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ABSTRACT The Internet of Things (IoT) is transforming industries by enhancing productivity and
efficiency; however, energy availability remains a significant challenge due to the limited capacity of
batteries and supercapacitors powering IoT devices. The emergence of Green IoT (G-IoT) frameworks,
which prioritize energy efficiency and renewable energy integration, offers a promising solution to address
this challenge. Despite these advancements, energy storage systems (ESSs) face issues such as capacity
degradation, leakage, and charge redistribution, which can lead to energy depletion and service disruptions.
Traditional models often assume constant energy harvesting rates, overlooking the time-varying nature of
environmental conditions that influence energy availability. In this paper, we propose a novel mathematical
framework that incorporates time-dependent fluctuations in the energy harvesting rate to analyse the dynamic
interactions between energy harvesting, leakage, and consumption in green IoT systems. Our approach
includes an Energy Packet Network (EPN) model to represent transient energy dynamics and a Markov
model to capture fluctuations in the energy harvesting rate. Through numerical simulations, we evaluate
the impact of key design parameters, such as ESS capacity, mean energy consumption rate, energy leakage,
and energy harvesting rate variations, on critical performance metrics including the probability of energy
depletion and the transient mean number of stored energy packets. The results highlight the importance of
considering time-varying energy harvesting in the design and optimization of IoT systems for long-term
operation and sustainability.

INDEX TERMS Time-dependent analysis, energy harvesting, energy leakage, energy-efficiency, green IoT.

I. INTRODUCTION
The Internet of Things (IoT) is one of the most transfor-
mative technologies of the 21st century, with applications
spanning various industries, including transportation, energy,
construction, agriculture, home automation, smart buildings,
smart cities, environmental monitoring, healthcare, defense,
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manufacturing, and logistics [1], [2]. The deployment of tens
of billions of IoT devices is anticipated to drive productivity
and efficiency across multiple sectors [3], solidifying IoT’s
role as a key enabler of Industry 4.0, which is reshaping
modern industries.

Despite substantial progress in developing reliable and
sustainable IoT systems, energy availability remains a
fundamental challenge. IoT nodes are typically powered
by batteries or supercapacitors, both of which have limited
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energy storage capacity [3], [4]. This limitation raises
concerns about achieving long-term, uninterrupted operation
of IoT devices, particularly those expected to function for
several years without human intervention [5]. Moreover,
energy storage systems (ESSs) are not ideal, and their
inherent imperfections further restrict their performance. Key
issues include capacity degradation over repeated charge-
discharge cycles, energy leakage, and charge redistribution
(notably in supercapacitors). These factors accelerate energy
depletion, increasing the likelihood of energy-related service
disruptions. A potential mitigation strategy is to incorporate
these non-idealities into energy storage models to assess their
impact accurately. However, this also adds complexity to the
modeling process [6].

In recent years, substantial efforts have been made to
enhance the energy reliability and sustainability of IoT
systems. One of the key advancements in this domain is the
Green IoT (G-IoT) framework [7], [8], [9], which focuses
on optimizing energy efficiency, ensuring energy reliability,
and integrating renewable energy sources. As the deployment
of IoT devices scales into the tens of billions, adopting
green IoT strategies is essential for minimizing carbon
emissions, reducing electronic waste, andmitigating the envi-
ronmental impact of IoT operations and disposal. A widely
adopted approach in Green IoT is the implementation of
energy-saving techniques to reduce power consumption.
Several key strategies outlined in [7], [8], and [9] include
duty cycling to reduce active power consumption, packet
size reduction and transceiver optimization to minimize
communication energy, energy-aware routing and adaptive
sensing for efficient data collection, protocol overhead reduc-
tion to streamline communication, voltage and frequency
scaling to optimize hardware power usage, energy-efficient
hardware and software design, Green IoT communication
technologies such as BLE, RFID, NFC, Zigbee, LoRa, and
Sigfox, sustainable IoT architectures including green cloud
computing, fog computing, and virtualization, as well as the
use of sustainable materials and efficient energy management
techniques such as energy thresholds. A comprehensive
review of energy-saving methodologies for Green IoT is
provided in [10], [11], and [12].

Energy Harvesting for Green IoT is another key strategy
in green IoT, and it involves capturing energy from ambient
or external renewable sources such as solar (photovoltaic),
radio frequency (RF), wind, and mechanical vibrations.
However, maintaining consistent energy availability remains
a challenge due to the intermittent and unpredictable nature
of these renewable sources [13]. Additionally, the energy
harvested by IoT devices is often limited, typically in the
range of a few hundred milliwatt-hours (mWh) or, in some
cases, as low as a few hundred micro-watt-hours (µWh). This
constraint underscores the importance of efficient energy
management to maximize operational efficiency. A detailed
review of various energy harvesting techniques for green IoT
is provided in [1] and [12].

Designing energy-efficient IoT nodes requires careful
consideration of energy leakage. Properly sizing energy
harvesting and storage systems is essential to compensate
for energy losses, thereby reducing the likelihood of service
outages and prolonging the operational lifespan of the nodes.
While many studies on IoT node energy performance [3],
[14], [15], [16], [17], [18], [19], [20], [21], [22], [23] have not
accounted for energy leakage in storage systems, some have
specifically analysed its effects on wireless communication
nodes [24], [25], [26], [27], [28], [29]. IoT systems are
also often supported by computational and data storage
servers, so that recent work has also considered the optimum
allocation of tasks to multiple diverse processors as to
optimize performance and minimize energy consumption of
the system [30].

A novel technique for evaluating IoT energy performance—
without focusing on the internal complexities of harvesters
and storage systems— uses G-Network theory [31],
a generalization of ‘‘product form’’ queueing networks,
to include both the discrete work flow in a communication
system, and the energy supply model in discrete units called
energy packets, that was introduced in [14] and [15]. This
approach employs queueing theory to represent the charging
and discharging behaviour of ESS. Further exploration of this
concept can be found in [16], [32], and [33].

Within this framework, energy harvested and stored
in the battery is modelled as packet arrivals, whereas
energy consumption is treated as packet servicing. Unlike
traditional queueing models—where the service rate must
exceed arrivals to prevent overload—an ESS must ensure
a higher energy arrival rate than consumption to avoid
depletion-induced service interruptions [24]. Anothermethod
characterizes energy variations within an ESS as a continuous
stochastic process, such as fluid flow [17], [18], [19] or
diffusionmodels [3], [21], [22], [23]. Amajor challengewhen
incorporating inefficiencies like leakage is that it introduces
an additional deterministic or stochastic process that interacts
with energy arrival and consumption dynamics. Moreover,
since leakage is directly influenced by the ESS’s current
energy level, it cannot be treated as an isolated factor but
remains intrinsically linked to the energy storage and usage
processes.

II. MAIN CONTRIBUTIONS OF THE PAPER
Most existing studies on the interaction between energy
harvesting, leakage, and consumption processes, including
those cited above, assume that the mean energy harvesting
rate or the mean rate of energy packet delivery to the energy
storage system remains constant. Consequently, these studies
primarily rely on steady-state analysis. However, in real-
world scenarios, energy harvesting is influenced by random
and unpredictable environmental factors, making it inherently
stochastic and time-varying.

AMarkov process is commonly used to model fluctuations
in the mean energy harvesting rate caused by changes in
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weather conditions. In [34], [35], and [36], the authors
employed a two-state Markov chain to represent the energy
harvesting process, where one state corresponds to active
energy harvesting, while the other represents periods with
no harvested energy. Similarly, the authors in [28] and [37]
proposed a four-state Markov model to capture weather state
transitions, which, in turn, influence the energy harvesting
rate over time.
Given the stochastic nature of energy harvesting, incor-

porating time-dependent variations in the harvesting rate
into energy performance models is crucial for accurately
evaluating the behaviour of energy storage systems (ESSs).
Modelling the interplay between transient energy harvest-
ing, leakage, and consumption processes provides valu-
able insights into the relationships between key design
parameters—such as the energy capacity of the ESS, mean
energy consumption rate, energy threshold, energy leakage
parameter, and energy leakage model—and critical perfor-
mance metrics, including the mean number of stored energy
packets and the probability of complete energy depletion
(energy service outage probability).
In this paper, we introduce a mathematical framework to

analyse the dynamic interactions between time-dependent
energy harvesting, leakage, and consumption processes in
green IoT networks. Specifically, we propose:

• An energy packet model for the energy storage system
that accounts for transient energy dynamics.

• A Markov model to characterize the time-dependent
fluctuations in the mean energy harvesting rate.

• To validate our approach, we conduct numerical simula-
tions to evaluate the impact of key design parameters.

We assess their effects on critical energy performance
metrics, such as the transient mean number of stored energy
packets and the probability of complete energy depletion.

III. DESCRIPTION OF THE MODEL
Consider a green IoT system comprising a sensor device,
an energy storage system, and an energy harvesting system,
as illustrated in Fig. 1. The system follows a harvest-store-
consume energy configuration, meaning that the harvested
energy is first stored and subsequently utilized for operation.
For analytical tractability, we model the energy packet

arrival process to the storage system as a Poisson process,
while the energy consumption process follows an exponential
distribution. Although these assumptions may not always
perfectly reflect real-world conditions, they serve as a
first-order approximation, providing a tractable analytical
framework. This allows for deeper insights into the dynamic
interactions between energy harvesting, leakage, and con-
sumption processes, facilitating performance evaluation and
optimization of energy-efficient IoT systems.

A. ENERGY PACKET MODEL FOR THE ENERGY STORAGE
SYSTEM
The discretization of energy into packets requires defining
a quantization step, which corresponds to the size of an

energy packet. An energy packet, measured in mWh or mAh,
represents a pulse of power or current over a specific time
duration.

Since energy is primarily consumed during active
periods—when the node performs sensing, computation,
or communication—the energy packet size can be expressed
as:

Ep = Pactive · tactive, (1)

where Pactive denotes the power consumed during active
periods, and tactive represents the time of activity.

Although the quantization step can be arbitrarily chosen,
consistency is required across energy harvesting, consump-
tion, and storage processes.

Let CB (in mWh) represent the capacity of the energy stor-
age system (ESS), which could be a battery or supercapacitor.
The total number of energy packets the ESS can store is given
by:

B = CB
Ep

, (2)

implying that the ESS can hold up to B discrete
energy packets, with possible energy states {0, 1, 2, . . . ,B}.
We assume the IoT node remains in a dormant state and
activates only when triggered by an external event, e.g.
a system supervising a pipeline is awaken by the detection of
a fluid leakage. The assume that such events are defined by
the Poisson process. The time needed to consume an energy
unit has the exponential distribution. These assumptions,
while not universally precise, serve as a practical first-order
approximation for analytical tractability.
The energy storage system’s dynamics is modelled using

an M (t)/M (n)/1/B queueing system. In Kendall’s nota-
tion [38], this corresponds to a system with exponentially
distributed inter-arrival and service times, a single server,
and finite storage capacity of B energy packets. The notation
M (n) accounts for a state-dependent service rate andM (t) for
time-dependent arrival rate.
Energy packet arrivals follow a Poisson process, implying

exponentially distributed inter-arrival times with rate ω. The
consumption time of an energy packet is also exponentially
distributed, with rate µ(n), where n denotes the number of
stored energy packets.
In an extendedMarkovian framework, phase-type distribu-

tions can replace the exponential assumption to better approx-
imate real-world energy dynamics, though this increases
the complexity by introducing additional states and imposes
purely numerical solution.
The service rate µ(n), representing the inverse of the

average service time, is given by:
µ(n) = µi + ε (n), (3)

where µi is the base energy consumption rate and ε (n)
accounts for state-dependent energy leakage.
We assume that the consumption rate varies depending on

the device’s operational mode. When stored energy exceeds
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FIGURE 1. The architecture of a green IoT node with erratic energy sources such as radio frequency (RF),
photovoltaic, thermal, wind, and mechanical vibration.

a threshold K (n > K ), the system operates normally with
µi = µ2. If the energy level falls below K (n → K ), the
device switches to an energy-saving mode with µi = µ1.

Three types of leakage rate functions ε (n) are considered:

• linear leakage rate, proportional to stored energy
[24], [39]:

ϑ(n) = (n↑ 1)ϖ (4)

• exponential leakage rate is exponentially related to the
stored energy and is common in supercapacitors [28]:

ϑ(n) = ϱeϖ (n↑1), n ↓ 1. (5)

• constant leakage rate, independent of stored energy [26]:

ϑ(n) = ϱϖ . (6)

This model provides a structured approach for analysing
energy storage behaviour in IoT devices under varying
conditions.

The evolution of energy packet levels in the ESS is
modelled as anM (t)/M (n)/1/BMarkovian queueing process
{N (t) | t ↓ 0}. The probability of having n energy packets at
time t is denoted as p(n, t) = Pr{N (t) = n}.

The system dynamics are governed by the following
first-order differential equations [40]:

dp(0, t)
dt

= ↑ωp(0, t) + µ(1)p(1, t),

dp(n, t)
dt

= ↑(ω + µ(n))p(n, t) + ωp(n↑ 1, t)

+ µ(n+ 1)p(n+ 1, t), n = 1, . . .B↑ 1, (7)
dp(B, t)
dt

= ωp(B↑ 1, t) ↑ µ(B)p(B, t). (8)

In the steady-state condition (t ↔ ↗), the system
transitions to an equilibrium state where these differential
equations reduce to algebraic equations [40]:

p(n) = p(0)
ωn

µ(1) · · · µ(n) , n = 1, . . . ,B. (9)

By enforcing the normalization condition
∑B

n=0 p(n) = 1,
we obtain:

p(0) = 1

1 + ∑B
n=1

(
ωn∏n

i=1 µ(i)

) . (10)

This framework enables performance analysis of IoT
energy storage systems under different operational con-
straints and event-driven consumption patterns.

VOLUME 13, 2025 86123



G. S. Kuaban et al.: Time-Dependent Analysis of Interaction Between Energy Harvesting, Leakage

B. TIME-DEPENDENT STOCHASTIC PROCESS FOR
ENERGY HARVESTING
Since the energy harvested depends on random and unpre-
dictable environmental variables, it exhibits a stochastic
nature. The mean energy harvesting rate, denoted as ω, varies
over discrete time intervals ςt . The evolution of ω can be
modelled as either a random process or a Markov process.

Within each time intervalςt , ω is drawn from a predefined
range [ωmin, ωmax]. In some simulations, ω is assumed to
follow a uniform distribution, generating a new random value
at each time step.

Alternatively, the time-dependent mean arrival rate of
energy packets, ω(t), can be modelled as a Markov process
with N states and transition probabilities pij. The value of ω

is influenced by dynamically changing environmental factors
such as wind, sunlight, vibrations, cloud cover, and rainfall.

Consider a two-state Markov model that represents the
environmental energy states S0 and S1 within each interval
ςt . This type of model has been discussed in [34], [35],
and [36]. The transition probabilities between the two states
are p00, p01, p10, and p11, which can be estimated from
empirical data [36]. The state transition matrix is given by:

P =
[
p00 p01
p10 p11

]

where:
• p00 is the probability of remaining in state S0,
• p01 is the probability of transitioning from S0 to S1,
• p10 is the probability of transitioning from S1 to S0,
• p11 is the probability of remaining in state S1.
A more complex model can be defined using a three-state

Markov chain (S0, S1, S2) to represent different weather
conditions such as sunny, cloudy, and rainy, which influence
the state of a solar energy harvester. The corresponding
values of ω for each state are ω = {ω0, ω1, ω2}. A four-state
weather model was explored in [28] and [37], where the state
transition matrix is:

P =





p00 p01 p02 p03
p10 p11 p12 p13
p20 p21 p22 p23
p30 p31 p32 p33





Once the state transition matrix is defined, the Markov
chain can be used to simulate dynamic state changes over
time. The state at each time step determines the corresponding
value of ω.

IV. TRANSIENT-STATE ENERGY PERFORMANCE
ANALYSIS
We analyse the transient-state energy performance of the
ESS with and without energy thresholds. While steady-state
analysis assumes constant mean rates for energy packet
delivery to and consumption from the ESS, the mean
number of harvested energy packets can fluctuate over time.

We evaluate the impact of parameters such as energy leakage
rate, energy harvesting rate, and the energy consumption rate
on the energy performance metrics such as the service outage
probability at time t , p(0, t) and the mean number of energy
packets present in the ESS at time t , E[N (t)].
In the case of a single threshold and linear leakage rate,

a simplified version of the differential equations in (8) can
be obtained. Therefore, the following system of equations
governs the time evolution of the state probabilities p(0, t),
p(n, t), and p(B, t), describing the dynamic behaviour of the
system over time.
For p(0, t) (empty state probability):

dp(0, t)
dt

= ↑ωp(0, t) + µ1p(1, t) (11)

For intermediate states p(n, t), where 1 → n → K ↑ 1:

dp(n, t)
dt

= ↑(ω + µ1 + (n↑ 1)ϖ )p(n, t)

+ ωp(n↑ 1, t) + (µ1 + nϖ )p(n+ 1, t) (12)

For intermediate states p(n, t), where K → n → B↑ 1:

dp(n, t)
dt

= ↑(ω + µ2 + (n↑ 1)ϖ )p(n, t)

+ ωp(n↑ 1, t) + (µ2 + nϖ )p(n+ 1, t) (13)

For p(B, t) (full state probability):

dp(B, t)
dt

= ωp(B↑ 1, t) ↑ (µ2 + (B↑ 1)ϖ )p(B, t) (14)

Initially, the system is assumed to be in state p(0, 0),
meaning all probabilities are zero except for p(0, 0) = 1,
ensuring normalization.
The expected value of the number of energy packets in the

ESS at time t , denoted as E[N (t)] is the weighted sum of the
probabilities of being at each state n, i.e.,

E[N (t)] =
B∑

n=0

np(n, t).

The transient solution of (8) is more intricate. It can
be obtained using the Laplace transform, which converts
the system’s differential equations into algebraic equations
in the Laplace domain. This transformation allows for an
analytical solution, as demonstrated in [41]. However, this
solution must be inverted numerically. Alternatively, a direct
numerical approach can be used, as demonstrated here with
our solver [42]. Many other solvers may be helpful.

The results presented in Figs. 2-12 are obtained by
numerically solving the system described in equation 8.
This is accomplished using Python libraries such as NumPy,
SymPy, and SciPy.

First, we define ω as a time-dependent function, ω(t), and
implement a function to generate its values dynamically.
The system of equations governing the time evolution of the
number of EPs in the ESS is then formulated. After specifying
the initial conditions—e.g., p(0, 0) = 1 if the ESS is empty
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at t = 0 or p(B, 0) = 0 if the ESS initially contains B energy
packets—SciPy is used to solve the system numerically.

To track the evolution of the mean number of energy
packets in the ESS, we compute the expected value of the
system at each time step. That is, at each time interval
ςt , we obtain the value ω using a stochastic process. The
computed values computed for each interval are then plotted
using another Python library called MatplotLib.

To compute and plot the service outage probability, p(0, t),
we solve a system of differential equations that describe
the dynamics of the queue of stored energy packets under
time-varying arrival rates ω(t).

Using a Markov chain, we generate a sequence of weather
states that influence the evolution of ω(t) over time. Each
weather state corresponds to a distinct arrival rate ω(t). The
probability distribution p(n, t) for different system states is
governed by a set of coupled differential equations, which are
solved using the solve_ivp function from SciPy.

Once the values of p(0, t) are computed for each time
interval ςt across various values of ω, they are visualized to
analyse the system’s performance.

Once the system is solved, p(0, t) is plotted over time using
a logarithmic scale. The results illustrate how p(0, t) evolves
under different service rate modification strategies. Addi-
tionally, the time-dependent arrival rate ω(t) is overlaid on
a secondary axis to highlight the impact of weather-induced
variations in arrival intensity.

V. NUMERICAL SIMULATION RESULTS
In the presented numerical simulation results, we consider a
battery with a charge rating of Q = 2100 mAh, a depth of
discharge (DoD) of 70%, and a voltage of v = 3.7 V. The
corresponding energy capacity of the battery is given by:

CB = 2100 ↘ 0.7 ↘ 3.7 = 5439 mWh

We assume that energy is quantized into discrete packets,
with each packet having a size of Ep = 54.39 mWh.
Consequently, the battery can store a maximum of:

B = 5439
54.39

= 100 energy packets

For each numerical example, the relevant parameter values
are provided alongside the corresponding figure.

The computational complexity of the numerical simulation
primarily depends on the number of energy states B, the
time resolution T , and the number of parameter variations.
Specifically, the model solves a system of B + 1 coupled
differential equations over T time steps for each value of the
energy-efficiency parameter (e.g., ϖ , µ, or ϕ ), resulting in an
overall time complexity ofO(M ·B·T ), whereM is the number
of the parameter values simulated (number of simulations
for each value of the parameter to generate a plot comparing
influence of a given parameter).

Memory usage scales as O(B · T ), due to the need to store
the full state probability distribution over time. Although

FIGURE 2. The evolution of E [N(t)], for various values of ω and randomly
changing ε(t): µ2 = 5, µ1 = 3, K = 40, B = 100.

FIGURE 3. The evolution of E [N(t)], for various values of K and randomly
changing ε(t): µ2 = 5, µ1 = 3, ω = 0.01, B = 100.

computationally intensive, this approach remains tractable
for moderate problem sizes and provides high-resolution
insight into the energy dynamics of IoT systems under
time-varying environmental conditions. However, increasing
the state space or resolution (B or T ) significantly raises
the computational cost, especially if extended to parameter
sweeps or Monte Carlo simulations. Thus, the computational
complexity of this numerical computation is primarily
determined by the dimensionality of the differential equation
system, the resolution of the time vector, and the number of
simulations for varying parameters.

A. THE IMPACT OF SYSTEM PARAMETERS ON THE MEAN
NUMBER OF STORED ENERGY PACKETS
The mean number of stored energy packets is a key perfor-
mancemetric, as a higher number of stored packets allows the
device to operate for a longer duration without depleting its
energy reserves. If the stored energy is exhausted, the device
will shut down.
We analyse the impact of model parameters such as ω,

µ, ϖ , and K on the mean number of stored energy packets.
In each presented result, the values of ω(t) are generated by
a stochastic process that updates ω at regular or random time
intervals ςt .
For Figs. 2 and 3, the values of ω(t) are randomly generated

using a uniform distribution with ωmin = 0 and ωmax = 12.
The values of ω change every ςt = 12 hours. The remaining
parameters are specified in the figures and their captions.
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FIGURE 4. The evolution of E [N(t)], for various values of ω and ε(t) from a
weather Markov chain (εmin = 5 and εmax = 12): µ2 = 5, µ1 = 3, K = 40,
B = 100.

FIGURE 5. The evolution of E [N(t)], for various values of ω , no energy
threshold K , and ε(t) from a weather Markov chain (εmin = 5 and
εmax = 12): µ2 = 5, µ1 = 3, B = 100.

Fig. 2 illustrates the evolution of E[N (t)] for different values
of ϖ . In general, as the leakage parameter ϖ increases, the
mean number of energy packets (EPs) in the ESS decreases
due to higher energy leakage. Fig. 3 shows the evolution of
E[N (t)] for various values of K . Higher values of the energy
threshold K generally lead to an increase in the mean number
of EPs in the ESS. This occurs because when the threshold is
reached early—while sufficient energy remains in the ESS—
the node enters energy-saving regimes sooner, slowing the
depletion of stored EPs.

The time-dependent function ω(t) can be derived from
a weather Markov chain. We model the weather as a
simple two-state Markov chain, where each state represents a
different weather condition (e.g., sunny and rainy or sunny
and not sunny). The state transitions determine the energy
delivery rate ω(t), which varies based on the current weather
state.

When the weather state is S0, the mean energy delivery
rate is ωmax, with a certain probability of transitioning to the
S1 state. Conversely, when the weather state is S1, the mean
energy delivery rate is ωmin, with a probability of transitioning
back to the S0 state.

The transition matrix for this two-state Markov chain is
given by:

P =
[
0.8 0.2
0.3 0.7

]

FIGURE 6. The evolution of E [N(t)], for various values of µ, no energy
threshold K , and ε(t) from a weather Markov chain (εmin = 5 and
εmax = 18): ω = 0.01, B = 100.

FIGURE 7. The evolution of E [N(t)], for various values of µ, no energy
threshold K , and ε(t) from a weather Markov chain (εmin = 0 and
εmax = 18): ω = 0.01, B = 100.

Fig. 4 shows the evolution of E[N (t)] for various values
of ϖ , where ω(t) is generated using the weather Markov
chain with ωmin = 5 and ωmax = 12. The observed trend
is consistent with that of Fig. 2, as discussed earlier. Also,
Fig. 5 shows the evolution of E[N (t)], for various values
of ϖ , without considering the energy threshold K , and the
values of ω(t) are generated from a weather Markov chain
(ωmin = 5 and ωmax = 12). The trend is the same as in
Figs. 2 and 4.

Since increasing or decreasing the energy harvesting rate
can mitigate the impact of energy leakage, we analyse the
influence of the mean energy harvesting rate and mean
energy consumption rate on the evolution of the mean
number of energy packets (EPs) in the ESS. Fig. 6 illustrates
the evolution of E[N (t)] for various values of µ, without
considering the energy threshold K , where ω(t) is generated
using a weather Markov chain with ωmin = 5 and ωmax = 12.
Similarly, Fig. 7 presents the evolution of E[N (t)] under the
same conditions, except that ω(t) is generated from a weather
Markov chain with ωmin = 0 and ωmax = 12.

In general, as the mean energy consumption rate µ

increases, the mean number of EPs in the ESS decreases. This
is expected, as higher values of µ lead to a faster depletion of
stored EPs. The key difference between Fig. 6 and Fig. 7 is
that in Fig. 7, the weather model allows for periods where
no energy is harvested (ωmin = 0), which results in more
pronounced fluctuations in E[N (t)].

86126 VOLUME 13, 2025



G. S. Kuaban et al.: Time-Dependent Analysis of Interaction Between Energy Harvesting, Leakage

FIGURE 8. The evolution of E [N(t)], for various values of ω , no energy
threshold K , and ε(t) from a weather Markov chain: µ = 3, B = 100.

FIGURE 9. The evolution of E [N(t)], for various values of µ, no energy
threshold K , and ε(t) from a weather Markov chain (εmin = 0 and
εmax = 12): ω = 0.01, B = 100, p(B, 0) = 0 (starting with B EPs in the ESS
at t = 0).

Figure 8 depicts the evolution of E[N (t)] for various values
of ϖ , excluding the impact of the energy threshold K . The
energy arrival rate, ω(t), is generated from a weather Markov
chain. When ϖ = 0, the energy storage system (ESS) is
charged to full capacity, and the mean number of stored
energy packets remains above 80% of its maximum capacity.
As the energy leakage parameter ϖ increases, the depletion
rate of stored energy packets increases, leading to a rapid
decline in energy packets in the ESS. For instance, when
ϖ = 0.09, the mean number of stored energy packets reaches
zero before t = 60 time units. Conversely, lower values of ϖ

result in higher values of the mean number of energy packets
over time. Since the leakage rate is an inherent characteristic
of energy storage systems and beyond the control of an
IoT system designer, mitigating its impact on the node’s
lifetime necessitates either reducing energy consumption or
increasing energy harvesting rates.

The results presented in Figs. 2–8 assume that the energy
storage system (ESS) initially contains zero energy packets
(EPs) at time t = 0, i.e., p(0, 0) = 1. However, it is also
possible to begin with B energy packets in the ESS at t = 0,
represented as p(B, 0) = 1. The results shown in Figs. 9–12
are obtained under this assumption, meaning the system starts
with B EPs at t = 0.

The observed trends regarding the influence of the mean
energy consumption rate µ and the energy leakage parameter
ϖ remain consistent with those in Figs. 2–8. This consistency

FIGURE 10. The evolution of E [N(t)], for various values of µ, no energy
threshold K , and ε(t) from a weather Markov chain (εmin = 0 and
εmax = 12): ω = 0.01, B = 100, p(B, 0) = 0 (starting with B EPs in the ESS
at t = 0).

FIGURE 11. The evolution of E [N(t)], for various values of µ, no energy
threshold K , and ε(t) from a weather Markov chain (εmin = 0 and
εmax = 12): ω = 0.0, B = 100, p(B, 0) = 0 (starting with B EPs in the ESS at
t = 0).

FIGURE 12. The evolution of E [N(t)], for various values of ω , no energy
threshold K , and ε(t) from a weather Markov chain (εmin = 0 and
εmax = 12): µ = 3, B = 100, p(B, 0) = 0 (starting with B EPs in the ESS at
t = 0).

indicates that our proposed transient analysis framework is
independent of the initial number of energy packets, whether
it is zero or B at t = 0.
The mean energy delivery rate function, denoted as ω(t),

can be modelled using a Markov chain with any number
of states. While previous examples considered a two-state
Markov chain, we now extend the analysis to a four-state
Markov chain, where each state corresponds to different
weather conditions: Night (low or no energy), Sunny (high
energy), Cloudy (medium energy), and Rainy (low tomedium
energy). Although this model focuses on solar energy, it can
be generalized to incorporate multiple renewable energy
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FIGURE 13. The evolution of E [N(t)], for various values of ω , no energy
threshold K , and ε(t) generated from a four state weather Markov chain:
µ = 3, B = 100, p(0, 0) = 0 (starting with n = 0 EPs in the ESS at t = 0).

FIGURE 14. The evolution of E [N(t)], for various values of µ, no energy
threshold K , and ε(t) generated from a four state weather Markov chain:
ω = 0.05, B = 100, p(0, 0) = 0 (starting with n = 0 EPs in the ESS at t = 0).

FIGURE 15. The evolution of E [N(t)], for various energy leakage functions
ϑ(n), no energy threshold K , and ε(t) generated from a four state weather
Markov chain: ω = 0.01, µ = 3, B = 100, p(0, 0) = 0 (starting with n = 0
EPs in the ESS at t = 0).

sources that fluctuate based on weather conditions. In such
cases, the number of states could increase to better capture
system complexities.

The authors in [43] studied the transient charging and
discharging of a supercapacitor under varying transient
energy harvesting rates, where the energy harvest rate ω(t)
fluctuates over time. Suppose that the values of ω(t) are
generated from a four-state Markov chain governed by the
transition matrix:

P =





0.7 0.2 0.1 0.0
0.1 0.6 0.2 0.1
0.2 0.3 0.4 0.1
0.3 0.1 0.3 0.3





Figs. 13–15 illustrate the results obtained using the
four-state Markov chain. Specifically, Fig. 13 examines the
influence of the energy leakage parameter ϖ on the evolution
of the mean number of energy packets (EPs) in the energy
storage system (ESS), while Fig. 14 investigates the impact
of the energy consumption rate µ. The observed trends align
with the findings from previous figures that analysed the
effects of ϖ and µ on the mean number of EPs in the
ESS. A key aspect of these figures is the incorporation of a
four-state Markov chain with four distinct values of ω(t) (e.g.,
ω = 0, 12, 5, 2 corresponding to the states Night, Sunny,
Cloudy, and Rainy, respectively).
Another significant result is shown in Fig. 15, which

explores the impact of different energy leakage functions ε(n)
on the evolution of the mean number of EPs in the ESS. Three
energy leakage models are considered:

• Linear energy leakage: ε (n) = (n↑ 1)ϖ
• Exponential energy leakage: ε (n) = e(n↑1)ϖ

• Constant energy leakage: ε (n) = ϖ

The results indicate that the exponential energy leakage
model performs the worst, followed by the linear model.
This is because, in the exponential energy leakage model,
the energy leakage rate grows exponentially with the number
of EPs remaining in the ESS, whereas in the linear model,
the leakage rate increases linearly. Experimental studies have
demonstrated that energy leakage in supercapacitors often
follows an exponential model [44], [45], [46].

B. THE IMPACT OF SYSTEM PARAMETERS ON THE
SERVICE OUTAGE PROBABILITY
In this section, we compute the transient probability of
service outage, which quantifies the likelihood of complete
energy depletion in the system. Reducing the service outage
probability is essential to ensure continuous operation and
prevent disruptions caused by the shutdown of the IoT node
due to insufficient stored energy.
Following the approach used in the numerical simulations

for the transient mean number of stored energy packets,
we investigate how key model parameters—ω, µ, ϖ , and K—
influence system performance.
Figures 16-20 illustrate the evolution of the transient prob-

ability of depleting all stored energy packets. These results
are obtained using the four-state Markov chain representing
weather conditions, which was previously employed in the
numerical simulations of the transient mean number of stored
energy packets. All other relevant parameters are provided in
the figure captions.
In the simulations of p(0, t), we assume B = K , meaning

that the mean energy consumption rate, µ, remains constant.
The general trend observed is that the transient probability

of energy depletion, p(0, t), varies dynamically with changes
in the mean energy delivery rate, ω(t). If the initial number of
stored energy packets is n = 0 at t = 0, then p(0, 0) = 1, and
p(0, t) evolves according to variations in ω(t). Conversely,
if the system starts with n = B energy packets at t = 0,
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FIGURE 16. The evolution of p(0, t), for various energy consumption rate
µ, no energy threshold K , and ε(t) generated from a four state weather
Markov chain: ω = 0.01, B = 100, p(0, 0) = 1 (starting with n = 0 EPs in
the ESS at t = 0).

FIGURE 17. The evolution of p(0, t), for various energy consumption rate
µ, no energy threshold K , and ε(t) generated from a four state weather
Markov chain: ω = 0.05, B = 100, p(B, 0) = 1 (starting with n = B EPs in
the ESS at t = 0).

then p(0, 0) = 0, and p(0, t) increases dynamically based on
the fluctuations in ω(t).

In the simulations, the mean energy consumption rate is set
toµ = {5, 8, 11}. The values of ω corresponding to the energy
states S0, S1, S2, and S3 are given by: ω = {0, 12, 5, 2} with
the corresponding state transition probability matrix:

P =





0.7 0.2 0.1 0.0
0.1 0.6 0.2 0.1
0.2 0.3 0.4 0.1
0.3 0.1 0.3 0.3





It is observed that when the mean energy harvesting rate,
ω, decreases from higher to lower values, the probability of
energy depletion at time t increases, and vice versa.
Figures 16 and 17 show the influence of the mean energy

consumption rate, µ, on p(0, t). The results indicate that the
probability of depleting all stored energy packets increases
significantly with higher energy consumption rates. This
increase is particularly pronounced during time intervals
when the mean harvesting rate, ω, is lower than the mean
consumption rate, µ. The key difference between Figures 16
and 17 is the initial energy level: in Figure 16, the system
starts with n = 0 at t = 0, whereas in Figure 17, it starts with
n = B.

FIGURE 18. The evolution of p(0, t), for various leakage parameter ω ,
no energy threshold K , and ε(t) generated from a four state weather
Markov chain: µ = 3, B = 100, p(0, 0) = 1 (starting with n = 0 EPs in the
ESS at t = 0).

FIGURE 19. The evolution of p(0, t), for various leakage parameter ω ,
no energy threshold K , and ε(t) generated from a four state weather
Markov chain: µ = 3, B = 100, p(B, 0) = 1 (starting with n = B EPs in the
ESS at t = 0).

FIGURE 20. The evolution of p(0, t), for various energy leakage functions
ϑ(n), no energy threshold K , and ε(t) generated from a four state weather
Markov chain: ω = 0.01, µ = 3, B = 100, p(0, 0) = 0 (starting with n = 0
EPs in the ESS at t = 0).

Figures 18-20 illustrate the impact of the energy leakage
rate on the probability of depleting all stored energy packets.
Specifically, Figures 18-19 show the influence of the energy
leakage parameter ϖ on p(0, t). The general trend indicates
that as ϖ increases, the probability of energy depletion also
increases.
The key difference between the results in Figures 18 and 19

lies in the initial energy levels. In Figure 18, the system starts
with n = 0 at t = 0, meaning there is no energy packet in the
energy storage system (ESS) initially. In contrast, Figure 19
assumes n = B at t = 0, meaning the ESS starts with B stored
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energy packets. Additionally, in Figure 19, the values of
p(0, t) are displayed on a logarithmic scale to better observe
very small probabilities. This is necessary because starting
with n = B energy packets at t = 0 results in extremely low
values of p(0, t).

The results in Figures 16-19 are computed using the linear
energy leakage model. In Figure 20, we analyse the effect
of different energy leakage models on p(0, t). The highest
values of p(0, t) are observed with the exponential leakage
model, followed by the linear leakage model, and finally, the
constant leakage model, which results in the lowest values
of p(0, t). This occurs because, in the exponential leakage
model, the energy leakage rate increases exponentially with
the number of stored energy packets. Consequently, the
constant leakage model exhibits the lowest probability of
service outage, followed by the linear leakage model, and
finally, the exponential leakage model, which results in the
highest service outage probability.

VI. CONCLUSION
In this paper, we introduced a novel mathematical framework
to analyse the dynamic interactions between time-dependent
energy harvesting, leakage, and consumption processes in
green IoT networks. By incorporating transient energy
dynamics and utilizing a Markov model to capture fluctua-
tions in the energy harvesting rate, we were able to provide a
more accurate representation of the challenges faced by IoT
devices in real-world environments. Through our numerical
simulations, we demonstrated the significant impact of
key design parameters, such as energy storage system
capacity, mean energy consumption rate, energy leakage, and
variations in energy harvesting rates, on critical performance
metrics like the probability of energy depletion and the
transient mean number of stored energy packets. Our findings
emphasize the necessity of accounting for time-varying
energy harvesting rates and non-idealities in energy storage
systems to enhance the reliability and sustainability of green
IoT systems.

Frequent fluctuations in renewable energy sources can sig-
nificantly affect the availability of IoT nodes—manifesting
as increased outage probability and reduced operational
lifetime—particularly for energy-intensive devices with lim-
ited storage capacity. Such variability can lead to recurring
energy-related disruptions, compromising the reliability and
continuity of IoT system performance. Therefore, when
designing renewable energy systems for IoT applications,
it is essential for system designers to account for the
stochastic and time-varying nature of renewable energy
sources. Additionally, they must consider the effects of
energy leakage from storage systems and incorporate a
reasonable safety margin in the energy harvesting output to
ensure long-term, uninterrupted operation—ideally enabling
the IoT node to function reliably for several years without
energy-related failures.

The primary limitation of the proposed framework lies
in its assumption that the time interval between successive

energy packet deliveries to the energy storage system (ESS)
follows a Poisson process, and that the time required to
consume an energy packet is exponentially distributed.
While these assumptions may not fully capture real-world
dynamics, they offer a practical first-order approximation that
facilitates analytical tractability and provide practical insights
on the time-dependent behaviour of energy storage systems
supplied by time-dependent energy sources. In future work,
we aim to enhance the model by employing diffusion approx-
imation, fluid flow approximation, and other numerical
simulation techniques that do not rely on specific distri-
butional assumptions for energy delivery and consumption
processes. Additionally, we will focus on refining the existing
models and investigating optimization strategies to improve
energy efficiency, particularly in resource-constrained IoT
environments.
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