
G-Networks Can Detect Different Types of
Cyberattacks

Erol Gelenbe
Institute of Theoretical and Applied Informatics

Polish Academy of Sciences, IITIS-PAN
44-100 Gliwice, Poland

& Lab. I3S CNRS, Université Côte d’Azur,
Grand Château, 06103 Nice Cecex 2, France

& Yaşar University
Bornova, Izmir, Turkey

ORCID: 0000-0001-9688-2201

Mert Nakıp
Institute of Theoretical and Applied Informatics

Polish Academy of Sciences, IITIS-PAN
44-100 Gliwice, Poland

ORCID: 0000-0002-6723-6494

Abstract—Malicious network attacks are a serious source of
concern, and machine learning techniques are widely used to
build Attack Detectors with off-line training with real attack and
non-attack data, and used online to monitor system entry points
connected to networks. Many machine learning based Attack
Detectors are typically trained to identify specific types attacks,
and the training of such algorithms to cover several types of
attacks may be excessively time consuming. This paper shows
that G-Networks, which are queueing networks with product
form solution and special customers such as negative customers
and triggers, can be trained just with “non-attack” traffic, can
accurately detect several different attack types. This is established
with a special case of G-Networks with triggerred customer
movement. A DARPA attack and non-attack traffic repository
is used to train and test the the G-Network, yielding comparable
or clearly better accuracy than most known attack detection
techniques.

Index Terms—Gelenbe-Networks (G-Networks), Multiple At-
tack Detection, Random Neural Networks, Queueing Networks
with Negative and Positive Customers, Auto-Associative Deep
Random Neural Network

I. INTRODUCTION

THE edge of the Internet is populated with a wide range
of devices that are part of Mobile Networks, the Internet

of Things (IoT) as well as various servers and local area
networks. Since 50% or more of these devices [1] are simple
and hence of low-cost and low-maintenance, it is difficult (if
not totally impossible) to burden them with complex security
functionalities [2], and are prime targets for cyberattacks [3]–
[5], including simple Denial of Service (DoS) attacks [6]
which seriously interfere with the operation of numerous
devices that have few resources to spare [7], [8]. Systemic
approaches to securing cyber-physical systems have been
suggesed [9], [10], but these may not be suitable for highly
distributed systems composed of simple devices.

More harmful Distributed DoS (DDoS) attacks [11] can
overwhelm large networks by using proxy victims that have

This research has been supported by the European Commission H2020
Program under the IoTAC Research and Innovation Action, under Grant
Agreement No. 952684.

been attacked and turned into “Bots”. In turn, they flood
devices with attacks and overwhelming traffic, such as in
the “Mirai” attack [12], and compromising Netflix, Reddit,
Spotify, and Twitter [13], [14], and harming millions of IP
nodes [15], [16].

Thus much research has been conducted in designing Attack
Detectors (ADs) using conventional statistics or Machine
Learning (ML). These can be trained on-line, or off-line with
validated instances of non-attack and attack data collected dur-
ing long usage periods or during substantial network attacks.
The trained AD is then used online to monitor IP addresses
and network ports, so as to raise an alarm when malicious
incoming traffic is detected.

Because of the severe effects of Botnet attacks, much work
has addressed their characteristics [12], [17] and Mirai attack
source code was also studied [18]. The detection of Mirai
attacks from incoming traffic has used different ML methods
including K-Nearest Neighbours (KNN), Support Vector Ma-
chines (SVM), Decision Trees (DT), Multi-Layer Perceptrons
(MLP) [19], Classification and Regression Trees [20], Gradient
Boosting and Random Forests [21], Deep MLPs [22], Long-
Short Term Memory [23], [24], and their comparison was
also conducted [25]. Related research includes [26]–[29], and
adaptive network routing to avoid nodes or paths that are
subject to unusal events or an attack [30], [31] has also been
investigated.

G-Networks [32] are stochastic queueing networks with
product form solution, and a special case of this model, known
as the Random Neural Network (RNN) [33]–[35] has been
shown to be effective in detecting denial of service SYN
attacks [36], after being trained via gradient descent learning
with both “normal” and attack data.

This is a consequence of an important mathematical prop-
erty that we exploit in this paper, namely the ability of G-
Networks to approximate all continuous and bounded func-
tions, with arbitrarily close error values that depend on the
size of the network in number of queues or neurons [37],
[38]. On the empirical side of things, the RNN has been very

successfully used previously by several authors, both for attack
or intrusion detection [39], [40], and in many other application
areas where machine learning is often used [41]–[49].

Another special case of G-Networks, known as a Deep Ran-
dom Neural Network (DRNN) [50], when trained with only
“normal” (i.e., non-attack data) in Auto-Associative mode, so
that its output with “normal” non-atack data matches closely
the input data [51], can effectively recognize SYN attacks
[52]. In other recent work [53], it has again been shown
that this Auto-Associative Deep Random Neural Network
(AADRNN), provides very accurate Botnet attack detection
despite being trained with only “normal” (non-attack) traffic.
In the case of Mirai Botnet attack detection, the AADRNN’s
performance was compared against three well-known state-of-
the-art machine learning techniques: Least Absolute Shrinkage
and Selector Operator (Lasso), K-Nearest Neighbors Regressor
(KNN), and Multi-Layer Perceptron (MLP), showing that
AADRNN performs significantly better, resulting in the fol-
lowing standard metrics: Balanced Accuracy 99.84%, Sensi-
tivity 99.82% and Specificity 99.98%.

Thus in this paper we extend previous work [52], [53]
to evaluate whether the AADRNN – using auto-associative
training with only normal traffic, i.e., without the use of attack
data – can actually detect a wide spectrum of attacks. In
Section II we describe the structure of the machine learning
model that we use. Section III discusses preprocessing and the
post-processing (decision) phase related to the KDD dataset
[54] that is used for learning and testing. Section IV uses this
well established attack dataset that contains multiple instances
of 41 types of attacks, to provide experimental results that
indicate that the AADRNN achieves very accurate detection
for many – but not all – of these numerous attack types.

Two variants of the AADRNN are used, both with three
layers, but one with a 40− 20− 21 structure shown in Figure
2, while the second uses a “rectangular” structure as shown
in Figure 1. We see that the latter provides results that are
somewhat less accurate than the former, while the former
structure appears to outperform most other attack detection
methods that have recently been discussed in the literature.

II. THE AADRNN

The central part of the method we use is composed of an
AADRNN that is structured in n-neuron clusters of densely
coupled neuronal cells that are represented as G-Networks
as detailed in this section. They are shown schematically in
Figure 1.

The specific G-Network used has “triggers” [32], [55],
where each “queue” represents a single neuron. All of these
neurons or queues are satistically identical and if a queue’s
queue length is positive (i.e., that neuron is “excited”), then
it fires a spike (sends a “trigger”) after an exponentially
distributed random interval of parameter r to the set of other
queues (neurons) in the same cluster. The trigger will:
• Either cause a drop by −1 of the receiving queue’s length,

and an immediate transmission of another trigger by the
receiving neuron to some other neuron in the cluster with

probability p, creating another identical step in the chain
or events,

• Or the receiving queue (neuron) absorbs the arriving
trigger with probability (1 − p) and it’s queue length
increases by +1.

• The target neuron of an arriving trigger is selected at
random with equal probability 1

n .
• In addition to the triggers, each queue (neuron) in a

cluster receives an external Poisson flow of excitatory
spikes at rate λfl, and a Poisson flow of inhibitory spikes
at rate λfl. An arriving excitatory spike increases by one
(+1) the length of the receiving queue; the arrival of an
inhibitory spike reduces the queue length by one (−1) if
the queue length is positive, and otherwise have no effect.

• All queues (neurons) in the cluster of layer l (column,
going left to right), in row number f as shown in
Figure 1, will receive inhibitory inputs (negative cus-
tomers) of spikes from all neurons in the previous layer:∑Fl−1

g=1 w−g,f,l−1qg,l−1, where Fl is the number of clusters
in layer l, and w−g,f,l−1 ≥ 0, 1 ≤ g ≤ Fl−1.

• All n neurons in a given cluster are statistically identical,
and their probability of excitation (probability that the
queue length is positive) is denoted qf,l.

Based on this description, qf,l is expressed as [32]:

qf,l = (1)

Λfl +
r′fl qf,l(n−1)(1−p)

n Sf,l(p, n)

rfl + λ−fl +
r′flqf,l(n−1)p

n Sf,l(p, n)
, (2)

where rfl = r′fl +

Fl∑
g=1

w−f,g,l , (3)

λ−fl = λfl +

Fl−1∑
g=1

[w−g,f,l−1 × qg,l−1], and (4)

Sf,l(p, n) =

∞∑
i=0

[qf,lp(n− 1)

n

]i
=

n

n− qf,lp(n− 1)
. (5)

Thus :

qf,l =
Λfl +

r′fl qf,l(n−1)(1−p)
n−qf,lp(n−1)

rfl + λ−fl +
r′fl qf,l(n−1)p
n−qf,lp(n−1)

. (6)

Since qf,l is a probability, its maximum allowable value is 1.
Because one can show that it is an increasing function of Λfl,
it follows that:

Λfl ≤ rfl + λ−fl −
r′fl(n− 1)(1− 2p)

n− p(n− 1)
, (7)

so that to guarantee that qf,l ≤ 1 it suffices to set:

Λfl ≤ r′fl + λfl −
r′fl(n− 1)(1− 2p)

n− p(n− 1)
. (8)

The equations (1) to (8) represent the multiple layer
AADRNN as a single nework, where inhibitry weights project

Fig. 1: Overall architecture of the AADRNN for Attack Detection with the KDD [54] Dataset.

from each cell in a given layer to the cells in the next
layer. However our computations are based on a simplification,
where each cluster of cells in a given layer is a RNN that
receives an inhibitory input from clusters in the previous layer,
but does not send out spikes to the subsequent layer so that
it does not project into the subsequent layer, (3) becomes
rfl = r′fl. The projections from a layer to a subsequent layer
are then treated as a numerical transformation of the outputs of
each cluster, providing a numerical value to each λ−fl, while:

qfl =
Λfl +

rfl qf,l(n−1)(1−p)
n−qf,lp(n−1)

rfl + λ−fl +
rfl qf,l(n−1)p
n−qf,lp(n−1)

, (9)

which for large n becomes:

qfl ≈
Λfl +

rfl qf,l(1−p)
1−qf,lp

rfl + λ−fl +
rfl qf,lp
1−qf,lp

. (10)

Since qfl is a probability, by setting qfl ≤ 1 one obtains,

Λfl ≤ λ−fl + rfl .
p

1− p
, (11)

and we see can initialize the AADRNN parameters as follows:

Λfl = rfl +
p

1− p
, (12)

and set rfl = 1 throughout the network, for large n and small
p. The we can define the vectors and matrices:

Ql−1 = [q1,l−1, ... , qFl−1,l−1 , (13)
Wl−1 = [w−g,f,l−1][Fl×Fl

, (14)

We can write the expression (10) as:

qfl ≈ ζ(Ql−1,Wl−1), or in vector form :

Ql ≈ ζ(Ql−1,Wl−1), Q0 = [x1, ... , xF] = x ,

x̂ = [x̂1, ... , x̂F] = QL .

The matrices Wl are initially drawn at random, and then

progressively optimized step by step during auto-associative
training to minimize the error function ||x− x̂||.

III. EXTRACTION OF INPUT FEATURES FROM DATA

In order to prepare the traffic features for the input of
AADRNN, we preprocess (via simple/lightweight operations)
the features extracted from the network traffic and available
in the data set. First, the non-numerical (categorical) features
are encoded into numerical features. To this end, for each non-
numerical feature f , the possible set of unique values, denoted
by Uf , is determined. Then, for each unique value u ∈ Uf , a
positive integer in [1, |Uf |] is assigned. As soon as each non-
numerical feature is converted to numerical, the value of the
numerical feature, denoted by xfk , is normalized by min-max
scaling as

xfk ←
xfk −min

k∈K
xfk

max
k∈K

xfk −min
k∈K

xfk
(15)

where K is the set of all traffic (samples) available in the data
set.

A. Statistical Whisker based Non-Attack Classification

In order to classify the traffic features as attack or benign,
we train the ADRNN using only benign traffic. This classifier
makes a decision by evaluating the traffic features compared
against the output of AADRNN based on the statistical
whisker.

During the decision making for a packet (or any sample) k,
first one calculates the absolute difference between the actual
features and the predicted features by the AADRNN:

zfk = |xfk − x̂
f
k | ∀f ∈ F . (16)

Then, the total number of features with abnormal values,
denoted by ζk, is computed:

ζk =
∑
f∈F

1(zfk > wf), (17)

where wf is the value of whisker that is learned during
the training, where 1(Ξ) = 1 if the statement Ξ is true,
and 1(Ξ) = 0 otherwise. That is, in (17), the feature f is
considered to have an abnormal value indicative of an attack
when zfk > wf .

Finally, the packet k is considered an attack if there are
more than θ features with abnormal values:

yk = 1(ζk > θ). (18)

Using the training data, Ktrain, which consists of only
benign traffic features, we determine the values of wf and
θ, respectively. To this end, first, the value of the absolute
difference zfk is computed for each k ∈ Ktrain using (16). For
each feature f , the lower quartile Qfl and upper quartile Qfu
of {zfk}k∈Ktrain are calculated as

Kflower ≡ {k : zfk < median({zfk}k∈Ktrain)}, ∀f ∈ F (19)

Qfl = median({zfk}k∈Kf
lower

), ∀f ∈ F , (20)

and

Kfupper ≡ {k : zfk > median({zfk}k∈Ktrain)}, ∀f ∈ F (21)

Qfu = median({zfk}k∈Kf
upper

), ∀f ∈ F (22)

Using Qfl and Qfu, the whisker wf for the upper quartile is
calculated as

wf = Qfu + 1.5(Qfu −Q
f
l) ∀f ∈ F (23)

Since the training data is based on benign traffic, θ must
be selected to classify training samples as benign traffic.
However, we should also consider that the training data may
include some outlier samples. Thus, we set the value of θ to
the mean of the number of abnormal features plus the standard
deviation of abnormal features in the training data:

θ = µζ + 2σζ , (24)

where

µζ =

∑
k∈Ktrain

ζk

|Ktrain|
, σζ =

√∑
k∈Ktrain

(ζk − µζ)2

|Ktrain|
(25)

IV. EVALUATING THE AADRNN

The KDD Cup’99 data set [54] includes both “normal” or
benign traffic as well as attack (intrusion) traffic. It contains
three different subsets: the training set, the smaller training
set reduced to 10% of the total training set, and the test
set, comprised of “4, 898, 431”, “494, 021”, and “311, 029”
samples respectively, with 41 features related to network
traffic.

We first evaluate the ADRNN with three layers and F∞ =
41, F∞ = 20, F∞ = 41, where the number of clusters in the
second layer is simply chosen to be roughly one half of the
number of 41 input and output clusters.

To be comparable with recent state-of-the-art, we use the
small training set. Thus the AADRNN is:

• Trained with only the 97, 278 benign samples in the
smaller training set, and

• Evaluated using all samples in the test set.
• All experiments are performed on a workstation with

32 Gb RAM and an AMD 3.7 GHz (Ryzen 7 3700X)
processor.

The structure of the AADRNN includes three layers with 41,
20 and 41 neurons respectively, where 41 corresponds to the
number of features. In addition, we set rfl = 1 for all clusters,
λfl = λfl = 0.005, and p = 0.01.

We compare the performance of the AADRNN against the
unsupervised state-of-the-art one class classification technique
based on the Support Vector Machine - One Class Classifier
(SVM-OCC). In addition, we compare the performance of
AADRNN with that of several supervised machine learning
techniques using the same dataset, namely the Linear Regres-
sion (LR), K-Nearest Neighbours (KNN), Decision Tree (DT)
and Random Forest (RF), which are detailed in [56].

A. Results for the 41−20−41 Cluster Three Layer AADRNN

In Figure 3, the performance is presented with respect
to Accuracy, True Negative Rate (TNR), True Positive Rate
(TPR), Precision, and F1 Score on the KDD dataset as a whole,
showing that AADRNN achieves aproximately 93% accuracy
with high TNR (97%) and TPR (92%). According to these
results, the AADRNN of Figure successfully classifies both
benign and attack traffic as a whole for all the test data and
attack types in the KDD dataset, although it has been trained
only with a small benign traffic dataset.

As indicated earlier, the KDD Cup’99 dataset contains a
wide variety of attack types, so that the performance of the
ADRNN can differ for different attack types. To this end,
Figure 4 displays the performance of AADRNN for each
individual type of attack in the test set. The results show that
the prediction accuracy is less than or equal to 50% for 10
out of 37 attack types while it is above 98% for 21 out of 37
attack types.

1) Comparison with Unsupervised and Supervised Tech-
niques: We now compare the performance of the 41−20−41
cluster three layer AADRNN first with the performance of the
unsupervised technique based on the Support Vector Machine
SVM-OCC, and then with other supervised state-of-the-art
machine learning techniques. Figure 5 compares AADRNN
with SVM-OCC with respect to Accuracy, TNR and TPR.
The results in this figure show that of the 41−20−41 cluster
three layer AADRNN clearly outperforms this state-of-the-
art unsupervised one class classifier for detecting both benign
and attack traffic, and the performance difference is significant
especially for detecting attack traffic.

In addition Table I, presents the computation times of
AADRNN and SVM-OCC. One may see that AADRNN is
two orders of magnitude faster than SVM-OCC. Moreover,
since the training of AADRNN requires only benign traffic
and takes 1.49 s on average, AADRNN can also be trained
online for some applications.

Fig. 2: Architecture of the 41− 20− 41 three layer AADRNN for Attack Detection with the KDD [54] Dataset.

Fig. 3: Performance of the 41 − 20 − 41 cluster three layer
AADRNN with respect to Accuracy, TNR, TPR, Precision and
F1 Score metrics for the KDD dataset taken as a whole for
all attack types.

B. Evaluation of the 41− 41− 41 AADRNN

Finally we also briefly evaluate the three layer and 41 −
41−41 cluster AADRNN with the same small training dataset
and the whole KDD testing dataset. In Figure 6 we observe
its average performance over all of the attack types in the
dataset, and observer a slightly lower performance than that
of the 41− 20− 41 cluster network that is given in Figure 3.

In Figure 7 we summarize the performance of the three
layer 41−41−41 cluster AADRNN for each of the individual
attack types, and again we see a somewhat lower performance
than that of the 41− 20− 41 network that is shown in Figure

Fig. 4: The 41 − 20 − 41 cluster three leayer ADRNN’s
performance for each attack type in the KDD dataset.

4. Hence we see that the mapping of the data into a sub-
space, as offered by the 41−20−41 network, provides better
performance.

V. CONCLUSIONS

This paper shows that a special case of G-networks [32],
[55], the AADRNN, can be used as a detector for a broad range
of packet based network attacks. To this effect, this work uses
the function approximation capacity of G-Networks [37].

Another novelty of this work is that the AADRNN is not
trained with the different attack data sets that it is expeted to
detect. Rather, the AADRNN is only trained with benign
non-attack traffic as an autassociative neural network, and

Fig. 5: Comparison of the 41 − 20 − 41 cluster three layer
AADRNN against the state-of-the-art one class classifier
SVM-OCC on the KDD dataset.

TABLE I: Comparison of the 41 − 20 − 41 three layer
AADRNN against a state-of-the-art one class classifier, the
SVM-OCC with respect to computation time.

Model

Total

Training Time

(seconds)

Execution Time

per Sample

(secs)

Mean St-Dev Mean St-Dev

AADRNN 1.49 0.03 5.13 0.08

SVM-OCC 249.7 9.44 326.3 7.59

despite this limited training it is able to detect many different
attack types.

The AADRNN is also limited in this case to two differ-
ent three-layer networks. Learning and training is conducted
with the well known DARPA KDD [54] dataset. The first
AADRNN is a 41− 20− 41 cluster structure, and the second
one is a 41− 41− 41 cluster structure.

The 41 − 20 − 41 cluster structure is observed to achieve
better performance, which is summarized in Table II, and com-
pared to other well-known machine learning techniques: the
unsupervised SVM-OCC, and the supervised MLP, LR, KNN,
DT, RF systems whose performance was recently reported in
[56].

When evaluated with the KDD dataset, the 41 − 20 − 41
cluster AADRNN outperforms these other techniques except

Fig. 6: The 41−41−41 cluster three layer ADRNN’s average
performance for all attack types in the KDD dataset.

Fig. 7: The 41 − 41 − 41 cluster three layer ADRNN’s
performance for each attack type in the KDD dataset.

for MLP and DT. A comparison with MLP and DT shows that
the AADRNN achieves almost the same performance, but its
Recall metric is higher and its Precision is lower, while it
yields slightly lower False Negatives and slightly higher False
Positives.

In future work, we plan to extend these comparisons to other
available real or synthetic datasets. In particular we plan to
use the NSL-KDD dataset [57], and some validated synthetic
datasets which may also available, while other forms of G-
Networks may also be tested.

REFERENCES

[1] Cisco, Cisco Annual Internet Report (2018–2023), Mar. 2020. [Online].
Available: https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html

[2] “Hp study reveals 70 percent of Internet of Things devices
vulnerable to attack,” Accessed on 25.01.2022. [Online]. Available:
https://www.hp.com/us-en/hp-news/press-release.html%3Fid=1744676

[3] M. Frustaci, P. Pace, G. Aloi, and G. Fortino, “Evaluating critical
security issues of the IoT world: Present and future challenges,” IEEE
Internet of Things Journal, vol. 5, no. 4, pp. 2483–2495, 2018.

[4] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A survey
on internet of things: Architecture, enabling technologies, security and
privacy, and applications,” IEEE Internet of Things Journal, vol. 4, no. 5,
pp. 1125–1142, 2017.

[5] Y. Yang, L. Wu, G. Yin, L. Li, and H. Zhao, “A survey on security and
privacy issues in internet-of-things,” IEEE Internet of Things Journal,
vol. 4, no. 5, pp. 1250–1258, 2017.

[6] S. Benzarti, B. Triki, and O. Korbaa, “A survey on attacks in Internet
of Things based networks,” in 2017 International conference on engi-
neering & MIS (ICEMIS). IEEE, 2017, pp. 1–7.

[7] CISA, “Understanding Denial-of-Service attacks.” [Online]. Available:
https://us-cert.cisa.gov/ncas/tips/ST04-015

[8] G. Carl, G. Kesidis, R. Brooks, and S. Rai, “Denial-of-Service attack-
detection techniques,” IEEE Internet Computing, vol. 10, no. 1, pp. 82–
89, 2006.

[9] G. Matta, S. Chlup, A. M. Shaaban, C. Schmittner, A. Pinzenöhler,
E. Szalai, and M. Tauber, “Risk management and standard compliance
for cyber-physical systems of systems,” Infocommunications Journal,
vol. 13, no. 2, pp. 32–39, June 2021. [Online]. Available:
https://doi.org/10.36244/ICJ.2021.2.5

[10] S. Maksuti, M. Zsilak, M. Tauber, and J. Delsing, “Security and
autonomic management in system of systems,” Infocommunications
Journal, vol. 13, number = 3, month = September, year = 2021, pages
= 66-75, url = https://doi.org/10.36244/ICJ.2021.3.7.

[11] C. Douligeris and A. Mitrokotsa, “DDoS attacks and defense mecha-
nisms: classification and state-of-the-art,” Computer networks, vol. 44,
no. 5, pp. 643–666, 2004.

[12] J. Margolis, T. T. Oh, S. Jadhav, Y. H. Kim, and J. N. Kim, “An in-
depth analysis of the mirai botnet,” in 2017 International Conference
on Software Security and Assurance (ICSSA). IEEE, 2017, pp. 6–12.

[13] J. Biggs, “Hackers release source code for a powerful
DDoS app called Mirai,” TechCrunch, October 2018. [Online].
Available: https://techcrunch.com/2016/10/10/hackers-release-source-
code-for-a-powerful-ddos-app-called-mirai/

[14] R. Hackett, “Why a hacker dumped code behind colossal website-
trampling botnet,” October 2016.

[15] N. Statt, “How an army of vulnerable gadgets took
down the web today,” October 2016. [Online]. Avail-
able: https://www.theverge.com/2016/10/21/13362354/dyn-dns-ddos-
attack-cause-outage-status-explained

[16] B. Tushir, H. Sehgal, R. Nair, B. Dezfouli, and Y. Liu, “The impact
of dos attacks onresource-constrained iot devices: A study on the mirai
attack,” arXiv preprint arXiv:2104.09041, 2021.

[17] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi,
M. Kallitsis, D. Kumar, C. Lever, Z. Ma, J. Mason,
D. Menscher, C. Seaman, N. Sullivan, K. Thomas, and
Y. Zhou, “Understanding the Mirai Botnet,” in Proceedings of
the 26th USENIX Security Symposium, 2017. [Online]. Avail-
able: https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/antonakakis

[18] H. Sinanović and S. Mrdovic, “Analysis of mirai malicious software,”
in 2017 25th International Conference on Software, Telecommunications
and Computer Networks (SoftCOM). IEEE, 2017, pp. 1–5.

[19] R. Doshi, N. Apthorpe, and N. Feamster, “Machine learning ddos
detection for consumer internet of things devices,” in 2018 IEEE Security
and Privacy Workshops (SPW). IEEE, 2018, pp. 29–35.

[20] C. S. Htwe, Y. M. Thant, and M. M. S. Thwin, “Botnets attack detection
using machine learning approach for iot environment,” in Journal of
Physics: Conference Series, vol. 1646, no. 1. IOP Publishing, 2020, p.
012101.

[21] M. Banerjee and S. Samantaray, “Network traffic analysis based iot
botnet detection using honeynet data applying classification techniques,”
International Journal of Computer Science and Information Security
(IJCSIS), vol. 17, no. 8, 2019.

[22] S. Sriram, R. Vinayakumar, M. Alazab, and K. Soman, “Network flow
based iot botnet attack detection using deep learning,” in IEEE INFO-
COM 2020-IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS). IEEE, 2020, pp. 189–194.

[23] C. D. McDermott, F. Majdani, and A. V. Petrovski, “Botnet detection
in the Internet of Things using deep learning approaches,” in 2018
international joint conference on neural networks (IJCNN). IEEE,
2018, pp. 1–8.

[24] G. D. L. T. Parra, P. Rad, K.-K. R. Choo, and N. Beebe, “Detecting
Internet of Things attacks using distributed deep learning,” Journal of
Network and Computer Applications, vol. 163, p. 102662, 2020.

[25] T. A. Tuan, H. V. Long, R. Kumar, I. Priyadarshini, N. T. K. Son et al.,
“Performance evaluation of botnet ddos attack detection using machine
learning,” Evolutionary Intelligence, pp. 1–12, 2019.

TABLE II: Performance of the 41 − 20 − 41 three layer AADRNN compared to several state-of-the-art unsupervised and
supervised techniques with the KDD dataset.

Model
Metrics (%)

Accuracy Recall Precision F1 Score

Unsupervised
AADRNN-WOCC 92.9 91.9 99.2 95.4

SVM-OCC 91.7 90.5 99.1 94.6

Supervised [56]

MLP with 4 layers 93 91.5 99.8 95.5

LR 81.1 76.9 99.4 86.7

KNN 92.5 90.9 99.8 95.2

DT 92.9 91.5 99.7 95.4

RF 92.7 91.1 99.9 95.3

[26] A. Kumar and T. J. Lim, “Early detection of mirai-like iot bots in large-
scale networks through sub-sampled packet traffic analysis,” in Future
of Information and Communication Conference. Springer, 2019, pp.
847–867.

[27] Y. N. Soe, Y. Feng, P. I. Santosa, R. Hartanto, and K. Sakurai, “Machine
learning-based iot-botnet attack detection with sequential architecture,”
Sensors, vol. 20, no. 16, p. 4372, 2020.

[28] M. Chatterjee, A. S. Namin, and P. Datta, “Evidence fusion for malicious
bot detection in iot,” in 2018 IEEE International Conference on Big Data
(Big Data), 2018, pp. 4545–4548.

[29] T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan, and
A.-R. Sadeghi, “DÏot: A federated self-learning anomaly detection sys-
tem for iot,” in 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS), 2019, pp. 756–767.

[30] E. Gelenbe and E. C.-H. Ngai, “Adaptive qos routing for significant
events in wireless sensor networks,” in 2008 5th IEEE International
Conference on Mobile Ad Hoc and Sensor Systems. IEEE, 2008, pp.
410–415.

[31] F. Francois and E. Gelenbe, “Optimizing secure sdn-enabled inter-
data centre overlay networks through cognitive routing,” in 2016 IEEE
24th International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS). IEEE, 2016,
pp. 283–288.

[32] E. Gelenbe, “G-networks with triggered customer movement,” Journal
of Applied Probability, vol. 30, no. 3, pp. 742–748, September 1993.
[Online]. Available: https://doi.org/10.2307/3214781

[33] E. Gelenbe and A. Stafylopatis, “Global behavior of homogeneous
random neural systems,” Applied mathematical modelling, vol. 15,
no. 10, pp. 534–541, 1991.

[34] E. Gelenbe, “Random neural networks with negative and positive signals
and product form solution,” Neural Computation, vol. 1, no. 4, pp. 502–
510, 1989.

[35] ——, “Learning in the recurrent random neural network,” Neural
Computation, vol. 5, no. 1, pp. 154–164, 1993.

[36] S. Evmorfos, G. Vlachodimitropoulos, N. Bakalos, and E. Gelenbe,
“Neural network architectures for the detection of syn flood attacks in
IoT systems,” in Proceedings of the 13th ACM International Conference
on PErvasive Technologies Related to Assistive Environments, 2020, pp.
1–4.

[37] E. Gelenbe, Z.-H. Mao, and Y.-D. Li, “Function approximation with
spiked random networks,” IEEE Transactions on Neural Networks,
vol. 10, no. 1, pp. 3–9, 1999.

[38] ——, “Function approximation by random neural networks with a
bounded number of layers,” in Computer System Performance Modeling
In Perspective: A Tribute to the Work of Prof. Kenneth C. Sevcik. World
Scientific, 2006, pp. 35–58.

[39] G. Öke, G. Loukas, and E. Gelenbe, “Detecting denial of service attacks
with bayesian classifiers and the random neural network,” in 2007 IEEE
International Fuzzy Systems Conference. IEEE, 2007, pp. 1–6.

[40] A. Qureshi, H. Larijani, J. Ahmad, and N. Mtetwa, “A novel random
neural network based approach for intrusion detection systems,” in
CEEC. IEEE, 2018, pp. 50–55.

[41] C. E. Cramer and E. Gelenbe, “Video quality and traffic qos in learning-
based subsampled and receiver-interpolated video sequences,” IEEE
Journal on Selected Areas in Communications, vol. 18, no. 2, pp. 150–
167, 2000.

[42] H. Cancela, F. Robledo, and G. Rubino, “A GRASP algorithm with
RNN based local search for designing a WAN access network,” Electron.
Notes Discret. Math., vol. 18, pp. 59–65, 2004.

[43] M. Martı́nez, A. Morón, F. Robledo, P. Rodrı́guez-Bocca, H. Cancela,
and G. Rubino, “A GRASP algorithm using RNN for solving dynamics
in a P2P live video streaming network,” in HIS. IEEE Computer Society,
2008, pp. 447–452.

[44] S. Mohamed and G. Rubino, “A study of real-time packet video quality
using random neural networks,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 12, no. 12, pp. 1071–1083, December
2002.

[45] A. Javed, H. Larijani, A. Ahmadinia, and D. Gibson, “Smart random
neural network controller for hvac using cloud computing technology,”
IEEE Transactions on Industrial Informatics, vol. 13, pp. 351–360, 2017.

[46] O. Brun, L. Wang, and E. Gelenbe, “Big data for autonomic interconti-
nental overlays,” IEEE Journal on Selected Areas in Communications,
vol. 34, no. 3, pp. 575–583, 2016.

[47] E. Gelenbe and Y. Yin, “Deep learning with dense random neural net-
works,” in ICMMI, ser. Advances in Intelligent Systems and Computing,
vol. 659. Springer, 2017, pp. 3–18.

[48] W. Ingabire, H. Larijani, R. M. Gibson, and A. Qureshi, “Outdoor node
localization using random neural networks for large-scale urban iot lora
networks,” Algorithms, vol. 14, no. 11, p. 307, 2021.

[49] S. Y. Shah, H. Larijani, R. M. Gibson, and D. Liarokapis, “Random
neural network based epileptic seizure episode detection exploiting
electroencephalogram signals,” Sensors, vol. 22, no. 7, p. 2466, 2022.

[50] E. Gelenbe and Y. Yin, “Deep learning with random neural networks,”
in 2016 International Joint Conference on Neural Networks (IJCNN),
2016, pp. 1633–1638.

[51] Y. Yin and E. Gelenbe, “Nonnegative autoencoder with simplified
random neural network,” CoRR, vol. abs/1609.08151, 2016.

[52] O. Brun, Y. Yin, and E. Gelenbe, “Deep learning with dense random
neural network for detecting attacks against iot-connected home envi-
ronments,” Procedia Computer Science, vol. 134, pp. 458–463, 2018.

[53] M. Nakip and E. Gelenbe, “MIRAI botnet attack detection with auto-
associative dense random neural network,” in IEEE Global Communi-
cations Conference (Globecom), 2021, pp. 1–6.

[54] “KDD Cup 1999 Data.” [Online]. Available:
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[55] E. Gelenbe, “G-networks: a unifying model for neural and queueing
networks,” Annals of Operations Research, vol. 48, pp. 433–461, 1994.

[56] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-
Nemrat, and S. Venkatraman, “Deep learning approach for intelligent
intrusion detection system,” IEEE Access, vol. 7, pp. 41 525–41 550,
2019.

[57] A. Ghorbani, et al., “The nsl-kdd dataset,” Canadian Institute for Cyber-
security. [Online]. Available: https://www.unb.ca/cic/datasets/nsl.html

