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ABSTRACT Queues or waiting lines are an integral part of health care facilities such as hospitals, outpatient
clinics, medical laboratories, and many other health facilities. Health care management must have waiting
lines control strategies for smooth functioning. Due to the lack of proper queuing control and management,
patients may become dissatisfied and may leave (renege) the health care facilities without getting service.
But, the reneging of patients at two consecutive time marks may be correlated in the sense that if a patient
reneges at the current time mark, then there is a probability that a patient may or may not renege at the next
time mark. This kind of reneging is referred to as correlated reneging. In this paper, we have introduced
the concept of correlated reneging in a finite capacity multi-server queuing model with balking with its
application in health care. The steady-state as well as the transient analyses of the model are carried out.
We have also derived an expression for the correlation coefficient between the inter-reneging times and for
the rate at which the health facility is losing patients (patient loss probability) due to insufficient capacity,
reneging, and balking. We have provided numerical examples in order to demonstrate the effect of balking
and correlated reneging on performancemeasures such as themean number of patients waiting to be serviced,
mean waiting time of patients, and the probability of patient rejection. Further, the effect of the number of
servers on performance measures is investigated. Finally, the effect of the correlation coefficient between the
inter-reneging times on performance measures is studied. The queuing model discussed in this paper could
be useful to the health care firms facing the problem of patient impatience and capacity constraints.

INDEX TERMS Balking, correlated reneging, dissatisfied patients, health care management, transient-state
analysis, steady-state analysis.

I. INTRODUCTION
Queues or waiting lines are ubiquitous and sometimes
unavoidable in health facilities such as outpatient clinics,
medical laboratories, dentists, and many other health facili-
ties. Coupled with the increasing demand for health care ser-
vices due to the growing population especially in developing
countries, the number of patients waiting to receive service at
a given time will continue to grow, resulting in long waiting
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times and saturation of the facilities. In order to improve the
quality of service in health facilities, it is essential to allocate
sufficient resources to mitigate the effects of long waiting
times on the behavior of patients [24], and a trade-off must
be made between improving the quality of service and the
optimal use of resources at the health facility.

The waiting lines in health facilities can be modelled as
queuing systems in which patients arrive, join a waiting
line if any, receive service at their turn and then depart
from that resource. Fomundam and Herrmann [10] surveyed
the contributions and applications of queuing theory in the
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design and analysis of health care systems. Lakshmi and
Shivakumar [13] presented a review of the applications of
queuing theory in health care management, which includes
the use in the design and the analysis of health care systems
and operations. The authors indicated that the performance
measures that should be considered when evaluating health
care systems should include waiting times in queues, resource
utilization, and rejection of patients when the maximum
capacity of space in the waiting line is reached.

The majority of the queuing models proposed for health
care systems often assume that when a patient arrives at the
queuing facility, the patient must join the queue and remain
in the queue until the patient receives service. A patient
that arrives and observes a long queue may decide not to
join the queue (patient balking), but if the patient decides to
join the queue and experiences a long wait or is dissatisfied
with the health care services, the patient may decide to leave
the queue without receiving service (patient reneging). The
authors in [31] presented a queuing theory-based method for
the estimation of the fraction of patients that leave a hospital
Emergency Department (ED) without treatment by consider-
ing balking and reneging of patients. They studied the rela-
tionship between the arrival rate and the patient impatience
(balking and reneging) but did not investigate the influence
of balking or reneging on health care performance measures
such as the number of patients waiting in the queue, the aver-
age waiting time and the probability of patient rejection when
the health care facility is saturated. Also, during epidemic
and pandemic periods such as the current coronavirus disease
2019 (COVID-19), health facilities are overwhelmed and
may decide to postpone the treatment of patients with mild
cases, that is, they may be removed from the queue without
being served. Balking is a situation where a customer arrives
and decides not to join the waiting line while reneging is a
situation where a customer becomes dissatisfied and leaves
the waiting line without receiving service [23].

The work done so far in the area of queuing models with
impatient customers, reneging was considered as a function
of the state of the system (such as queue length or time in
the queue). But, the reneging could be bursty in nature based
on exogenous factors in many practical situations. That is,
the reneging may depend on factors other than the system
state. We have many practically visible situations like reputed
health care systems, purchase of branded products, admission
in prestigious schools, where the length of the queue does not
discourage the customers in the queue. In such high-end prod-
ucts and services, customers like to stay in the queue. But,
the sustainability of these products and services in the market
depends upon the perception in the masses. The perception
created influences the decision-making of customers where
similar customers arrive together (physically or virtually).
If the perception goes wrong about the product or service,
word-of mouth publicity severely prompts the customers to
renege (i.e. to abandon the system) before getting the service.
For example, let us consider a health care system where the

arrival of patients for the check-up is similar to the arrival
of customers, the check-up of patients by a doctor is anal-
ogous to the service of customers, and the leaving of the
patient from the health care system before being checked-up
can be considered as reneging of customers. The reneging
of patients could be bursty at times because of the reasons
like improper diagnosis/treatment, unnecessary costly pre-
scription by doctors, etc. which may create a bad perception
amongmasses. That is, if a patient reneges at any time instant,
then there would be an increased probability of a patient to
renege at the next time instant without being checked-up.
Thus, the probability of reneging is based on a recent cus-
tomer reneging where similar customers arrive close together
to exchange their views. So, if a patient observes that an
earlier patient reneges, then influenced by his decision and
opinion he may also decide to renege. This kind of reneging
is referred to as correlated reneging. Sometimes it happens
that the arriving patient does not join the health care sys-
tem. This situation resembles with the balking in queuing
theory.

Most of the studies of correlated queues are based on
steady-state analysis only. The steady-state analysis gives
the estimates of the performance measures over long term
observation when the system becomes stable. But in reality,
to know about the system-state up to some instant t will be
more useful. There are many systems that start operations and
then closed at some specified time t. Such systems like health
care facilities, businesses, or service operations that open and
close, never operate under steady-state conditions. Moreover,
if at the initial time the system is empty, the fraction of time
the server is busy and the initial rate of output, etc., will be
below the steady-state values so as to use the steady-state
results for calculating performance measures is not justified.
Thus, the analysis of the transient behavior of queuing sys-
tems is very necessary from the application viewpoint.

In this paper, we propose and analyze a queuing model
with balking and correlated reneging of patients for the per-
formance evaluation of a health care system. In the queuing
literature, the reneging considered so far is dependent only
on the system state. But, reneging may depend on factors
other than the system state. We have taken this idea into
consideration and developed a multi-server queuing model
with balking and correlated reneging. The main contribu-
tion of this paper is the concept of correlated reneging, and
the analytical investigation of the impact of the correlation
coefficient between inter-reneging times on the performance
measures. We have solved the model both in transient and
steady-state. The rest of the paper is arranged as follows: in
section 2 literature review is presented. In section 3, the queu-
ing model is described. In section 4, we derive the formula
for the correlation coefficient between inter-reneging times.
In section 5 the mathematical model is presented, in section
6 and 7 the steady-state and transient-state analysis of the
model are discussed respectively, and finally, the paper is
concluded in section 8.
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II. REVIEW OF RELATED LITERATURE
The studies on the queuing models with customers’ impa-
tience started in the early 1950s. Haight [12] incorporated the
concept of balking in a single server queuingmodel. An arriv-
ing customer joins the queue if the number in the queue
is less than the greatest queue length that he will tolerate.
Haight [11] studied a single server queuing system where a
customer joins the queue, waits for service, andmay decide to
leave the queue without receiving service if his waits exceed
his maximum expected wait. He performed the steady-state
analysis of the model. Ancker and Gafarian [4] studied an
M/M/1/N queuingmodel with balking and reneging. Arriving
customers balk with probability n/N , where n is the number
of customers in the system andN is the capacity of the system.
Customers reneged according to an exponential distribution.
They studied various measures of performance. Anker and
Gafarian [5] considered an infinite capacityMarkovian single
server queuing model with balking and reneging. In this
paper, the inter-arrival times, service times, and the reneging
times all were exponentially distributed. The arriving cus-
tomers joined the queuing system if it is empty or balked with
probability 1− (β/n); n = 1, 2, 3, . . . where n is the number
of customers in the system and β is a measure of customer’s
willingness to join the queue. Subba Rao [25] studied a
finite capacityM/G/1 queuing systemwith balking, reneging,
and interruptions. The serving of the customers is subject to
breakdowns caused by the arrival of interruptions that have
to be cleared on a priority basis. The supplementary variable
technique and discrete transforms were used to obtain the
solution of the model. Since then, a number of researchers
have worked on various queuing models with reneging and
balking. Choudhury [6] presented the analysis of a queuing
system in which customers tend to become discouraged and
give up when the waiting time exceeds a random thresh-
old. The authors assumed that the random thresholds are
independent and identically distributed exponential random
variables. Wang et al. [28] considered a reneging process
in which customers leave the queue without being served
and the reneging times were assumed to follow a negative
exponential distribution. Wang et al. [29] presented a survey
of queuing systems with impatient customers in which the
authors discussed impatient behaviors of queuing systems
such as balking and reneging and also discussed their ana-
lytical solutions, numerical solutions, and simulations. The
transient solution of multi-server Markovian queuing system
(M/M/c) with balking and reneging was proposed in [3]
where after joining the queue each customer has to wait for
a certain length of time T which has exponential distribution
for service to begin. Kumar et al. [15] studied the transient
solution of a single-server infinite capacity Markovian queu-
ing system with balking. Recently, Kumar and Sharma [16]
introduced the new concept being referred to as the retention
of reneging customers in queuing theory. They have studied
an M/M/1/N queuing system with reneging and retention
of reneging customers. They have obtained the steady-state
solution of the model. Kumar and Sharma [14] considered a

single-server queuing model with reneging and retention of
reneging customers. They have derived the transient solution
of the model. Kumar and Sharma [17] obtained the transient
solution of an M/M/c queuing model with balking, reneging,
and retention of reneging customers. [30] incorporated the
concept of retention of reneging customers in a finite capacity
queuing system with working breakdowns. They obtained
the steady-state solutions using the matrix-decomposition
method. Kumar and Soodan [18] studied the transient behav-
ior of a single-server queuing model with correlated arrivals
and reneging numerically.

Mohan [19] was the first to introduce the concept of cor-
relation in gambler’s ruin problem. Murari [21] studied a
queuing system with correlated arrivals and general service
time distribution. Mohan and Murari [20] obtained the tran-
sient solution of a queuing model with correlated arrivals
and variable service capacity. Conolly [8] considered a queu-
ing system having services depending on inter-arrival times.
Conolly and Hadidi [9] considered a model having an arrival
pattern impacting the service pattern. They examined the
initial busy period, state and output processes. Cidon et al. [7]
considered a queue in which service time is correlated to
inter-arrival time. They studied this correlation in the case
of communication systems and showed the impact through
numerical results by comparing them with less reliable
models.

Queuing theory can be used to provide a reasonably accu-
rate approach to size and evaluate the performance of health
care facilities. Performance evaluation of health care systems
partly involves the use of queuing theory and other stochastic
modelling techniques to estimate the performance measures
such as the average time spent by patients in waiting lines,
utilization of the resources, the losses due to reneging, balking
and rejection of patients, and the probability of immediate
service. Patient’s satisfaction surveys presented in [27] show
that the majority of complaints from patients are usually
related to long waiting times, sometimes due to insufficient
resources, and insufficient waiting room. The authors in [2]
modelled the performance of a health facility using a queu-
ing network analyzer and discrete event simulation. Obulor
and Eke [22] applied queuing theory for the evaluation of
an outpatient appointment system to model the appointment
scheduling process in order to reduce patients’ waiting times
and the idle times of the health personnel. The authors
in [1] discussed recent mathematical modelling techniques
and issues in Operations Research in the context of health
care system planning using queuing theory.

In the literature discussed so far, no work has appeared
on the concept of correlated reneging in queuing theory
and its application in health care. Furthermore, we have
shown most of the studies related to the application of
queuing theory in health care are based on the steady-state
analysis. That is why we have presented a queuing model
with correlated reneging with its possible applications in
health care. The transient as well as steady-state analysis are
performed.
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FIGURE 1. A queuing model of a health care facility with balking and
reneging.

III. QUEUING MODEL DESCRIPTION
Patients arrive at the health care facility for the check-up
and form a queue if the service is not immediately avail-
able. In general, the first come, first served queue discipline
is used in the scheduling of patients for service, but other
service disciplines can also be applied. The time required
to service a patient, for example, for consultation, may not
be deterministic. Some patients may require a short time to
be served while the others may require a very long time,
which may sometimes result in longer delays than the patient
had estimated in order to plan other activities especially for
those with mild health problems. The queuing model under
investigation is based on the following assumptions:
1) The patients arrive at a service facility one by one

following a Poisson process with parameter λ.
2) On arrival, an incoming patient may decide not to join

the queue (i.e. balk) with a certain probability (say,
1− β). It means that the arriving patient may join the
queue with a probability β.

3) The system has a single queue and finitely many
servers, c. The service-times at each server are indepen-
dently, identically, and exponentially distributed with
parameter µ.

4) The capacity of the system is finite (e.g, K ). Further,
K = N + c, where N denotes the queue capacity and c
is the number of servers (health personnel).

5) After joining the queue and waiting for some time,
a patient may get impatient and leave the queue without
getting the service. The reneging of the patients can
take place only at the transition marks t0, t1, t2, . . .
where θr = tr − tr−1, r = 1, 2, 3 . . . , are random

variables with P[θr ≤ x] = 1− exp(−ξx); ξ ≥ 0, r =
1, 2, 3, ... That is, the distribution of inter-transition
marks is negative exponential with parameter ξ .

6) The reneging at two consecutive transition marks
is governed by the following transition probability
matrix:

to tr
0 1

0 p00 p01
from tr−1

1 p10 p11
where, 0 refers to non-occurrence of reneging and 1
refers to the occurrence of reneging. Thus, the notation
pij(i and j can either be 0 or 1) represents the probability
of transitioning from present state to next possible state
due to the reneging between two consecutive transition
marks.
Also, p00+p01 = 1 and p10+p11 = 1. Thus, the reneg-
ing in two consecutive transition marks is correlated.
In case of no correlation p00 = p10 and p01 = p11.

IV. CORRELATION COEFFICIENT BETWEEN
INTER-RENEGING TIMES
Correlation coefficient (ρ) is a quantitative evaluation that
measures the direction and strength of variation in one vari-
able when the values of other variable are changed. The
correlation coefficient between the inter-reneging times helps
us in understanding the extent of reneging between two con-
secutive transition marks.

Let tr ; r = 1, 2, 3, . . . be a sequence of transition marks
(random variables) such that tr takes only two values 0 and
1 with conditional probabilities as given in the following
transition probability matrix.

to tr
0 1

0 p00 p01
from tr−1

1 p10 p11

,

where, 0 refers to non occurrence of reneging and 1 refers
to the occurrence of reneging. Now, {tr , r ≥ 0} is a Markov
chain. Let P{t0 = 1} = p0 = 1 − P{t0 = 0} be the initial
distribution. Let pr = P{tr = 1} and qr = P{tr = 0} =
1− pr .
We can obtain pr as:

pr = pr−1p11 + qr−1p01 = pr−1p11 + (1− pr−1)p01
= pr−1(p11 − p01)+ p01. (1)

The solution of difference equation (1) is given by:

pr = (p11 − p01)r (p0 −
p01

1− p11+p01
)+

p01
1− p11+p01

.

We can obtain the following values:

E{tr } = 1× pr + 0× qr = pr .

Var{tr } = E{t2r } − [E{tr }]2 = pr (1− pr ).

E{tr−1, tr } = (p11 − p00)pr−1 + p00

169626 VOLUME 8, 2020
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and,

Cov{tr−1, tr } = E{tr−1, tr } − E{tr−1}.E{tr }

= (p11 − p00)pr−1 + p00 − pr−1pr .

where E{tr },Var{tr }, andCov{tr−1, tr } are mean, variance of
tr and covariance between tr−1 and tr respectively. Hence,
correlation coefficient between the inter-reneging times (ρ)
is given by:

ρ =
Cov{tr−1, tr }√

Var{tr−1}
√
Var{tr }

=
(p11 − p00)pr−1 + p00 − pr−1pr
√
pr−1(1− pr−1)

√
pr (1− pr )

(2)

V. MATHEMATICAL MODEL
Suppose that X (t) is a random variable that represents the
number of patients waiting in the queue, and that P{X (t) =
n} = Pn,r (t) is the probability that at time t , there are n
patients waiting in the queue, where r = 0 indicates that a
patient had not reneged at the previous transition mark, and
r = 1 implies that a patient had reneged at the previous
transition mark. Consider Q0,r (t) to be the probability that at
time t , there is no patient in the queue and all the servers are
idle. Also consider Rk0,r (t) to be the probability that at time t ,
there is no patient in the queue but k , ( 1 ≤ k ≤ c) servers are
busy. The difference-differential equations that describe the
time-dependent state probabilities for the number of patients
in the health care queuing system are:

d
dt
Q0,0(t) = −λQ0,0(t)+ µR10,0(t) (3)

d
dt
R10,0(t) = −(λ+ µ)R

1
0,0(t)+ 2µR20,0(t)

+λQ0,0(t) (4)
d
dt
Rk0,0(t) = −(λ+ kµ)R

k
0,0(t)+ (k + 1)µRk+10,0 (t)

+λRk−10,0 (t), 1 < k < c (5)
d
dt
Rc0,0(t) = −(λ+ cµ)R

c
0,0(t)+ cµP1,0(t)

+λRc−10,0 (t) (6)
d
dt
P1,0(t) = −(λβ + cµ+ ξ )P1,0(t)+ cµP2,0(t)

+λRc0,0(t)+ ξ [p00P1,0(t)+ p10P1,1(t)] (7)
d
dt
Pn,0(t) = −(λβ + cµ+ nξ )Pn,0(t)+ cµPn+1,0(t)

+λβPn−1,0(t)+nξ [p00Pn,0(t)+p10Pn,1(t)],
1 < n < N (8)

d
dt
PN ,0(t) = −(cµ+ Nξ )PN ,0(t)+ λβPN−1,0(t)

+Nξ [p00PN ,0(t)+ p10PN ,1(t)] (9)
d
dt
Q0,1(t) = −λQ0,1(t)+ µR10,1(t) (10)

d
dt
R10,1(t) = −(λ+ µ)R

1
0,1(t)+ 2µR20,1(t)+ λQ0,1(t) (11)

d
dt
Rk0,1(t) = −(λ+ kµ)R

k
0,1(t)+ (k + 1)µRk+10,1 (t)

+λRk−10,1 (t), 1 < k < c (12)

d
dt
Rc0,1(t) = −(λ+ cµ)R

c
0,1(t)+ cµP1,1(t)+ λR

c−1
0,1 (t)

+ξ [p11P1,1(t)+p01P1,0(t)] (13)
d
dt
P1,1(t) = −(λβ+cµ+ ξ )P1,1(t)+cµP2,1(t)+λRc0,1(t)

+2ξ [p01P2,0(t)+ p11P2,1(t)] (14)
d
dt
Pn,1(t) = −(λβ + cµ+ nξ )Pn,1(t)+ cµPn+1,1(t)

+λβPn−1,1(t)+ (n+ 1)ξ [p01Pn+1,0(t)
+p11Pn+1,1(t)], 1 < n < N (15)

d
dt
PN ,1(t) = −(cµ+ Nξ )PN ,1(t)+ λβPN−1,1(t) (16)

In the next two sections, we will present the steady-state
analysis and the transient-state analysis of the above differ-
ential equations in order to determine the steady-state and
the transient-state performance evaluation measures of the
proposed queuing model.

VI. STEADY-STATE ANALYSIS OF THE MODEL
In this section, we obtain the steady-state probabilities of the
queuing model by using the matrix-decomposition method.

A. STEADY-STATE EQUATIONS
Let us define the steady-state probabilities of the number of
patients in the queuing system as follow: Q0,i = lim

t→∞
Q0,i(t),

i= 0,1, Rk0,i = lim
t→∞

Rk0,i(t), k=1,2,..c, i= 0,1, and Pn,i =
lim
t→∞

Pn,i(t), where n=0,1,2,..N is the number of patients and
i = 0 implies that a patient had not reneged at the previous
transition mark and i = 1 implies that a patient had reneged
at the previous transition mark.

From the equation (3)-(16) and the transition rate diagram
in Figure 2, we have the steady-state equations as follow:

0 = −λQ0,0 + µR10,0 (17)

0 = −(λ+ µ)R10,0 + 2µR20,0 + λQ0,0 (18)

0 = −(λ+ kµ)Rk0,0 + (k + 1)µRk+10,0 + λR
k−1
0,0 ,

1 < k < c (19)

0 = −(λ+ cµ)Rc0,0 + cµP1,0 + λR
c−1
0,0 (20)

0 = −(λβ + cµ+ ξ )P1,0 + cµP2,0 + λRc0,0
+ξ [p00P1,0 + p10P1,1] (21)

0 = −(λβ + cµ+ nξ )Pn,0 + cµPn+1,0 + λβPn−1,0

+nξ [p00Pn,0 + p10Pn,1], 1 < n < N (22)

0 = −(cµ+ Nξ )PN ,0 + λβPN−1,0

+Nξ [p00PN ,0 + p10PN ,1] (23)

0 = −λQ0,1 + µR10,1 (24)

0 = −(λ+ µ)R10,1 + 2µR20,1 + λQ0,1 (25)

0 = −(λ+ kµ)Rk0,1 + (k + 1)µRk+10,1 + λR
k−1
0,1 ,

1 < k < c (26)

0 = −(λ+ cµ)Rc0,1 + cµP1,1 + λR
c−1
0,1

+ξ [p11P1,1 + p01P1,0] (27)
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FIGURE 2. Transition diagram of the proposed queuing model.

0 = −(λβ + cµ+ ξ )P1,1 + cµP2,1 + λRc0,1
+2ξ [p01P2,0 + p11P2,1] (28)

0 = −(λβ + cµ+ nξ )Pn,1 + cµPn+1,1 + λβPn−1,1

+(n+ 1)ξ [p01Pn+1,0 + p11Pn+1,1],

1 < n < N (29)

0 = −(cµ+ Nξ )PN ,1 + λβPN−1,1 (30)

Theorem 1: For the set of steady-state equations
from (17)- (30), the steady-state probabilities can be obtained
in (30a), as shown at the bottom of the next page.

Proof: The proof is provided in Appendix-1.

B. STEADY-STATE PERFORMANCE EVALUATION
MEASURES
After obtaining the steady-state probabilities by solving the
above steady-state equations, we can then obtain the per-
formance measures such as the average number of patients
waiting in the queue, the average waiting time of patients
in the queue, the rate at which the health facility is losing
patients (patient loss probability) due to insufficient capacity,
reneging and balking. The average number of patients waiting

in the queue is

Lq =
N∑
n=1

nPn,0 +
N∑
n=1

nPn,1 (31)

If a patient arrives at the health facility and its capacity has
been reached, then the patient will be rejected (not admitted
into the queue) with a probability PN ,r , and the instantaneous
dropping rate of patients is λr = λ(PN ,0 + Pn,1). Also,
if a patient arrives and sees n patients waiting in the queue,
the probability that the patient does not join the queue (balk-
ing) is β, then the instantaneous balking rate is λβ. Therefore,
the average balking rate [32] is

Rb =
N∑
n=1

nλβPn,0 +
N∑
n=1

nλβPn,1 (32)

Suppose that there are n patients in the queue, and any of
the n patients in the queue could renege, then the instanta-
neous reneging rate is nξ . Therefore, the average reneging
rate is

Rr =
N∑
n=1

nξPn,0 +
N∑
n=1

nξPn,1 (33)
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The average rate at which the health facility is losing
patients due to insufficient capacity (patient rejection), balk-
ing, and reneging is

λl = λr + Rr + Rb (34)

The probability of losing patients by the health facility
(patient loss probability) due to insufficient capacity, reneg-
ing, and balking is

pl =
λl

λ
(35)

Since patients that arrive when the capacity of the system
has been reached and those that balk (do not actually join the
queue), then the effective arrival rate is

λeff = λ− λr − Rb (36)

The steady-state waiting time can be obtained using the
Little’s law as

Wq =
Lq
λeff

(37)

It is desirable to choose the capacity of the health care
facility and to allocate service resources in such a way to
reduce the waiting time and patient loss probability.

VII. TRANSIENT ANALYSIS OF THE MODEL
In this section, we study the transient behavior of the model.
As the analytical solution in the transient case is quite com-
plicated to obtain, we use a numerical method (Runge-Kutta
method of fourth-order) to obtain the transient solution of the
model. The ′′ode45′′ function of MATLAB software is used
to compute the transient numerical results.

A. TRANSIENT-STATE PERFORMANCE
EVALUATION MEASURES
The transient performancemeasures considered are: the num-
ber of customers in the queue, the waiting time in the queue,
balking rate, and the reneging rate. The mean number of
patients in the queue at time t , Lq(t) and the mean waiting
time in the queue estimated at time t ,Wq(t) are given as (38)
and (39), as shown at the bottom of the next page.

Similarly, the average balking rate estimated at time t ,
Rb(t), and the average reneging rate estimated at time t , Rr (t)
are given by

Rb(t) =
N∑
n=1

nλβPn,0(t)+
N∑
n=1

nλβPn,1(t) (40)

Rr (t) =
N∑
n=1

nξPn,0(t)+
N∑
n=1

nξPn,1(t) (41)

R0 =
−λP1,0A32

A21A12 + λA22

R10,0 = −
P1,0A32A21

A21A12 + λA22

P1,1 = 91P1,0,

91 =

(
λA32A23

A21A12+λA22
+ (λβ + cµ+ ξ + ξp00)−

A34A
−1
84 A88A43

A48−A44A
−1
84 A88

)
ξp10 −

(
A78A43

A48−A44A
−1
84 A88

)
P0 = 92P1,0,

92 =
(A34A−184 A88 −91A78)

A48 − A44A−184 A88

R1 = λ93P1,0,

93 = −
(A36 +91A76)
A65A56 + λA66

R10,1 = 93A65P1,0

P1 = −(92A44 + A34)A−184 P1,0

Q0,0 = −
µA32A21P1,0

λ(A21A12 + λA22)

Q0,1 =
µ93A65P1,0

λ

P1,0 =
1

[94 +95 +96e+ 1+92e+
µ93A65

λ
+93A65 + λ93e+91 −97e]

,

94 =
−µA32A21

λ(A21A12 + λA22)
, 95 = −

A32A21

A21A12 + λA22
,

96 = −
λA32

A21A12 + λA22
and 97 = −(92A44 + A34)A−184 (30a)
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The transient loss rate due to blocking (rejection) is

λr (t) = λ(PN ,0(t)+ PN ,1(t)) (42)

Therefore, the transient patient loss rate is

λl(t) = λr (t)+ Rb(t)+ Rr (t) (43)

By obtaining the transient-state probabilities (time-dependent
probabilities) numerically, we can apply the above equations
in this section to obtain the transient-state performance eval-
uation measures.

B. NUMERICAL EXAMPLES
In this section, we illustrate the behavior of the perfor-
mance measures, and the influence of balking, reneging rate,
the arrival rate of patients, and the number of active resources
on the performance measures with the help of numerical
examples. In the numerical examples, we present the transient
state probabilities of the number of patients requesting for
service at a resource in the health facility, the transient mean
number of patients waiting to receive service, the transient
mean waiting time of patients, the transient probability of
patient rejection when the waiting space at the facility is
fully occupied, and the transient probability of immediate
service when the queue is empty. For each performance
measure, we present its behavioral trends with respect to
time, arrival rate, reneging rate, and probability of balking.
We also compare three different queuing models: queuing
model with correlated reneging and balking, queuing model
with correlated reneging, and queuing model with simple
reneging and balking. We plot the graphs to show the effect
of the rate of transition marks and the probability of balking
on the performance measures.

Figures 3 and 4 show the variation of state probabilities of
the number of patients with time. For a given arrival rate
of patients, the number of active resources and service rate
of each resource, all the state probabilities increase rapidly
initially within a short time and then attain steady-state after
some time. However, the state probability P1,0(t) is initially
high because we have assumed that there is one patient at the
facility initially, that is, P1,0(0) = 1.
Figure 5 shows the variation of the mean number of

patients in the queue with time. As time progresses the
mean number of patients in the queue decreases gradually
and becomes steady after some time. The higher values of
the mean number of patients initially are due to the initial
condition P18,0(0) = 1. From figure 6 we can observe that
the mean waiting time of patients in queue decreases with
time. It becomes steady with the passage of time. The higher

FIGURE 3. Variation of state probabilities of number of patients with
time We take λ = 4, µ = 2.5, c = 3, β = 0.85, ξ = 0.2,K = 28,p00 =

0.8,p01 = 0.2,p10 = 0.7, and p11 = 0.3.

FIGURE 4. Probabilities vs Time We take λ = 4, µ = 2.5, c = 3, β =

0.85, ξ = 0.2,K = 28,p00 = 0.8,p01 = 0.2,p10 = 0.7, and p11 = 0.3.

waiting times at the start of the system are due to the higher
queue lengths initially, the reason being we have assumed
18 customers in the system at time t=0. From figures 5 and 6

Lq(t) =
N∑
n=1

n[Pn,0(t)+ Pn,1(t)] (38)

Wq(t) =
Lq(t)

cµ[1− Q0,0(t)− Q0,1(t)−
∑c

k=1(R
k
0,0(t)+ R

k
0,1(t))]

(39)
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FIGURE 5. Variation of the mean number of patients in the queue with
time We take λ = 12, µ = 5, c = 3, β = 0.95, ξ = 0.1,K = 28,p00 =

0.8,p01 = 0.2,p10 = 0.7,p11 = 0.3 and P18,0(0) = 1.

FIGURE 6. Variation of the mean "waiting time" of patients with time We
take λ = 12, µ = 5, c = 3, β = 0.95, ξ = 0.1,K = 28,p00 = 0.8,p01 =

0.2,p10 = 0.7,p11 = 0.3 and P18,0(0) = 1.

we find that the mean queue lengths as well as the mean
waiting times of the patients in a queuing model with balking
and reneging (exponentially distributed reneging times) are
lowest as compared with the queuing models having corre-
lated reneging, and balking and correlated reneging respec-
tively. Further, we can see that the queuing system with
correlated reneging possesses higher mean queue lengths and
mean waiting times as compared to the queuing system with
balking and correlated reneging. In the case of correlated

FIGURE 7. Variation of the probability of patient rejection with time We
take λ = 12, µ = 5, c = 3, β = 0.95, ξ = 0.1,K = 28,p00 = 0.8,p01 =

0.2,p10 = 0.7,p11 = 0.3 and P18,0(0) = 1.

reneging, reneging is not state-dependent. The reneging of
patients occurs due to factors other than the system state.
Here the reneging at two consecutive transition marks is
probabilistic in nature. That is why, the reneging is not as
frequent as in case of simple exponential reneging. Therefore,
the mean queue lengths and the mean waiting time are highest
in this case. From figure 7, we observe that the probability
of patient rejection initially increases to a certain value and
then decreases slowly and after some time attains steady state.
It can also be seen that the probability of patient rejection
is highest in the case of a queuing system with correlated
reneging as compared with the other two systems. This hap-
pens because the mean queue lengths are higher in the case
of a queuing system with correlated reneging as compared
to the other systems under consideration. Balking reduces
the system size significantly, that is why the probability of
patient rejection is smaller in the case of a queuing system
with balking and correlated reneging as compared to the
queuing system with correlated reneging. The probability of
patient rejection is lowest in the case of queuing system with
exponential reneging and balking as the mean queue length is
lowest in this case as compared to the other two systems.

Figures 8, 9, and 10 demonstrate the influence of the
number of active resources (servers) on the mean number
of patients in the queue, mean waiting of patients, and the
probability of patient rejection. In the consultation queue of
outpatients, the active resources are medical staff attending
to the patients. If we increase the number of active resources
(number of medical staff) the mean queue length, waiting
time and the probability of patient rejection reduce signif-
icantly. However, adding the number of staff attending to
patients also increases cost, necessitating the use of analytical
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FIGURE 8. Effect of number of active resources (servers) on the mean
number of patients We take λ = 12, µ = 5, β = 0.95, ξ = 0.1,K =

28,p00 = 0.8,p01 = 0.2,p10 = 0.7,p11 = 0.3 and P18,0(0) = 1.

FIGURE 9. Effect of number of active resources (servers) on the mean
waiting time We take λ = 12, µ = 5, β = 0.95, ξ = 0.1,K = 28,p00 =

0.8,p01 = 0.2,p10 = 0.7,p11 = 0.3 and P18,0(0) = 1.

tools in planning and sizing health facilities while taking
into consideration patient satisfaction. Figures 11, 12, and 13
show the changes in the mean number of patients in the
queue, mean waiting of patients in the queue, and the prob-
ability of patient rejection with changes in the arrival rates
of patients. Different factors may cause the rate at which
patients are arriving at a health facility to vary, it could be
due to an epidemic outbreak, increase in the reputation of
the health facility and quality of service offered to patients
and may other factors. We can see from the figures that as

FIGURE 10. Effect of number of active resources (servers) on the
probability of patient rejection We take λ = 12, µ = 5, β = 0.95, ξ =

0.1,K = 28,p00 = 0.8,p01 = 0.2,p10 = 0.7,p11 = 0.3 and P18,0(0) = 1.

FIGURE 11. Effect of average arrival rate on the mean number of patients
We take µ = 5, c = 3, β = 0.95, ξ = 0.1,K = 28,p00 = 0.8,p01 =

0.2,p10 = 0.7,p11 = 0.3 and P18,0(0) = 1.

the arrival rate increases, the performance measures increase
slowly and at a certain value of arrival rate a very small
increase in the arrival rate will cause a large increase in the
performance measures. Hence, it may lead to degrade the
performance of the health facility because the patients may
have to wait for very long hours to receive service or the
waiting space at the facility becomes permanently full, lead-
ing to persistent rejection of patients. Figure 14 depicts the
variation in the mean number of patients with respect to the
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FIGURE 12. Effect of average arrival rate on the mean waiting time We
take µ = 5, c = 3, β = 0.95, ξ = 0.1,K = 28,p00 = 0.8,p01 = 0.2,p10 =

0.7,p11 = 0.3 and P18,0(0) = 1.

FIGURE 13. Effect of average arrival rate on the probability of patient
rejection We take µ = 5, c = 3, β = 0.95, ξ = 0.1,K = 28,p00 =

0.8,p01 = 0.2,p10 = 0.7,p11 = 0.3 and P18,0(0) = 1.

rate of transition marks. As we increase the rate of transition
marks, the mean number of patients decreases. Figure 15
shows the variation in expected waiting time in queue with
respect to the rate of transition marks. One can observe the
decrease in mean waiting time with the increase in the rate of
transition marks. In figure 16 the variation in the probability
of patient rejection with respect to the rate of transition marks
is studied. It is noticed that with the increase in the rate of
transitionmarks the probability of patient rejection decreases.

FIGURE 14. Effect of rate of transition marks on the mean number of
patients We take λ = 12, µ = 5, c = 3, β = 0.95,K = 28,p00 = 0.8,p01 =

0.2,p10 = 0.7,p11 = 0.3 and P18,0(0) = 1.

FIGURE 15. Effect of rate of transition marks on the mean waiting time
We take λ = 12, µ = 5, c = 3, β = 0.95,K = 28,p00 = 0.8,p01 =

0.2,p10 = 0.7,p11 = 0.3 and P18,0(0) = 1.

Figure 17 depicts the variation in mean number of patients
with respect to the probability of balking. As the proba-
bility of balking is increased the mean number of patients
decreases. Figure 18 presents the variation in mean waiting
time with respect to the probability of balking. One can
observe that the expected waiting time decreases with the
increase in the probability of balking.

In figures 19 and 20 the impact of the correlation coeffi-
cient between inter-reneging times (ρ) on the performance
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FIGURE 16. Effect of rate of transition marks on the probability of patient
rejection We take λ = 12, µ = 5, c = 3, β = 0.95,K = 28,p00 = 0.8,p01 =

0.2,p10 = 0.7,p11 = 0.3 and P18,0(0) = 1.

FIGURE 17. Effect of probability of balking on the mean number of
patients We take λ = 12, µ = 5, c = 3, ξ = 0.1,K = 28,p00 = 0.8,p01 =

0.2,p10 = 0.7,p11 = 0.3 and P18,0(0) = 1.

measures in the mean number of patients in the queue (Lq(t))
and mean waiting times of patients in the queue (Wq(t)) is
investigated. We use equation (2) to calculate the values of
correlation coefficient (ρ). For illustration, we fix the values
of p00 = 0.1 and p01 = 0.9 and vary the value of p11
from 0.1 to 0.9. From figures 19 and 20 we can observe that
as we move from negative to positive correlation, the mean
number of patients in the queue as well as the mean wait-
ing time of patients in the queue both decrease. Moving
towards a positive correlation between inter-reneging times

FIGURE 18. Effect of probability of balking on the mean waiting time We
take λ = 12, µ = 5, c = 3, ξ = 0.1,K = 28,p00 = 0.8,p01 = 0.2,p10 =

0.7,p11 = 0.3 and P18,0(0) = 1.

FIGURE 19. Effect of correlation coefficient between inter-reneging times
on the mean number of patients in queue We take
λ = 12, µ = 5, c = 3, β = 0.95, ξ = 0.1,K = 28 and P18,0(0) = 1.

means the probability of reneging between inter-reneging
times (transition marks) increases, which in turn results in
the loss of patients from the health care facility. Although
the congestion and mean wait decrease with the increas-
ing values of correlation coefficient between inter-reneging
times, the decision-makers must see its negative impact on
the revenue generation of health care facilities, because the
potential customers (patients) leave the service facility with-
out taking service. Therefore, with such scenarios, the health
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FIGURE 20. Effect of correlation coefficient between inter-reneging times
on the mean waiting times of patients in queue We take
λ = 12, µ = 5, c = 3, β = 0.95, ξ = 0.1,K = 28 and P18,0(0) = 1.

care service providers should think of avoiding this kind of
impatience among the patients by incorporating either more
number of servers (staff) or machines for efficient service
environment.

But, when we study the change in correlation coefficient
between inter-reneging times by changing the value of p00
and fixing the values of p01 and p11, then we will see that
while moving towards the positive correlation the values of
performance measures Lq(t) and Wq(t) will increase.

VIII. CONCLUSION AND FUTURE WORKS
Waiting lines are unavoidable in health facilities. Queu-
ing aspects of patients must be taken into consideration
while designing the health care facilities. A finite capac-
ity multi-server queuing model with balking and correlated
reneging is studied and analyzed with its potential applica-
tions in health care systems. We have also derived an expres-
sion for the correlation coefficient between the inter-reneging
times and for the rate at which the health facility is losing
patients (patient loss probability) due to insufficient capacity,
reneging, and balking. The numerical examples discussed in
the paper provide useful insights about the functioning of
the finite capacity health care system having balking and
correlated reneging of patients. Therefore, the capacity of
health care facilities and the service resources should be
carefully allocated in such a way as to reduce the waiting
time of patients in the queues and the patient loss probability
within a reasonable cost.

In the future, we will incorporate the concept of correlated
reneging in non-Markovian queues. We will also consider the
time-dependent arrival and service rates in the current model.
An attempt will also be made to study the same model with

correlated arrivals. We have presented a theoretical queuing
model for health care management in this paper, but a case
study can be done on this model with real-time data from
health care facilities in the future.

APPENDIX-1
Proof (Theorem-1): Let P = (R10,0,R0,P1,0,P0,R10,1,R1,

P1,1,P1) be the vector of the steady-state probabilities where
the sub-vectors are: R0 = (R20,0,R

3
0,0, . . . .R

c
0,0), P0 =

(P2,0,P3,0, . . . .PN ,0), R1 = (R20,1,R
3
0,1, . . . .R

c
0,1), and P1 =

(P2,1,P3,1, . . . .PN ,1). From the (17) and (24), we can express
Q0,0 and Q0,1 respectively as:

Q0,0 =
µ

λ
R10,0 (44)

Q0,1 =
µ

λ
R10,1. (45)

Substituting the values of Q0,0 and Q0,1 in equations (18)
and (25), we can re-write the set of steady-state equations as:

0 = −λR10,0 + 2µR20,0 (46)

0 = −(λ+ kµ)Rk0,0 + (k + 1)µRk+10,0 + λR
k−1
0,0 ,

1 < k < c (47)

0 = −(λ+ cµ)Rc0,0 + cµP1,0 + λR
c−1
0,0 (48)

0 = −(λβ + cµ+ ξ )P1,0 + cµP2,0 + λRc0,0
+ξ [p00P1,0 + p10P1,1] (49)

0 = −(λβ + cµ+ nξ )Pn,0 + cµPn+1,0 + λβPn−1,0
+nξ [p00Pn,0 + p10Pn,1], 1 < n < N (50)

0 = −(cµ+ Nξ )PN ,0 + λβPN−1,0
+Nξ [p00PN ,0 + p10PN ,1] (51)

0 = −λR10,1 + 2µR20,1 (52)

0 = −(λ+ kµ)Rk0,1 + (k + 1)µRk+10,1 + λR
k−1
0,1 ,

1 < k < c (53)

0 = −(λ+ cµ)Rc0,1 + cµP1,1 + λR
c−1
0,1

+ξ [p11P1,1 + p01P1,0] (54)

0 = −(λβ + cµ+ ξ )P1,1 + cµP2,1 + λRc0,1
+2ξ [p01P2,0 + p11P2,1] (55)

0 = −(λβ + cµ+ nξ )Pn,1 + cµPn+1,1 + λβPn−1,1
+(n+ 1)ξ [p01Pn+1,0 + p11Pn+1,1],

1 < n < N (56)

0 = −(cµ+ Nξ )PN ,1 + λβPN−1,1 (57)

Thus, the steady-state equations for (46)-(57) can be
expressed in matrix-form as

PQ = 0. (58)

where 0 is the column vectors of zeros, and

Q =


−λ A12 0 A14 0 A16 0 A18
A21 A22 A23 A24 A25 A26 A27 A28
0 A32 −(λβ+cµ+ξ+ξp00) A34 0 A36 0 A38

A41 A42 A43 A44 A45 A46 A47 A48
0 A52 0 A54 −λ A56 0 A58

A61 A62 A63 A64 A65 A66 A67 A68
0 A72 ξp10 A74 0 A76 −(λβ+cµ+ξ ) A78

A81 A82 A83 A84 A85 A86 A87 A88
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is a (2N + 2c) × (2N + 2c) square matrix. Below are the
different entries of the matrix Q:

A12 = ( λ 0 . . . 0 )1×c−1 ,A14 = ( 0 0 . . . 0 )1×N−1 ,

A16 = ( 0 0 . . .0 )1×c−1 ,A18 = ( 0 0 . . .0 )1×N−1 ,

A21 =


2µ
0
.
.
.
0
0


c−1×1

,A41 =


0
0
.
.
.
0
0


N−1×1

,

A45 =


0
0
.
.
.
0
0


N−1×1

, A23 =


0
0
.
.
.
0
λ


c−1×1

,

A25 =


0
0
.
.
.
0
0


c−1×1

,

A27 =


0
0
.
.
.
0
0


c−1×1

,A26 =


0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
. . . . . .
. . . . . .
. . . . . 0
0 0 . . . 0
0 0 . . . 0


c−1×c−1

,

A22 =


−(λ+2µ) λ . . . 0

3µ −(λ+3µ) . . . 0
0 4µ . . . 0
. . . . . .
. . . . . .
. . . . . 0
0 0 . . . λ
0 0 . . . −(λ+cµ)


c−1×c−1

,

A43 =


cµ
0
.
.
.
0
0


N−1×1

,A28 =


0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
. . . . . .
. . . . . .
. . . . . 0
0 0 . . . 0
0 0 . . . 0


c−1×N−1

,

A24 =


0 0 . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0
. . . . . . .
. . . . . . .
. . . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0


c−1×N−1

,

A61 =


0
0
.
.
.
0
0


c−1×1

,A42 =


0 0 . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0
. . . . . . .
. . . . . . .
. . . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0


N−1×c−1

,

A47 =


2ξp01
0
.
.
.
0
0


N−1×1

,A63 =


0
0
.
.
.
0
0


c−1×1

,

A46 =


0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
. . . . . .
. . . . . .
. . . . . 0
0 0 . . . 0
0 0 . . . 0


N−1×c−1

,

A32 = ( 0 0 . . . cµ )1×c−1 ,

A44 =


−(λβ+cµ
+2ξ+2ξp00) λβ . 0

cµ −(λβ+cµ+3ξ+3ξp00) . 0
0 . . 0
. . . .
. . . 0
0 0 . λ
0 0 . −(cµ+Nξ

+Nξp00)


N−1×N−1

,

A34 = ( λβ 0 . . . 0 )1×N−1 ,A36 = ( 0 0 . . . ξp01 )1×c−1 ,

A38 = ( 0 0 . . . 0 )1×N−1 ,A52 = ( 0 0 . . . 0 )1×c−1 ,

A56 = ( λ 0 . . . 0 )1×c−1 ,A58 = ( 0 0 . . . 0 )1×N−1 ,

A54 = ( 0 0 . . . 0 )1×N−1 ,

A72 = ( 0 0 . . . 0 )1×c−1 ,A74 = ( 0 0 . . . 0 )1×N−1 ,

A76 = ( 0 0 . . . (cµ+ξp11) )1×c−1 ,A78 = ( λβ 0 . . . 0 )1×N−1 ,

A48 =


0 0 . . . 0 0

3ξp01 0 . . . 0 0
0 4ξp01 . . . 0 0
. . . . . . .
. . . . . . .
. . . . . 0 0
0 0 . . . 0 0
0 0 . . . 3ξp01 0


N−1×N−1

,

A65 =


2µ
0
.
.
.
0
0


c−1×1

,A67 =


0
0
.
.
.
0
λ


c−1×1

,

A62 =


0 0 . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0
. . . . . . .
. . . . . . .
. . . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0


c−1×c−1

,

A83 =


0
0
.
.
.
0
0


N−1×1

,A64 =


0 0 . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0
. . . . . . .
. . . . . . .
. . . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0


c−1×N−1

,

A81 =


0
0
.
.
.
0
0


N−1×1

,A85 =


0
0
.
.
.
0
0


N−1×1

,

A68 =


0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
. . . . . .
. . . . . .
. . . . . 0
0 0 . . . 0
0 0 . . . 0


c−1×N−1

,

A66 =


−(λ+2µ) λ . . . 0

3µ −(λ+3µ) . . . 0
0 4µ . . . 0
. . . . . .
. . . . . .
. . . . . 0
0 0 . . . λ
0 0 . . . −(λ+cµ)


c−1×c−1

,

A86 =


0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
. . . . . .
. . . . . .
. . . . . 0
0 0 . . . 0
0 0 . . . 0


N−1×c−1

,

A87 =


cµ+2ξp11

0
.
.
.
0
0


N−1×1

,A82 =


0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
. . . . . .
. . . . . .
. . . . . 0
0 0 . . . 0
0 0 . . . 0


N−1×c−1

,

A84 =


2ξp10 0 . . . 0 0
0 3ξp10 . . . 0 0
0 0 . . . 0 0
. . . . . . .
. . . . . . .
. . . . . 0 0
0 0 . . . (N−1)ξp10 0
0 0 . . . 0 Nξp10


N−1×N−1

,

A88 =


−(λβ+cµ+2ξ ) λβ . . 0
(cµ+3ξp11) −(λβ+cµ+3ξ ) . . 0

0 (cµ+4ξp11) . . 0
. . . . .
. . . . .
. . . . 0
0 0 . . λ
0 0 . . −(cµ+Nξ )


N−1×N−1

.
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Here, A16,A52 and A72 are the row vectors of order 1 ×
c− 1 with all their entries as zeros. A14,A18,A38,A54,A58,

and A74 are also the row vectors of order 1 × N − 1
with all their entries as zeros. A25,A27,A61 and A63 are
the column vectors of order c − 1 × 1 with all their
entries as zeros. A41,A45,A81,A83 and A85 are also col-
umn vectors of order N − 1 × 1 with all their entries as
zeros. A26,A28,A24,A42,A46,A62,A64,A68,A82 and A86
are square matrices with all their entries as zeros. From the
equation (58) it follows that

−λR10,0 + R0A21 = 0 (59)

R10,0A12 + R0A22 + P1,0A32 = 0 (60)

R0A23 − (λβ + cµ+ ξ + ξp00)P1,0
+P0A43 + ξp10P1,1 = 0 (61)

P1,0A34 + P0A44 + P1A84 = 0 (62)

−λR10,1 + R1A65 = 0 (63)

P1,0A36 + R10,1A56 + R1A66 + P1,1A76 = 0 (64)

P0A47 + R1A67 − P1,1(λβ + cµ+ ξ )

+P1A87 = 0 (65)

P0A48 + P1,1A78 + P1A88 = 0 (66)

From equation (59), we get

R10,0 =
1
λ
R0A21 (67)

Substituting the value of R10,0 from (67) to (60) and solve,
we get

R0 =
−λP1,0A32

A21A12 + λA22
(68)

Again putting the value of R0 from (68) to (59), on solving
we get

R10,0 = −
P1,0A32A21

A21A12 + λA22
(69)

(62), gives

P1 = −(P0A44 + P1,0A34)A−184 (70)

Substituting the value of P1 from (70) in (66), and solving we
get

P0 =
(P1,0A34A−184 A88 − P1,1A78)

(A48 − A44A−184 A88)
(71)

Putting the value of P0 and R0 from (71) and (68) respec-
tively in (61), we get the value of P1,1 as: P1,1 =(

λA32A23
A21A12+λA22

+(λβ+cµ+ξ+ξp00)−
A34A

−1
84 A88A43

A48−A44A
−1
84 A88

)
P1,0

ξp10−

(
A78A43

A48−A44A
−1
84 A88

)
P1,1 = 91P1,0 (72)

where,

91=

(
λA32A23

A21A12+λA22
+ (λβ+cµ+ξ+ξp00)−

A34A
−1
84 A88A43

A48−A44A
−1
84 A88

)
ξp10 −

(
A78A43

A48−A44A
−1
84 A88

)
Substituting the value of P1,1 from (72) in (71), and solving
we get

P0 =
(A34A−184 A88 −91A78)P1,0

A48 − A44A−184 A88
(73)

where,

92 =
(A34A−184 A88 −91A78)

A48 − A44A−184 A88

P0 = 92P1,0 (74)

From (63), we get

R10,1 =
R1A65

λ
(75)

Putting the value of R10,1 and P1,1 from (75) and (72) respec-
tively in (64) and solving, we get

R1 =
−λ(A36 +91A76)P1,0

A65A56 + λA66
(76)

R1 = λ93P1,0 (77)

where, 93 = −
(A36+91A76)
A65A56+λA66

Putting the value of R1 from (77) in (75), we get

R10,1 = 93A65P1,0 (78)

Substituting the value of P0 from (74) in (70). We get the
value of P1 as:

P1 = −(92A44 + A34)A−184 P1,0 (79)

We can obtain the value of Q0,0 and Q0,1 by substituting the
value of R10,0 and R10,1 from (69) and (78) in (44) and (45)
respectively.

Q0,0 = −
µA32A21P1,0

λ(A21A12 + λA22)
(80)

Q0,1 =
µ93A65P1,0

λ
(81)

We can obtain the unknown constant P1,0 by using normaliz-
ing equations:

1∑
i=0

Q0,i +

c∑
k=1

1∑
i=0

Rk0,i +
N∑
n=1

1∑
i=0

Pn,i

= Q0,0 + R10,0 + R0e+ P1,0 + P0e

+Q0,1 + R10,1 + R1e+ P1,1 + P1e = 1 (82)

where e is the unit column vector of dimension N.
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P1,0 =
1

[94 +95 +96e+ 1+92e+
µ93A65

λ
+93A65 + λ93e+91 −97e]

(83)

Substituting the values of probabilities from equations (68),
(69), (72), (74), (77), (78), (79), (80) and (81) in (82), we get
the explicit expression for P1,0 as (83), as shown at the top of
the page. Where,

94 =
−µA32A21

λ(A21A12 + λA22)
, 95 = −

A32A21

A21A12 + λA22
,

96 = −
λA32

A21A12 + λA22
and 97 = −(92A44 + A34)A−184 .

Thus, the rest of the steady-state probabilities of the model
can be obtained explicitly using (68), (69), (72), (74), (77),
(78), (79), (80) and (81).
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