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Abstract. In the chapter linear, fractional, continuous time, finite-dimensional, 

dynamical control systems with multiple variable point delays and distributed 

delay in admissible control described by linear ordinary differential state 

equations are considered. Using notations, theorems and methods taken directly 

from functional analysis and linear controllability theory, necessary and sufficient 

conditions for global relative controllability in a given finite time interval are 

formulated and proved. The main result of the chapter is to show, that global 

relative controllability of fractional linear systems with different types of delays 

in admissible control is equivalent to non-singularity of a suitably defined relative 

controllability matrix. In the proofs of the main results, methods and concepts 

taken from the theory of linear bounded operators in Hilbert spaces are used. 

Applying a relative controllability matrix for relative controllable systems 

steering admissible control is proposed, which steers the fractional system from 

a given initial complete state to the desired final relative state. Some remarks and 

comments on the existing controllability results for linear fractional dynamical 

system with delays are also presented.  

 

 

 

1. Introduction 

  

Controllability is one of the fundamental concepts in mathematical control theory and 

plays an important role both in traditional and fractional control theory (see e.g. 

monographs [3], [14], [16], [18], [20]), and survey papers [21], [23], [25]. 

Controllability is a qualitative property of dynamical control systems and is of particular 
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importance in different, mainly theoretical problems in control theory. Systematic study 

of controllability began at the beginning of the sixties, when the theory of 

controllability, based on the description in the form of state space for both time-invariant 

and time-varying linear control systems was presented in [20]. Roughly speaking, 

controllability generally means that it is possible to steer a dynamical control system 

from an arbitrary initial state to an arbitrary final state using the set of admissible 

controls.  

   In the literature there are many different definitions of controllability, both for linear  

and nonlinear or semilinear dynamical systems [4], [5], [26], [30], [31], [36]. The 

concept of controllability strongly depends on the class of dynamical control systems 

and on the set of admissible controls, [11], [12], [13], [15], [33], [34], [35]. Therefore, 

for linear and nonlinear or semilinear dynamical systems and fractional systems there 

exists many different necessary and sufficient conditions for global and local 

controllability [8], [9], [19], [20]. These conditions are proved using different methods 

of linear algebra, functional analysis and theory of differential equations and difference 

equations. Using theory of difference equations and pure algebraic methods, 

controllability of different discrete time linear fractional control systems is discussed in 

[7], [13], [14]. 

   The control processes frequently involve different types of delays in state variables  or 

in admissible controls [20]. It should be pointed out, that delay is one of the general 

phenomenon in a real dynamical system which has a crucial effect on the system 

properties, for example on the controllability, observability and stability.  

   Delayed systems constitute a very important class of mathematical models of real 

phenomena. Delays are inherent in many physical and engineering systems. In 

particular, pure delays are often used to ideally represent the effects of transmission and 

transportations. Many applications of delayed systems in engineering, mechanics and 

economics are presented in the monograph [10]. For dynamical systems with delays in 

control and/or state variables, two fundamental concepts of states are considered, 

namely: finite-dimensional instantaneous or relative state and infinite-dimensional 

complete or functional state [21], [23], [25]. However it should be stressed, that relative 

state does not provide full information about the trajectory of a control system. Hence 

it is necessary to introduce at least two different concepts of controllability, namely: 

relative controllability connected with relative states and complete controllability 

connected with complete states. Moreover taking into account possible constraints 

posed on the state variables and on admissible controls [12], local controllability and 

global controllability are also discussed. 

   On the other hand, fractional order continuous and discrete mathematical models 

express the behavior of many real processes more precisely than integer order ones. The 

various types of fractional differential equations have many applications in different 



fields of technique for example signal processing, theory of visco-elastic materials [1], 

[37], supercapacitors [29] filter description and design, circuit theory, computer 

networks, and bioengineering [15], [16], [17]. Recently different controllability 

problems have been discussed both for linear and nonlinear fractional infinite 

dimensional control systems defined in Hilbert spaces. Stochastic boundary 

controllability of nonlinear fractional systems defined in infinite dimensional Hilbert 

space is considered in paper [27] using methods of stochastic differential equations. 

Approximation results for linear fractional diffusion wave equation are presented and 

discussed in paper [28]. Moreover, the existence and properties of solutions and the 

initial Cauchy problem for abstract linear differential fractional equations are 

formulated and discussed in paper [39]. 

   In the present chapter we shall study global relative controllability in a given finite 

time interval for fractional, linear, continuous time dynamical systems with multiple 

time variable point delays and distributed delay in admissible control. There are natural 

generalizations of controllability concepts, which are rather well known in the theory of 

finite dimensional linear control systems [21], [23], [25] without delays in state 

variables or in admissible control. Using techniques and methods similar to those 

presented in monographs [20], [24] and in the series of papers [10], [14], [15] and [19] 

we shall formulate and prove necessary and sufficient conditions for global relative 

controllability of linear fractional  systems in a prescribed time interval.  

    This chapter is organized as follows: section 2 contains a mathematical model of a 

linear, stationary fractional dynamical system with multiple time variable point delays 

in admissible controls. Moreover, in this section, a basic solution, of a fractional linear 

finite dimensional differential equation is presented in compact integral form and its 

properties are also discussed. In section 3 definition of global relative controllability in 

a given time interval is recalled and discussed. Next, using the results and methods taken 

directly from linear functional analysis, a global relative controllability problem is 

mathematically stated and considered. Moreover, using a suitably defined relative 

controllability matrix, the necessary and sufficient condition and rank condition for 

global relative controllability in a finite time interval is formulated and proved. The next 

section 4, is devoted to a study of a popular special case, i.e., relative controllability of 

fractional systems with multiple constant point delays in admissible control. Necessary 

and sufficient condition for relative controllability of this system is formulated using 

results presented in section 3. In section 5, which may be treated as an illustrative 

example, a linear fractional system with one constant delay in admissible control is 

considered. In section 6 controllability results for a linear fractional system with 

distributed delay in admissible control are given. Finally, section 7 contains concluding 

remarks, and proposes some open controllability problems for more general fractional 

systems. 



 

2. System Description 

 

Let us consider linear, fractional, delay dynamical systems containing multiple lumped 

time varying delays in admissible controls, described by the following differential state 

equation [35], [38], [40] 
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   Initial data },{
00 tux  forms complete state of the fractional delayed system (1) at 

initial time t0. 

   The strictly increasing and twice continuously differentiable functions vi(t):[t0,t1]→R, 

i=0,1,...,M, represent deviating arguments in the admissible controls, i.e. vi(t)=t-hi(t), 

where hi(t)≥0 are lumped time varying delays for i=0,1,...M.  

   Hence, vi(t)≤t for t∈[t0,t1], and i=0,1,...,M, and we assume that v0 (t)=t for t∈[t0,t1], 

and i=0,1,...,M.  



   Let us introduce the time-lead functions ri(t):[vi(t0),vi(t1)]→[t0,t1], i=0,1,…,M, such 

that ri(vi(t))=t for t∈[t0,t1]. Furthermore only for simplicity and compactness of 

notation, let us assume that v0(t)=t and for a given t1 the functions vi(t) satisfy the 

following inequalities [20]. 

 

11011

111011111

)()(...

...)()()(...)()(

ttvtv

tvtvttvtvtvh mmmMM

=≤≤
≤<=≤≤≤= −+−

    (3) 

 

   Let us observe, that without loss of generality it may be assumed that t0 =vm(t1). 

   It is well known (see e.g. [14], [15], [17] or [32]), that for given initial conditions (2) 

and any admissible control u∈Uad, there exists unique solution 

)],,([),;( 10

2

0

n
RttLuxtx ∈  of the linear fractional differential state equation (1), 

which can be represented in the integral form. In order to do that it is convenient to 

introduce many notations.   

   The strictly increasing and twice continuously differentiable functions 
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where symbol tu denotes the function defined by the equality  
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   For example ut0
denotes the initial admissible control function defined on time interval 

)),([ 00 ttvM . 

   It is well known (see e.g. [14], [15], [19] or [20]), that for given initial conditions (2) 

and any admissible control u∈Uad, there exists unique solution 
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which can be represented in the integral form.  

   Furthermore, taking into account linearity of the mathematical model (1) and using 

Laplace transform method [17], solution ),,,(
00 uuxtx t  of the linear fractional 

differential equation (1) with the given initial complete state },{
00 tux  (2) is represented 

by [14], [16]: 
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is the Mittag-Leffler n×n dimensional matrix function for At, [14], [16], [17], where A 

is n×n dimensional constant matrix and  symbol Г denotes the Euler gamma function.   

Similarly we have 
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   Matrix functions )(0 tF  and )(tF  are used to find the compact integral form of the 

solution of equation (1) (see e.g. [17], for more details). 



   Since in this chapter global relative controllability will be considered, let us recall the 

definition of global relative controllability in a given finite time interval. 

 

Definition 1.  The system (1) is said to be globally relatively controllable over time 

interval ],[ 10 tt  if for each pair of vectors 
nRxx ∈10 ,  there exists an admissible 

control )],,([ 10

2 m
RttLu ∈  such that the solution of (1) with initial conditions (2) 

satisfies 11)( xtx =  

   Now let us separate from the solution (4) all components which depend on the given 

initial complete state {x(t0);ut0
}. For given final time t1, using set of inequalities (3) and 

properties of integrals, it is possible to transform equality (4) as follows: 
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   We can divide the right hand side of the formula (5) into two sets. Let us observe that 

the first three terms on the right-hand side of formula (5) depend only on the initial 

complete state {x0,u0} and in fact, do not depend at all on the admissible control 

)],,([ 10

2 m
RttLu ∈ . Therefore we can separate these terms and denote shortly as 

follows: 
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   Thus for given initial data 
n

t Ruxttq ∈),,,(
0001  is a constant vector. 

 

   Furthermore substituting (6) into (5) we obtain 
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   In order to use results and methods taken directly from the theory of  bounded linear 

operators in Hilbert spaces, let us define linear relative controllability operator [20] as 

follows: 
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   The range of the relative controllability operator is finite dimensional and since matrix 

))(( 1 srtF i− is bounded for every ],[ 10 ttt ∈ , i=0,1,…,M, then αC  is a linear 

bounded operator.  

   From relative controllability definition follows, that admissible control u(t) steers on 

the time interval ],[ 10 tt , fractional system (1) from the given initial state x0 to the final 

state x1. In fact the relative controllability of (1) is equivalent to finding admissible 

control ],[),( 10 ttttu ∈ , such that for any x0 and x1 the following equality holds 
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   Taking into account the second sum of integrals we see that relative controllability 

operator αC  is a sum of integral linear bounded operators defined on disjoint sets. 

   Then the adjoint relative controllability operator  
∗
αC  is also a sum of linear and 

bounded operators. 

   In order to find adjoint operator 
∗
αC   let us consider set of integral operators 

1,...,1,0, −= miC i

α   given in equality (8). Hence 
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 and the following relation for scalar products in Hilbert spaces: 
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   Hence every adjoint operator 
∗iCα  for i=0,1,…,m-1, which corresponds to 

iCα  is 

defined in different disjoint time intervals as follows 
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for )](),(( 111 tvtvs ii+∈  and  .1,...,1,0 −= mi  

 

   Therefore, adjoint operator 
∗
αC  is in fact family of operators 

∗i
Cα defined on disjoint 

time intervals )](),(( 111 tvtv ii+  and  1,...,1,0 −= mi , which covers whole time 

interval ],[ 10 tt . 

   As was mentioned in the introduction, in this chapter functional analysis methods are 

used, thus operators αC  and 
∗
αC  defined above, play a crucial role in global relative 

controllability discussion presented in the next sections. 



 

 

 

3. Controllability Conditions 

 

Using the relative controllability operator αC  and its adjoint operator 
∗
αC  let us define 

the n×n dimensional relative controllability matrix ),( 10 ttW  for the linear fractional 

control system 

 
∗= ααCCttW ),( 10         (11)  

   Taking into account relations (8), (9), and (11), relative controllability matrix W(t0,t1) 

is an n×n dimensional symmetric matrix generally with real coefficients and is defined 

by the equality: 
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   Using a relative controllability matrix, it is possible to formulate and prove the main 

result of the paper given the following theorem, which presents necessary and sufficient 

conditions for global relative controllability in a given time interval. 

 

Theorem 1. The following statements are equivalent  

 

(1) Fractional system (1) is globally relatively controllable over ],[ 10 ttt ∈ . 



(2) Relative controllability operator  
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α  is onto. 

(3) Adjoint relative controllability operator )],,([: 10

2 mn RttLRC →∗
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invertible i.e., it is one to one operator. 

(4) The bounded linear operator  
nn
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by nxn nonsingular matrix. 

 

Proof.  

   In the proof of Theorem 1, relative controllability linear bounded operator αC   and 

its adjoint operator 
∗
αC  play an important role. Hence linear functional analysis theory 

may be applied to prove the theorem. More precisely, we shall use methods and results 

taken directly from theory of linear bounded operators in Hilbert spaces.  

   Firstly, let us use, the range of the relative controllability operator αC  that is finite 

dimensional, and since matrix function F(t) is bounded for every ],[ 10 ttt ∈ , then 

operator αC  is a bounded linear operator. Moreover, as was mentioned before, from 

the definition 1 and integral formula (8) it immediately follows that the global relative 

controllability property is equivalent and that relative controllability operator αC  for 

relatively controllable fractional system (1) is a surjective operator. Hence equivalence 

(1) and (2) follows. 

   From the theory of linear operators it follows that surjectivity of the operator  αC   

implies (see e.g. [9], [11])  that its adjoint operator 
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is also a linear and bounded operator and moreover it is invertible, i.e., “one to 

one” operator. Hence equivalence (2) and (3) follows 

   Similarly, from theory of linear bounded operators it follows that invertibility of  the  

selfadjoint operator 
∗
ααCC  means that there exists inverse operator 

1)( −∗
ααCC and is 

equivalent to surjectivity of the operator αC . Therefore, for relatively controllable 

fractional system (1), relative controllability matrix  
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is invertible, i.e., it is a full rank matrix. Hence equivalence (4) and (1) follows. This 

statement completes proof of Theorem 1. 

 

   From Theorem 1 it follows, that relative controllability matrix ),( 10 ttW plays a 

crucial role in relative controllability investigations and moreover, it is also used in 

admissible control, which transfers initial complete state  x(t0) to the final desired 

relative state x1 at time t1.  

   Let us define admissible control  
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for )](),(( 111 tvtvs ii+∈  and   .1,...,1,0 −= mi  

 

Corollary 1. Admissible control )(0 tu  given by formula (13) steers globally relatively 

controllable fractional system (1) from the given initial complete state {x(t0);ut0
} to the 

desired final relative state x1 at time t1. 

 

Proof. 

   Substituting equality (13) into solution formula (5) we obtain 
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Therefore, Corollary 1 is proved. 

 

Remark 1. With the wide class of dynamical systems and especially for dynamical 

systems with different types of delays, the length of time interval ],[ 10 tt is essential in 



controllability discussion. It should be pointed out that if the fractional delayed system 

(1) is globally relatively controllable on the time interval ],[ 10 tt , it is also globally 

relatively controllable on every longer time interval ],[ 20 tt , where 21 tt <  However 

even for dynamical systems without delays in admissible controls, the opposite 

statement is not always true, i.e. there are dynamical systems, which are globally 

controllable on a longer time interval, but are not controllable on a shorter time interval. 

 

Remark 2. Let us observe, that from definition 1 it directly follows that the trajectory of 

the dynamical system between vectors x1, and x2 generally is not prescribed. Therefore, 

for globally relatively controllable systems generally, there are infinitely many different 

admissible controls defined on time interval ],[ 20 tt , which steer the dynamical system 

from initial vector x1, to final vector x2. However, admissible control u0 (t) defined by 

formula (13) is optimal in the sense that it has minimum value of energy (see e.g. 

monographs [2] and [24]), so it is called minimum energy control. 

 

 

4. Fractional systems with multiple constant delays in control 

 

General results presented in the previous sections may be applied to formulate and to 

prove necessary and sufficient global relative controllability conditions for systems with 

multiple constant delays in admissible control. Therefore, now let us consider the 

special case of a fractional control system (1), i.e. a fractional system with constant 

multiple delays in admissible control, described by the following equation 
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   In this case the solution of the linear fractional equation (15) in integral form is given 

by the following equality 
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   Moreover operator 
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   Similarly, as in the previous section, the linear bounded adjoint operator 
∗
αC  is 

defined as family adjoint operators 
∗iCα  for i=0,1,…,m-1, which are defined on a 

different time interval as follows 
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for )],( 111 ii hthts −−∈ + and .1,...,1,0 −= mi  

 

   Therefore  relative controllability matrix ),( 01 ttW  has the form 
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   Let us define admissible control 
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for )],( 111 ii hthts −−∈ + and .,...,1,0 mi =  

   Substituting admissible control )(0 tu  into solution (17) we obtain 
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   In the next section, as an illustrative example, relative controllability of a fractional 

linear control system with only one constant point delay in admissible control will be 

considered. 



 

 

5. Fractional system with a single constant point delay in control 

 

In this section let us consider the special case of a fractional control system which is 

linear. More precisely, we shall discuss the global relative controllability problem for 

the fractional systems containing only single point constant delay in admissible controls, 

described by the following fractional differential state equation: 
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   In this case we have 
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   Since for ],[ 10 ttt ∈  and htt +≤ 01
 fractional system (21) in fact works as a system 

without delays in control, let us assume that the final time t1 satisfies the following 

inequality, 
10 tht <+ . Similarly, as in the previous sections, in this special case it is 

also more convincing to present integral relative controllability operator )(uCα  in two 

equivalent simple integral forms: 
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   However from a computations point of view, it is better to take into consideration the 

second part of the integral formula (23). Thus we obtain adjoint relative controllability 

operator )(uC∗
α  defined by two equalities in two different separated time intervals. 
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   Thus the relative controllability matrix is given by the following equality 
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   Using formulas defining operators 
∗
αα CC , and matrix ),( 10 ttW  it is possible to find 

admissible control )(0 tu , which steers the initial complete },{
00 tux state to the desired 

final relative state 
nRx ∈1

 at time 1t . 
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for ],( 00 httt +∈  

 

   and 
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for ],( 10 thtt +∈  

 

   In order to prove the above statement, it is enough to substitute admissible control 

)(0 tu  given by (26) into integral solution (17) of the fractional control system (1). Thus 

we verify that 
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   Hence the desired final relative state is reached. 

 

6. Example 

 

Let us consider the fractional control system (21) with the following data: 

 

]2,0[],[,
10

01
,

)(

)(
)( 10

2

2

1 =∈






=∈






= tttAR
tx

tx
tx  (28) 

]0,1[],[,0)(,)( 000 −=−∈=∈ thtttuRtu  








=






==
1

0
,

0

1
,1 10 BBM  

 

For the diagonal matrix A given above, matrix 
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is also a diagonal matrix  
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with positive elements 0)( 111 >− stf  and 0)( 122 >− stf on the main diagonal for 

]2,1[],[ 10 −=−∈ thts . 

   Let us consider two cases. The first case is for given final time

]1,0[],[ 001 =+∈ httt . 

Since both matrices )( 1 stF −  and )( 1 stF −∗
 are diagonal matrices, then in this case 

relative controllability matrix ),( 01 ttW  given by (24) has the following form  
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and of course is singular, so taking into account Theorem 1, fractional system (25) is 

not relatively controllable on the time interval ]1,0[ . 

   Now let us assume that final time 101 =+> htt . In this case relative controllability 

matrix ),( 01 ttW  is as follows 
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     Substituting parameters of the fractional system (28) we obtain 
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   Therefore, the relative controllability matrix is given by the following formula 
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   Hence in this case the relative controllability matrix ),( 01 ttW  is nonsingular and 

system (28) is globally relatively controllable. 

   From this example it directly follows that global relative controllability of fractional 

control systems with delays in admissible controls, strongly depends on the length of 

the time interval ],[ 10 tt . 

 

7. Fractional systems with distributed delays in control 

 

In this section linear, fractional control systems with distributed delays in admissible 

control are considered. These control systems are extensions of systems with lumped 

point delays in control and are represented by the following fractional differential state 

equation [2], [19], [26] 
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where 

nRxtx ∈= 00 )(  is the given initial condition 

],[),( 000
thtttut −∈ is the given initial admissible control 

 integral term is in the Lebesque-Stieltjes sense [6], [8], [9] with respect to τ, 

 ),( τtB is n×p dimensional matrix continuous in t for fixed τ and of bounded variation 

in τ on [-h,0] for each ],[ 10 ttt ∈  and continuous from left in τ on the interval (-h,0).  

   Using matrices F0 (t) and F(t), which are dependent on α, the solution of differential 

equation (1) can be expressed in integral form as follows 
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   Now, using unsymmetric Fubini theorem (see e.g. [6] and [8] for more details) and 

changing the order of integration in the last term we have [2], [19], [26] 
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   The first two terms in formula (33) are dependent on the given initial relative state 

},{
00 tux  and in fact do not depend on admissible control 0),( tttu ≥ . Therefore let 

us introduce the following notation 
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where τdB  denotes the Lebesque-Stieltjes integration [6], [8], [9] with respect to the 

variable τ in the matrix function ).,( τtB  

   Changing variables in the integral term 
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 and taking into account the form of solution (34) we obtain 
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   Similarly, as in the previous sections, let us introduce relative controllability operator 

)( 1tCα  and its adjoint operator )( 1tC∗
α  
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   Finally let us define n×n dimensional relative controllability matrix 
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        (38) 

Corollary 2. Fractional system (31) with distributed delay in admissible control is 

globally relatively controllable on time interval ],[ 10 tt if and only if the relative 

controllability matrix (38) is nonsingular. 

 



Proof. From the global relative controllability definition it directly follows, that for 

relatively controllable fractional system (31) the operator relative controllability 

operator )( 1tCα  is onto. On the other hand by Theorem 1 this is equivalent, that 

relative controllability matrix ),( 10 ttW  is nonsingular. Therefore Corollary 2 follows. 

   For a globally relative controllability fractional system with distributed delay (31) it 

is possible to find an admissible control, which transforms the given initial complete 

state to any final relative state at time 1t . Since relative controllability matrix ),( 10 ttW  

is a nonsingular matrix then its inverse is well defined. Therefore let us define 

admissible control as follows  
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where complete initial state and the final relative state vector are chosen arbitrarily. 

   Inserting )(0 tu  given by (39) into solution formula (33) and taking into account 

equalities (36), (37) and (38) we have 
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   Thus the admissible control )(0 tu  transfers the initial complete state to the desired 

final vector at time 1t . 

  



8. Conclusions 

 

The main result of this chapter is to show and thus prove that global relative 

controllability of fractional control systems with delays in admissible control is 

equivalent to non-singularity of a suitably defined square relative controllability matrix.  

   Using a suitably defined relative controllability matrix for global relatively 

controllable systems steering admissible control is proposed, which steers the system 

from the given initial complete state to the desired final relative state. Moreover, at the 

beginning of the chapter some remarks and comments on the existing literature on 

controllability results for different types of linear continuous-time and discrete-time 

fractional dynamical system are also presented.  

   Using a functional analysis approach, the controllability results presented in this 

chapter may be extended in many different ways. First of all, using a relative 

controllability matrix, relative controllability problems for semilinear fractional control 

systems with different types of delays not only in admissible controls but also in the 

state variables recently considered in papers [26], [30], [31], [36].  

   The second possibility is to formulate and prove the necessary and sufficient 

conditions for relative controllability of fractional control systems with different orders 

of derivatives, applying methods and concepts proposed in paper [15].  

   The third direction is to consider infinite dimensional control systems by applying 

functional analysis methods and concepts (see monographs [20] and [24]). Since in this 

case, relative state space is infinite dimensional space, then several additional concepts 

of controllability should be introduced, namely: approximate absolute controllability 

and exact absolute controllability, approximate relative controllability and exact relative 

controllability. 

   In last few years nonlinear or semilinear fractional control systems have been 

discussed in the literature, e,g. in papers [26], [27], [36]. However so far, only little 

known reports on global or local relative controllability have been published. It follows 

from the fact that for nonlinear or semilinear fractional systems, we do not know the 

exact form of the solution for the nonlinear state equation. Relative controllability 

conditions for semilinear fractional systems with dominated linear parts are discussed 

in the paper [36] under the assumption that the linear part is relatively controllable and 

the nonlinear part satisfies certain inequality.  

   Generally in the case of semilinear or nonlinear fractional control systems, different 

techniques are used. The most popular is the fixed-point technique. For example, it is 

possible to use Banach fixed point theorem, Schauder fixed point theorem, Schaefer 

fixed point theorem or Darbou fixed point theorem based on measures of 

noncompactness in Banach, spaces, [12], [14]. It strongly depends on the form of the 

nonlinear part of the fractional state equation. 

   Minimum energy control problems similarly as for standard linear systems, are 

strongly connected with the controllability concept, (see e.g., [16], [20], [24] for more 

details). First of all, let us observe that for a relatively controllable linear control system 

there exists generally, many different admissible controls transferring the given initial 



state complete state to the desired final relative state. Therefore, we may ask which of 

these possible admissible controls are the optimal one according to given a priori 

criterion.  

   For quadratic criterion and relatively controllable linear fractional systems (1), (21) or 

(31) the solution to this problem can be found using a relative controllability matrix. 

Moreover, the minimum energy value may be computed in rather simple form. However 

it should be mentioned, that this method requires many additional restrictive 

assumptions [20] for example, that state variables and admissible controls are 

unbounded in the whole time interval.   
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