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Sterowalnos¢ ukladow z opoznieniami

Streszczenie

W referacie rozpatrywane s zagadnienia sterowalnosci liniowych, ciaglych,
skonczenie wymiarowych ukladéw dynamicznych ulamkowego drugiego rzedu z
pojedynczym skupionym opoznieniem we wspolrzednych stanu oraz rozlozonym
opdéznieniem W Sterowaniach dopuszczalnych. Przedstawiono model matematyczny
ukladu dynamicznego w postaci ulamkowego rozniczkowego réwnania stanu. Podano
definicj¢ pochodnej ulamkowego rzedu, stanu chwilowego oraz stanu zupelnego ukladu
dynamicznego z op6znieniami oraz definicje zbiorow osiggalnych.

W przypadku ukladow ulamkowych drugiego rzedu rozwigzanie rozniczkowego
rownania stanu jest innej postaci niz w przypadku ukladow pierwszego rzedu. Ma to
istotny wplyw na posta¢ warunkow sterowalnosci.

Nastepnie przypomniano definicje globalnej wzglednej sterowalnosci liniowego
ukladu dynamicznego w zadanym przedziale czasowym dla ukladéw dynamicznych z
opoznieniami. Wykorzystujac liniowos¢ oraz stacjonarnos¢ rozpatrywanego ukladu
dynamicznego zastosowano do wyznaczenia postaci rozwiazania odwrotne
przeksztalcenie Laplacea uzyskujac w ten sposob analityczne rozwiazanie liniowego,
ulamkowego, rézniczkowego réownania stanu ukladu dynamicznego.

Wykorzystujac metody analizy funkcjonalnej, a w szczegolnosci twierdzenia z
zakresu liniowych operatorow w przestrzeniach Hilberta zaproponowano postaé
macierzy sterowalnosci, bedacej uogolnieniem na przypadek ukladéw dynamicznych z
opoznieniami znanej macierzy sterowalnosci ukladow dynamicznych bez opdoznien.

W dalszej czesci referatu na podstawie zaproponowanej macierzy sterowalnosci
sformulowano oraz udowodniono algebraiczne warunki konieczne i wystarczajace
globalnej wzglednej sterowalnosci w zadanym przedziale czasowym dla rozpatrywanego
ukladu dynamicznego z opoéznieniami. Ponadto przedyskutowano wzajemne relacje
zachodzace pomiedzy poszczegolnymi rodzajami sterowalnosci.

W koncowej czeSci referatu przedstawiono mozliwe uogolnienia Kkryteriow
sterowalnosci wzglednej na przypadek ukladow dynamicznych z rozlozonymi
opoOznieniami zarowno we wspolrzednych stanu, jak i w sterowaniach dopuszczalnych.
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Abstract—The main purpose of this presentation is to study controllability of linear
continuous-time fractional dynamical systems containing both lumped constant delay in
state variables and distributed delays in admissible controls. Necessary and sufficient
conditions for relative controllability in finite time interval are formulated and proved
using theory of linear bounded operators, solution properties of fractional differential
equations and results taken directly from linear matrix algebra. The main result of the
paper is to show, that global relative controllability of fractional linear systems with
different types of delays is equivalent to non-singularity of suitably defined relative
controllability matrix.
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I.  INTRODUCTION

In the literature there are many different definitions of controllability, both for linear
and nonlinear or semilinear dynamical systems [4], [5], [15] [18], [22], [25], [29].
Controllability concept strongly depends on class of dynamical control systems and on
the set of admissible controls, [10], [12], [17], [32], [33]. Therefore, nonlinear or
semilinear fractional systems there exist many different necessary and sufficient
conditions for global and local controllability [4], [5], [24].

Controllability of linear systems with different types of delays was considered in many
monographs [11], [13], [18], [21], survey papers [19] and [20] and in regular papers [9],
[10], [16], [17].

The various types of fractional differential equations have many applications in different
fields of technique including for example signal processing, theory of visco-elastic
materials [1], [30], supercapacitors [23] filter description and design, circuit theory [13],
computer networks, and bioengineering [11].

The main purpose of this paper is to study the relative global controllability of linear
fractional second order delay dynamical systems containing both single lumped constant
time delay in the state variables and distributed delay in the admissible controls.

This is natural generalizations of controllability concepts, which is rather well known in
the theory of finite dimensional linear control systems, without delays in state variables
or in admissible controls. Using techniques similar to those presented in monographs
[18], and [21] and in the series of papers [12], [16] and [17] we shall formulate and prove
necessary and sufficient conditions for global relative controllability of fractional
control systems in a prescribed time interval.

This paper is organized as follows: section 2 contains mathematical model of linear,
stationary fractional second order stationary dynamical system with multiple time
variable point delays in admissible controls. Moreover, in this section basic solution of
fractional second order linear finite dimensional differential equation is presented in
compact integral form and its properties are also discussed. In section 3 definition of
global relative controllability in a given time interval is recalled. Next, using results and
methods taken directly from linear functional analysis [31], global relative controllability
problem is mathematically stated and considered. Moreover, using suitably defined
relative controllability matrix necessary and sufficient conditions for global relative
controllability in a finite time interval are formulated and proved. admissible control.
Finally, section 4 contains concluding remarks and proposes some open controllability
problems for more general fractional systems.



Il. SYSTEM DESCRIPTION

Let us consider linear, second order fractional, delay dynamical systems containing
single lumped constant delay in the state variables and distributed delays in admissible
controls, described by the following fractional differential state equation [2], [3], [11],
[24], [25].

D“x(t) = Ax(t) + Cx(t —h) + jldTB(t,T)U(HT) 1)

teft,—h,t]

with initial complete state

X(1) =%, () =(t), u®)=u, (1) for teft;—h,t] 2)

where
1<a <2, D?(t) denotes second order fractional Caputo derivative, defined as follows

Df(t) = F(Z—l_a) J (t — ) D (s)ds

where symbol T denotes the Euler gamma function.
Moreover,
A is nxn dimensional constant matrix with real coefficients,

admissible controls ueU,, = L*([t,,t,],R?) are unconstrained,

h>0 is given constant delay



x(t)eR" for te[t,—h,t],

u(t) eR? for te[t,—h,t],

x, (1), te[t,—h,t,]is given continuous initial function,
u, (1), teft,—h,t,]is given initial admissible control

B(t,z) is mxp dimensional matrix continuous in t for fixed T and of bounded variation in T
on [-h,0] for each t<[t,,t,] and continuous from left in T on the interval (-h,0).

integral term in (1) is in the Lebesque-Stieltjes sense [6], [8], [9] with respect to T,

symbol dB, denotes the Lebesque-Stieltjes integration [6], [8], with respect to the
variable T in the matrix function B(t,7).

initial data {x,_u,} forms complete state of the fractional delayed system (1) at initial
time to.

In order to find the solution of second order fractional differential equation (1) let us use
Laplace transform L [11], [14],

k=n-1

L[D*x(t)](s) = s*L[x(t)](s) — z x(k)(o)sa—l—k

k=0
Therefore,

a—1

X(S) - [S“I—;—Ce_hs](p(o) * [s“l—ila—_;e_hs] (p(l) (O) *

+ C[ e~hs ] * f_Oh e " @(T)dt

s®[—A—Cehs

where symbol * dotes convolution.



Hence

x() = L7 [s* (s - A — €77%) 7| (©)p(0) +
+ L7 s (s — A— €70) | (D™ (0) +

Taking into account the above equalities, let us introduce the following
matrices

Xo(t) = L7t [s* 1 (s“1 — A - c—hS)'l] (t)
Xoz(t) = t1L7 [s%2(sT — A - c—hS)'l] ()

‘ (t — S)a—2

Xgot) =t | ——
a,a( ) F(a _ 1)
0

X,(s)ds

Hence using the above defined matrices solution of the equation (1) with
initial condition (2), but without admissible controls is given by the following
form

xL(t1»xt1) = X, (0)@(0) + XM (0) +

0
+ B j(t —s—h)*1X,,(t—s—h)e(s)ds
“h



For first order fractional derivative when o<« <1 the above matrices have the
following form

a-1
X, (t) = L-ll u ](t)

s®*—A—Ce*

[ (t—5)72

X t)=t% | ————
a,a( ) 1_, (a _ 1)
0

X,(s)ds



111 CONTROLLABILITY CONDITIONS

Since in the paper only relative controllability is considered, then let us recall definition
of global relative controllability in a given finite time interval.

Definition 1. The system (1) is said to be globally relatively controllable over time
intervallt,,t,] if for each initial complete state {x, u,_}of and any final relative state x, R"

there exists an admissible control ueL”([t,,t,],R") such that the solution of equation (1)
with initial conditions (2) satisfies final condition x(t,) = x, .

Taking into account the results of section Il, solution of equation (1) with admissible
controls can be expressed as follows

X(t01tl’xo’ut0’u) — XL(tl’Xt0)+

t; 0
[t =) "X, (t,—s)| [d.B(s,7)u(s+7) ds ¢
to —h

where
X, (t, xto) =X (t)x(t,) +

0
+ J.(tl —s—h)** X, ot —s— h)xto (s)ds
—-h

Now, using unsymmetric Fubini theorem (see e.g. [6] and [8] for more details) and
changing order of integration in the last term we have [2], [19], [26]



where

X(to,tla Xoaut01u) = XL(tl’ Xto)+

+ j).dBr T(tl o S)a_l Xa,a (tl - S)B(S, T)U(S)ds] =

= X (t, X, ) +
]9(,[1 —8)" "X, (t, =8)B(s—7,7)u, (S)ds} +

T

0
+_J‘thT

" i dB, f r(tl =) X,.(t —S)B(S—T,T)u(s)ds] -

L b

= X (4, X, ) +

ty

+ j)‘dBr |:I (t, - s)a_l X g (t, —s)B(s-7, T)Uto (S)dS} +

T

+ tj’ { T (t,—s)“ " X,,(t,—s)d B, (s—, T)}U(S)ds
P Lo (3)

B(s,7), s<t,

Btl(s,z'):{o Sot

The first two terms in formula (3) are depended only on given initial complete state
{x,.u,}, and in fact do not depend on admissible control u(t), t>t,. Therefore, in order to

separate these terms let us denote

q(tl’tO’ Xto’uto) = XL(tll Xto)+

0 t
+[dB| [(t,-5)"X,,(t~5)B(s—7,7)u, (s)ds
-h otz

(4)



Moreover, changing variables in the integral term

UdTB(S,T)u(S + 1)}

and taking into account the form of solution (3) we obtain

X(tO’tl’ XO’utO ,U) = q(tlatov XO’uto) +
Ll O

+ _[“(tl _g)et X, o(ti—8)d B, (s—7, r)}u(s)ds (5)
to L—h

Now, let us introduce relative controllability operator C_(t) and its adjoint operator
C.(t)

Ca(tl)u:
L 0
= [(Jt.=5)"" X, (t, =)d.B, (s —7,7))u(s)ds (6)
t, —h
CZ(tl)y:
0
= (Jt,=9)“*X,,(t, =5)d,B, (s—7,7))"y (7
~h

Finally, let us define nxn dimensional relative controllability matrix



W(to’tl) = Ca (tl)C:z (tl) =

([ -9 X, ., —9)d,B, (- .00 x
t, —h (8)

X (T(t1 -5)"" X, .t —8)"d.B, (s—7,7))"ds

Using relative controllability matrix it is possible to formulate and prove main result of
the paper given the following theorem, which presents necessary and sufficient
conditions for global relative controllability in a given time interval.

Theorem 1. The following statements are equivalent

(1) Fractional system (1) is globally relatively controllable over t[t,.t,].

(2) Relative controllability linear operator C,:L*([t,,t,],R?) - R" is onto.

(3) Adjoint relative controllability operator C :R" — L*([t,,t,],R™) is invertible i.e., it is
linear “one to one” operator.

(4) The bounded linear operator C_C::R" —R" is onto and may be realized by nxn
nonsingular matrix.

Proof.
In the proof of Theorem 1 relative controllability linear bounded operator C, and its

adjoint operator C; play the important role. Hence, linear functional analysis theory

may be applied to prove theorem. More precisely, we shall use methods and results taken
directly from theory of linear bounded operators in Hilbert spaces.

First of all, let use, that range of the relative controllability operator C_ is finite
dimensional, then operator C, is a bounded linear operator.

Moreover, as was mentioned before, from the definition 1 and integral formula (8)
immediately follows that global relative controllability property is equivalent that
relative controllability operator C, is surjective operator. Hence, equivalence (1) and (2)

follows.

From the theory of linear operators follows that surjectivity of
the operator C, implies (see e.g. [8], [31]) that its adjoint



linear operator
C’:R" - L°([t,,t,],R™)

is also linear and bounded operator and moreover it is invertible
operator, i.e. “one to one” operator.

Hence, equivalence (2) and (3) follows.

Similarly, from theory of linear bounded operators follows, that invertibility of the
selfadjoint operator C,C: means, that exist inverse bounded linear operator (C,C.)*and

this is equivalent to surjectivity of the operator c . Therefore, for relatively controllable
fractional system (1), relative controllability matrix

W(t,,t)=C.C :R" >R’

is invertible i.e., it is full rank matrix. Hence, equivalence (4) and (1) follows.
This statement completes proof of Theorem 1.

Corollary 2. Fractional system (1) with distributed delay in admissible control is globally
relatively controllable on time interval [t,,t]if and only if the relative controllability

matrix is nonsingular.

Proof. From global relative controllability definition directly follows, that for relatively
controllable fractional system (1) the operator relative controllability operator C_(t,) is

onto. On the other hand by Theorem 1 this is equivalent, that relative controllability
matrix W(t,,t,) is nonsingular.

For globally relatively controllable fractional system (1) it is possible to find an
admissible control, which transforms given initial complete state {x,_u, }of and any final

relative state x, e R" attime t,. First of all, let us observe, that since relative controllability
matrix W(t,,t) is nonsingular matrix so its inverse W "(t,,t,) is well defined. Therefore,
let us define admissible control as follows



u°(t) = Co (LW ™ (to, ) (%, — X, (1, %, ) -

0 to
- j dB. j (t, - )" X, (t, ~s)B(s—7,7)u, (5)ds |= o
-h to+7 9

- C; (tl)W - (to ’tl)(xl - q(to 1 Xo, uto ))
where complete initial state and the final relative state vector are chosen arbitrarily.

Inserting admissible control u’(t) given by equality (9) into solution formula (3) and
taking into account equalities (6), (7) and (8) we have

X(t, b, Xo, Uy, U) =ty Ty, X, U, ) +
tt[ O
+j j(t1 ~8)*'X,,(t, —9)d,B, (s—7,7) u°(s)ds =
~h

= q(tl’tO’XO’uto)+
+ COC (tl)C; (tl)W - (tO ! tl)(xl - q(tla tO! XO! uto )) = (10)
= q(tl’tO'XO'uto)+

W (t, )W ™ (t, 1) (% — At b, X, U, ) = X,

Thus, the admissible control u’(t) transfers initial complete state {x,_u, }to final relative
state x, eR" at time t,.



IV CONCLUSIONS

In this paper linear fractional finite-dimensional stationary dynamical control systems
with different types of delays in admissible control are considered. More exactly, single
constant delay in state variables and distributed delays in admissible controls are
discussed. It is generally assumed, that the mathematical model is represented by linear
ordinary fractional differential state equations. Using notations, theorems and methods
taken directly from functional analysis and linear controllability theory, necessary and
sufficient conditions for global relative controllability in a given finite time interval are
formulated and proved.

The main result of this paper is to show and to prove, that global relative controllability
of fractional control systems with delays both in state variables and in admissible control
Is equivalent to non-singularity of suitably defined square relative controllability matrix.

Using suitably defined relative controllability matrix for global relatively controllable
systems steering admissible control is proposed, which steers the fractional system from
given initial complete state to desired final relative state. Moreover, at the beginning of
the paper some remarks and comments on the existing in literature controllability results
for different types of linear continuous-time and discrete-time fractional dynamical
system are also presented.

It should be pointed out, that using different methods of functional analysis,
controllability results presented in this paper may be extended in many different ways
both for fractional systems and for standard systems [16], [17], [33] and for fractional
systems with constrained admissible controls [9], [10], [11], [12], [26], [27] and [28]. First
of all, using relative controllability matrix, relative controllability problems for
semilinear, or generally nonlinear fractional control systems with different types of delays
not only in admissible controls, but also in the state variables recently have been
considered in papers [4], [5].

Second possibility is to formulate and prove necessary and sufficient conditions for
relative controllability of fractional control systems with different orders of derivatives,
applying methods and concepts proposed in paper [12].

The third direction is to consider infinite dimensional control systems applying functional
analysis methods and concepts (see monographs [18], [21], and [32]). Since in this case
relative state space is infinite dimensional space, then several additional concepts of
controllability should be introduced, namely: approximate absolute controllability and
exact absolute controllability, approximate relative controllability and exact relative
controllability.



In last few years nonlinear or semilinear fractional control systems have been discussed
in the literature e. g., in papers [3], and [4]. However, so far, but only rather little attention
reports on the global or local relative controllability for delayed systems were published.
It follows from the fact, that for nonlinear or semilinear fractional systems we do not
know the exact form of the solution for the nonlinear state equation.

Relative controllability conditions for semilinear fractional systems with dominated
linear part are discussed in the papers [24], and [25] under the assumption, that linear
part is relatively controllable and the nonlinear part satisfy certain inequality.

Generally, in the case of semilinear or nonlinear fractional control systems different
techniques are used. The most popular is the fixed-point technique. For example, it is
possible to use Banach fixed point theorem, Schauder fixed point theorem, Schaefer fixed
point theorem or Darbou fixed point theorem based on measures of noncompactnes in
Banach, spaces [6], [8]. It strongly depends on the form of nonlinear part of the fractional
state equation.

Minimum energy control problem for fractional systems, similarly as for standard
linear systems is strongly connected with different controllability concepts, (see e.g., [16],
[20], [24] for more details). First of all, let us observe, that for relatively controllable
linear control system there exists generally many different admissible controls
transferring given initial state complete state to the desired final relative state.
Therefore, we may ask which, of these possible admissible controls are optimal one
according to given a priori criterion.

For quadratic criterion and relatively controllable linear fractional systems (1), solution
of this problem can be found using relative controllability matrix. Moreover, minimum
energy value may be computed in rather simple form. However, it should be mentioned,
that this method requires many additional restrictive assumptions (see monographs [18]
and [21] and survey papers [16] and [17] for more details) as for example, that state
variables and admissible controls are unbounded in whole time interval.
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