) = 2 − (p1 + p2). (55)

Therefore

pHe ≤ 1 − 1
2 (Tr(Ω0ρ0) + Tr(Ω1ρ1))

= 1 − 1
2 (2 − (p1 + p2))

= 1
2(p1 + p2).

(56)
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