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Sterowalność układów z opóźnieniami 
 

Streszczenie 

 

W referacie rozpatrywane są zagadnienia sterowalności liniowych, ciągłych, 

skończenie wymiarowych układów dynamicznych ułamkowego drugiego rzędu z 

pojedynczym skupionym opóźnieniem we współrzędnych stanu oraz rozłożonym 

opóźnieniem w sterowaniach dopuszczalnych. Przedstawiono model matematyczny 

układu dynamicznego w postaci ułamkowego różniczkowego równania stanu. Podano 

definicję pochodnej ułamkowego rzędu, stanu chwilowego oraz stanu zupełnego układu 

dynamicznego z opóźnieniami oraz definicje zbiorów osiągalnych.  

 

W przypadku układów ułamkowych drugiego rzędu rozwiązanie różniczkowego 

równania stanu jest innej postaci  niż w przypadku układów pierwszego rzędu. Ma to 

istotny wpływ na postać warunków sterowalności.  

 

Następnie przypomniano definicję globalnej względnej sterowalności liniowego 

układu dynamicznego w zadanym przedziale czasowym dla układów dynamicznych z 

opóźnieniami. Wykorzystując liniowość oraz stacjonarność rozpatrywanego układu 

dynamicznego zastosowano do wyznaczenia postaci rozwiązania odwrotne 

przekształcenie Laplace,a uzyskując w ten sposób analityczne rozwiązanie liniowego, 

ułamkowego, różniczkowego równania stanu układu dynamicznego.  

 

Wykorzystując metody analizy funkcjonalnej, a w szczególności twierdzenia z 

zakresu liniowych operatorów w przestrzeniach Hilberta zaproponowano postać 

macierzy sterowalności, będącej uogólnieniem na przypadek układów dynamicznych z 

opóźnieniami znanej macierzy sterowalności układów dynamicznych bez opóźnień. 

  

W dalszej części referatu na podstawie zaproponowanej macierzy sterowalności 

sformułowano oraz udowodniono algebraiczne warunki konieczne i wystarczające 

globalnej względnej sterowalności w zadanym przedziale czasowym dla rozpatrywanego 

układu dynamicznego z opóźnieniami. Ponadto przedyskutowano wzajemne relacje 

zachodzące pomiędzy poszczególnymi  rodzajami sterowalności. 

 

 W końcowej części referatu przedstawiono możliwe uogólnienia kryteriów 

sterowalności względnej na przypadek układów dynamicznych z rozłożonymi 

opóźnieniami zarówno we współrzędnych stanu, jak i w sterowaniach dopuszczalnych.  
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Abstract—The main purpose of this presentation is to study  controllability of linear 

continuous-time fractional dynamical systems containing both lumped constant delay in 

state variables and distributed delays in admissible controls. Necessary and sufficient 

conditions for relative controllability in finite time interval are formulated and proved 

using theory of linear bounded operators, solution properties of fractional differential 

equations and results taken directly from linear matrix algebra. The main result of the 

paper is to show, that global relative controllability of fractional linear systems with 

different types of delays is equivalent to non-singularity of suitably defined relative 

controllability matrix.  
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I.  INTRODUCTION 

  

In the literature there are many different definitions of controllability, both for linear 

and nonlinear or semilinear dynamical systems [4], [5], [15] [18], [22], [25], [29]. 

Controllability concept strongly depends on class of dynamical control systems and on 

the set of admissible controls, [10], [12], [17], [32], [33]. Therefore, nonlinear or 

semilinear fractional systems there exist many different necessary and sufficient 

conditions for global and local controllability [4], [5], [24].  

 

Controllability of linear systems with different types of delays was considered in many 

monographs [11], [13], [18], [21],  survey papers [19] and [20] and in regular papers [9], 

[10], [16], [17].  

 

The various types of fractional differential equations have many applications in different 

fields of technique including for example signal processing, theory of visco-elastic 

materials [1], [30], supercapacitors [23] filter description and design, circuit theory [13], 

computer networks, and bioengineering [11].  

 

The main purpose of this paper is to study the relative global controllability of linear 

fractional  second order delay dynamical systems containing both single lumped constant 

time delay in the state variables and distributed delay in the admissible controls.  

 

This is natural generalizations of controllability concepts, which is rather well known in 

the theory of finite dimensional linear control systems, without delays in state variables 

or in admissible controls. Using techniques similar to those presented in monographs 

[18], and [21] and in the series of papers [12], [16] and [17] we shall formulate and prove 

necessary and sufficient conditions for global relative controllability of fractional  

control systems in a prescribed time interval.  

  

This paper is organized as follows: section 2 contains mathematical model of linear, 

stationary fractional second order stationary dynamical system with multiple time 

variable point delays in admissible controls. Moreover, in this section basic solution of 

fractional second order linear finite dimensional differential equation is presented in 

compact integral form and its properties are also discussed. In section 3 definition of 

global relative controllability in a given time interval is recalled. Next, using results and 

methods taken directly from linear functional analysis [31], global relative controllability 

problem is mathematically stated and considered. Moreover, using suitably defined 

relative controllability matrix necessary and sufficient conditions for global relative 

controllability in a finite time interval are formulated and proved. admissible control. 

Finally, section 4 contains concluding remarks and proposes some open controllability 

problems for more general fractional systems. 



 

 

 

II. SYSTEM DESCRIPTION 

 

Let us consider linear, second order fractional, delay dynamical systems containing 

single lumped constant delay in the state variables and distributed delays in admissible 

controls, described by the following fractional differential state equation [2], [3], [11], 

[24], [25]. 
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where 

21  , )(tD  denotes second order fractional Caputo derivative, defined as follows 
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where symbol denotes the Euler gamma function. 

 

Moreover, 

  

A is nn dimensional constant matrix with real coefficients, 

 

admissible controls )],,([ 10

2 p

ad RttLUu   are unconstrained, 

 

h>0 is given constant delay 
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],[),( 000
thtttxt  is given continuous initial function, 

 

],[),( 000
thtttut  is given initial admissible control 

 

),( tB is n×p dimensional matrix continuous in t for fixed τ and of bounded variation in τ 

on [-h,0] for each ],[ 10 ttt  and continuous from left in τ on the interval (-h,0). 

 

integral term in (1) is in the Lebesque-Stieltjes sense [6], [8], [9] with respect to τ, 

 

symbol dB  denotes the Lebesque-Stieltjes integration [6], [8],  with respect to the 

variable τ in the matrix function ).,( tB  

 

initial data },{
00 tt ux  forms complete state of the fractional delayed system (1) at initial 

time t0. 

 

In order to find the solution of second order fractional differential equation (1) let us use 

Laplace transform L [11], [14], 
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where symbol ∗ dotes convolution. 

 



Hence 
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Taking into account the above equalities, let us introduce the following 

matrices 
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Hence using the above defined matrices solution of the equation (1) with 

initial condition (2), but without admissible controls is given by the following 

form 
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For first order fractional derivative when 10   the above matrices have the 

following form 
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III CONTROLLABILITY CONDITIONS 

 

Since in the paper only relative controllability is considered, then let us recall definition 

of global relative controllability in a given finite time interval. 

 

Definition 1.  The system (1) is said to be globally relatively controllable over time 

interval ],[ 10 tt  if for each initial complete state },{
00 tt ux of and any final relative state nRx 1  

there exists an admissible control )],,([ 10

2 pRttLu  such that the solution of equation (1) 

with initial conditions (2) satisfies final condition
11)( xtx  . 

 

Taking into account the results of section II, solution of equation (1) with admissible 

controls can be expressed  as follows 
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Now, using unsymmetric Fubini theorem (see e.g. [6] and [8] for more details) and 

changing order of integration in the last term we have [2], [19], [26] 
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The first two terms in formula (3) are depended only on given initial complete state 

},{
00 tt ux , and in fact do not depend on admissible control 0),( tttu  .Therefore, in order to 

separate these terms let us denote 
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Moreover, changing variables in the integral term 
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 and taking into account the form of solution (3) we obtain 
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Now, let us introduce relative controllability operator )( 1tC  and its adjoint operator 

)( 1tC

  
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Finally, let us define n×n dimensional relative controllability matrix 
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Using relative controllability matrix it is possible to formulate and prove main result of 

the paper given the following theorem, which presents necessary and sufficient 

conditions for global relative controllability in a given time interval. 

 

Theorem 1. The following statements are equivalent  

 

(1) Fractional system (1) is globally relatively controllable over ],[ 10 ttt . 

(2) Relative controllability linear operator  np RRttLC )],,([: 10
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linear “one to one” operator. 
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nonsingular matrix. 

 

Proof.  

In the proof of Theorem 1 relative controllability linear bounded operator C   and its 

adjoint operator 

C  play the important role. Hence, linear functional analysis theory 

may be applied to prove theorem. More precisely, we shall use methods and results taken 

directly from theory of linear bounded operators in Hilbert spaces.  

 

First of all, let use, that range of the relative controllability operator C  is finite 

dimensional, then operator C  is a bounded linear operator.  

 

Moreover, as was mentioned before, from the definition 1 and integral formula (8) 

immediately follows that global relative controllability property is equivalent that 

relative controllability operator C  is surjective operator. Hence, equivalence (1) and (2) 

follows. 

 

From the theory of linear operators follows that surjectivity of  

the operator  C  implies (see e.g. [8], [31])  that its adjoint 
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is also linear and bounded operator and moreover it is invertible 

operator, i.e. “one to one” operator.  

 

Hence, equivalence (2) and (3) follows. 

 

Similarly, from theory of linear bounded operators follows, that invertibility of  the  

selfadjoint operator 

CC  means, that exist inverse bounded linear operator 1)( 

CC and 

this is equivalent to surjectivity of the operator C . Therefore, for relatively controllable 

fractional system (1), relative controllability matrix  
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is invertible i.e., it is full rank matrix. Hence, equivalence (4) and (1) follows. 

This statement completes proof of Theorem 1. 

 

Corollary 2. Fractional system (1) with distributed delay in admissible control is globally 

relatively controllable on time interval ],[ 10 tt if and only if the relative controllability 

matrix is nonsingular. 

 

Proof. From global relative controllability definition directly follows, that for relatively 

controllable fractional system (1) the operator relative controllability operator )( 1tC  is 

onto. On the other hand by Theorem 1 this is equivalent, that relative controllability 

matrix ),( 10 ttW  is nonsingular.  

 

For globally relatively controllable fractional system (1) it is possible to find an 

admissible control, which transforms given initial complete state },{
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)),,,()(,()(

)(),()()(

)),()(,()()(

0

0

0

0

0

010110

1

1

0

1,

1

1

1110

1

1

0

t

h

t

t

t

tL

uxttqxttWtC

dssusBstXstdB

xtxxttWtCtu























 





 














  (9) 

 

where complete initial state and the final relative state vector are chosen arbitrarily.  

 

Inserting admissible control )(0 tu  given by equality (9) into solution formula (3) and 

taking into account equalities (6), (7) and (8) we have 
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Thus, the admissible control )(0 tu  transfers initial complete state },{
00 tt ux to final relative 

state nRx 1  at time 1t .   



 

IV   CONCLUSIONS 

 

In this paper linear fractional finite-dimensional stationary dynamical control systems 

with different types of delays in admissible control are considered. More exactly, single 

constant delay in state variables and distributed delays in admissible controls are 

discussed. It is generally assumed, that the mathematical model is represented by linear 

ordinary fractional differential state equations. Using notations, theorems and methods 

taken directly from functional analysis and linear controllability theory, necessary and 

sufficient conditions for global relative controllability in a given finite time interval are 

formulated and proved.  

The main result of this paper is to show and to prove, that global relative controllability 

of fractional control systems with delays both in state variables and in admissible control 

is equivalent to non-singularity of suitably defined square relative controllability matrix. 

Using suitably defined relative controllability matrix for global relatively controllable 

systems steering admissible control is proposed, which steers the fractional system from 

given initial complete state to desired final relative state. Moreover, at the beginning of 

the paper some remarks and comments on the existing in literature controllability results 

for different types of linear continuous-time and discrete-time fractional dynamical 

system are also presented.  

It should be pointed out, that using different methods of functional analysis, 

controllability results presented in this paper may be extended in many different ways 

both for fractional systems and for standard systems [16], [17], [33] and for fractional 

systems with constrained admissible controls [9], [10], [11], [12], [26], [27] and [28]. First 

of all, using relative controllability matrix, relative controllability problems for 

semilinear, or generally nonlinear fractional control systems with different types of delays 

not only in admissible controls, but also in the state variables recently have been 

considered in papers [4], [5].  

Second possibility is to formulate and prove necessary and sufficient conditions for 

relative controllability of fractional control systems with different orders of derivatives, 

applying methods and concepts proposed in paper [12].  

The third direction is to consider infinite dimensional control systems applying functional 

analysis methods and concepts (see monographs [18], [21], and [32]). Since in this case 

relative state space is infinite dimensional space, then several additional concepts of 

controllability should be introduced, namely: approximate absolute controllability and 

exact absolute controllability, approximate relative controllability and exact relative 

controllability. 



In last few years nonlinear or semilinear fractional control systems have been discussed 

in the literature e. g., in papers [3], and [4]. However, so far, but only rather little attention 

reports on the global or local relative controllability for delayed systems were published. 

It follows from the fact, that for nonlinear or semilinear fractional systems we do not 

know the exact form of the solution for the nonlinear state equation.  

Relative controllability conditions for semilinear fractional systems with dominated 

linear part are discussed in the papers [24], and [25] under the assumption, that linear 

part is relatively controllable and the nonlinear part satisfy certain inequality.  

Generally, in the case of semilinear or nonlinear fractional control systems different 

techniques are used. The most popular is the fixed-point technique. For example, it is 

possible to use Banach fixed point theorem, Schauder fixed point theorem, Schaefer fixed 

point theorem or Darbou fixed point theorem based on measures of noncompactnes in 

Banach, spaces [6], [8]. It strongly depends on the form of nonlinear part of the fractional 

state equation. 

Minimum energy control problem for fractional systems,  similarly as for standard 

linear systems is strongly connected with different controllability concepts, (see e.g., [16], 

[20], [24] for more details). First of all, let us observe, that for relatively controllable 

linear control system there exists generally many different admissible controls 

transferring given initial state complete state to the desired final relative state. 

Therefore, we may ask which, of these possible admissible controls are optimal one 

according to given a priori criterion.  

 

For quadratic criterion and relatively controllable linear fractional systems (1), solution 

of this problem can be found using relative controllability matrix. Moreover, minimum 

energy value may be computed in rather simple form. However, it should be mentioned, 

that this method requires many additional restrictive assumptions (see monographs [18] 

and [21] and survey papers [16] and [17] for more details) as for example, that state 

variables and admissible controls are unbounded in whole time interval.   
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