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a b s t r a c t 

This paper proposes a Neurocomputing application that reorders the Web results obtained from different 

Web Search Engines emulating the way our brain takes decisions. The proposed application is based on 

the Random Neural Network with Deep Learning Clusters that evaluates and adapts Web result relevance 

by associating independently each Deep Learning Cluster to a specific Web Search Engine. In addition, 

this paper presents a Deep Learning Cluster to perform as a Management Cluster that decides the final 

result relevance based on the inputs from each independent Deep Learning cluster. The performance of 

the proposed Management Cluster is evaluated when included as an additional layer to the Deep Learning 

Clusters. On average; the proposed Deep Learning cluster structure improves Smart Search performance. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Our brain is formed of dense local clusters of the same neu-

rons performing different functions which are connected between

each other with numerous very short paths and few long distance

connections [1] ; the cluster of neurons specialization occurs due

to their adaption when learning tasks. Our brain decides the dif-

ferent actions to be taken based on a weighted decision from the

different sensorial inputs. A parallel scenario is the information

available on the Internet; the Web is formed of a large amount of

data where users select relevant material obtained from different

sources such as Web Search Engines or Recommender Systems. 

The brain retrieves a large amount of data obtained from the

senses; analyses the material and finally selects the relevant infor-

mation [2] . This decision can be erroneous due different external

factors such as light flashes or background noise; likewise, a user

needs to select relevant Web results from a search outcome that

may be influenced or manipulated by a commercial interest as well

as by the users’ own ambiguity in formulating their requests or

queries [3–6] . This paper proposes to associate the most complex

biological system; our brain with the most complex artificial sys-

tem represented in the Web. The connection between them is the

Random Neural Network [7–9] . 
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E-mail addresses: g.serrano11@imperial.ac.uk (W. Serrano), e.gelenbe@imperial. 

ac.uk (E. Gelenbe), y.yin14@imperial.ac.uk (Y. Yin). 

s  

o  

t  

N  

n

https://doi.org/10.1016/j.neucom.2018.05.134 

0925-2312/© 2019 Elsevier B.V. All rights reserved. 
.1. Related work 

Deep learning applies a neural network with various computing

ayers that perform several linear and nonlinear transformations to

odel general concepts in data. Deep learning is characterized as

sing a cascade of l-layers of nonlinear computing modules for at-

ribute identification and conversion; each input of every sequen-

ial layer is based on the output from the preceding layer. 

Deep learning models have been used in learning to rank brief

ext pairs from which the main components are phrases [10] ;

he method is built using a convolutional neural network struc-

ure where the best characterization of text pair sets and a sim-

larity function is learned with a supervised algorithm. The in-

ut is a sentence matrix with a convolutional feature map layer

hat extracts patterns, a pooling layer is then added to aggregate

he different features and reduce the representation. An attention

ased deep learning neural network [11] focuses on different as-

ects of the input data to include distinct features; the method

ncorporates different word orders with variable weights changing

ver the time for both the queries and the search results where

 multi-layered neural network ranks the results and provides a

istwise set of results using a decoder mechanism. Deep Stacking

etworks [12] are used for information retrieval with parallel and

calable learning; the design philosophy is based on the design

f basic modules of classifiers and it later combination between

hem to learn complex functions; the output of each Deep Stacking

etwork is linear whereas the hidden unit’s output is sigmoidal

onlinear. 

https://doi.org/10.1016/j.neucom.2018.05.134
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
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Fig. 1. Neurons. 
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Deep learning is also used in Recommender Systems. A deep

eature representation [13] learns the content information and cap-

ures the likeness and implicit association between customers and

tems where Collaborative Filtering is used in a Bayesian proba-

ilistic framework for the rating matrix. A Deep learning approach

14] assigns items and customers to a vector space model in which

he similarity between customers and their preferred products is

ptimized; the model is extended to jointly learn new features

f items from different domains and user features according to

heir Web browsing history and search queries. The deep learning

eural network maps two different high dimensional sparse fea-

ures into low dimensional dense features within a joint semantic

pace. 

This paper is an extension of a prior model presented by Ser-

ano and Gelenbe [3] , [4] . The Intelligent Search Assistant is based

n the Random Neural Network (RNN) [7–9] . This is a spiking

ecurrent stochastic model for neural networks. Its main analyt-

cal properties are the “product form” and the existence of the

nique network steady state solution. The RNN represents more

losely how signals are transmitted in many biological neural net-

orks where they actual travel as spikes or impulses, rather than

s analogue signal levels. It has been used in different applications

ncluding network routing with cognitive packet networks, using

einforcement learning, which requires the search for paths that

eet certain pre-specified quality of service requirements [15] ,

earch for exit routes for evacuees in emergency situations [16,17] ,

attern based search for specific objects [18] , video compression

19] , and image texture learning and generation [20] . 

Deep Learning with Random Neural Networks is described

y Gelenbe, E. and Yin, Y. [21–24] . This model is based on the

eneralized queuing networks with triggered customer movement

G-networks) where customers are either “positive” or “negative”

nd customers can be moved from queues or leave the network.

-Networks are introduced by Gelenbe, E. [25,26] ; an extension to

his model is developed by Gelenbe, E. et al [27] where synchro-

ised interactions of two queues could add a customer in a third

ueue. Kasun et al. [35] introduces Extreme Learning Machine

ased Auto Encoder (ELM-AE), which learns feature representa-

ions using singular values and is used as the basic building block

or Multi-Layer Extreme Learning Machine (ML-ELM). 

Advanced learning techniques applied to the cloud are de-

cribed in several publications; Wang and Gelenbe [28] present

ifferent experiments that compare three on-line real time tech-

iques for task allocation to different cloud servers; they [29] also

ropose an experimental system that can exploit a variety of on-

ine QoS aware adaptive task allocation schemes. Brun, O. et al.

30] address the use of Big Data and machine learning based an-

lytics to the real-time management of Internet scale Quality of

ervice route optimization with the help of an overlay network.

ifferent search models were also proposed; Gelenbe [31] propose

 Search in unknown random environments, [32] describe a search

n the Universe of big networks and data and [33] present time

nd energy in team-based search. Schmidhuber [34] reviews Deep

earning in neural networks. 

.2. Summary of contributions 

This paper utilizes the Intelligent Internet Search Assistant

ISA) that acts as an interface between an individual user’s query

nd the different search engines presented by the authors; Ser-

ano and Gelenbe [3] , [4] . ISA acquires a query from the user

nd retrieves results from various Web search engines. The re-

ult relevance is calculated by applying an innovative cost function

ased on the division of a query into a multidimensional vector

eighting its dimension terms with different relevance parame-

ers [3] . ISA [3] adapts and learns the perceived user’s interest and
eorders the retrieved snippets based in the dimension relevant

entre point. ISA [3,4] learns result relevance on an iterative pro-

ess where the user evaluates directly the listed results as a super-

ised learning. 

This paper proposes the assignment of one Deep Learning Clus-

er per each Web Search Engine and the definition of an additional

eep Learning cluster to perform as a Management Cluster to em-

late the way the brain takes decisions. The proposed Deep Learn-

ng cluster structure has evaluated ISA against other Web search

ngines with open user queries. Deep Learning Clusters’ Gradi-

nt Descent learning algorithm has been analyzed based on re-

ult relevance and learning speed where our proposed method as-

igns the best performing cluster to the other Web Search Engines

o increase system speed, improve result accuracy and relevance

hile reducing learning time and network weigh’s computation.

he Management Cluster unsupervised learning is analyzed and

ts performance is compared against other search engines with a

ew proposed quality definition, which combines both relevance

nd rank. 

The cluster Random Neural Network with Deep Learning Clus-

ers is described in Section 2 . The ISA with Deep Learning clusters

odel is defined in Section 3 . The application is implemented and

alidated in Section 4 and Section 5 respectively showing the ex-

erimental results in Section 6 . Finally, conclusions are presented

n Section 7 followed by the References and Appendix where the

ueries used by the validators are enumerated. 

. The Deep Learning Cluster Random Neural Network 

.1. The Random Neural Network 

The Random Neural Network [7–9] is composed of M neurons

ach of which receives excitatory (positive) and inhibitory (nega-

ive) spike signals from external sources which may be sensory

ources or neurons. These spike signals occur following indepen-

ent Poisson processes of rates λ+ ( m ) for the excitatory spike sig-

al and λ−( m ) for the inhibitory spike signal respectively, to neu-

on m Є {1,…M }. 

.2. Neurons 

In the Deep Learning Cluster model [21,22] , each neuron is rep-

esented at time t ≥ 0 by its internal state k m 

( t ) which is a non-

egative integer. If k m 

( t ) ≥ 0, then the arrival of a negative spike

o neuron m at time t results in the reduction of the internal state

y one unit: k m 

( t + ) = k m 

( t ) – 1. The arrival of a negative spike to a

euron has no effect if k m 

( t ) = 0. On the other hand, the arrival of

n excitatory spike always increases the neuron’s internal state by

; k m 

( t + ) = k m 

(t) + 1. 

If k m 

( t ) > 0, then the neuron m is defined as “excited”, and it

ay “fire” a spike with probability r m 

�t in the interval [ t, t + �t ]
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Fig. 2. Neuron interactions. 

Fig. 3. Clusters of neurons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Multiple clusters. 
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where r m 

> 0 is its “firing rate”, so that r m 

is the average firing

delay of the exited m neuron. 

Neurons in this model ( Fig. 1 ) can interact in the following

manner at time t ≥ 0. If neuron i is excited ( k i ( t ) > 0) then when

neuron i fires its internal state drops by 1 ( k m 

( t + ) = k m 

( t ) – 1) and:

• It can send a positive or excitatory spike to neuron j with prob-

ability p + ( i,j ) resulting in k j ( t 
+ ) = k j ( t ) + 1; 

• Or it can send a negative or inhibitory spike to neuron j with

probability p −( i,j ) resulting in k j ( t 
+ ) = k j ( t ) – 1 if k j ( t ) > 0, else

k j ( t + ) = 0 if k j ( t ) = 0; 

• Or it can trigger neuron j with probability p ( i,j ) resulting in

k j ( t 
+ ) = k j ( t ) – 1 if k j ( t ) > 0, else k j ( t + ) = 0 if k j ( t ) = 0 and one

of two may happen. Either: 

− (A) with probability Q ( j,m ) there is k m 

( t + ) = k m 

( t ) + 1; 

− (B) or with probability π ( j,m ) the trigger moves on to the

neuron m and then with probability Q ( m,l ) the sequence (A)

or (B) is repeated. 

2.3. Neuron interactions 

The neuron interaction [21,22] defines z(m) = ( i 1 , … i l ) as

any ordered sequence of distinct numbers ij Є S; ij � = m ; and
 ≤ l ≤ M −1. It defines q m 

= lim t → ∞ 

Prob[ k m 

( t ) > 0] the probability

hat the neuron m is excited. It is given by the following expres-

ion: 

 m 

= 

λ+ (m) 

r ( m ) + λ−(m) 
(1)

The model [21,22] assigns w 

+ ( j,i ) = r (i) p + ( j,i ) and w 

−( j,i ) =
 ( i ) p −( j,i ) ≥ 0 respectively. �( m ) and λ( m ) represents the arrival

ates of external excitatory and inhibitory signals correspondingly

 Fig. 2 ). 

.4. Clusters of neurons 

The clusters of neurons [21,22] consider a special network M ( n )

hat contains n identically connected neurons, each which has a



W. Serrano, E. Gelenbe and Y. Yin / Neurocomputing 396 (2020) 394–405 397 

Fig. 5. Deep Learning Clusters. 

Fig. 6. Deep Learning Clusters: gradient descent iteration. 
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Fig. 8. ISA with Deep Learning Clusters model. 

2

 

t  

c  

b  

t  

i  

c

 

a  

e  

>  

t  

t

r

ring rate r and external inhibitory and excitatory signals � and

, respectively. The state of each neuron is denoted by q , and it

eceives an inhibitory input from the state of some neuron u which

oes not belong to M ( n ). Thus for any neuron i Є M ( n ) there is an

nhibitory weight w 

−( u ) ≡ w 

−( u,i ) > 0 from u to i . 

For any i,j Є M ( n ); the values of w 

+ ( i,j ) = w 

−( i,j ) = 0, but all

henever one of the neurons fires ( Fig. 3 ), it triggers the firing of

he other neurons with the following values: 

(i , j) = 

p 

n 

; Q(i , j) = 

1 − p 

n 

The probability a neuron becomes excited reduces to: 

 = 

�+ 

rq(n − 1)(1 − p) 

n − qp(n − 1) 

r + λ+ q u w 

−( u ) + 

rqp(n − 1) 
(2) 
n − qp(n − 1) 
.5. Multiple clusters 

The Deep Learning Architecture [21,22] is composed of C clus-

ers M ( n ) each with n hidden neurons. For the c th such cluster,

 = 1, …, C , the state of each of its identical neurons is denoted

y q c . In addition, there are U input neurons which do not belong

o these C clusters, and the state of the u th neuron u = 1, …, U

s denoted by q u . The cluster network has U input neurons and C

lusters ( Fig. 4 ). 

Each hidden neuron in the clusters c , with c Є {1, …, C } receives

n inhibitory input from each of the U input neuron. Therefore, for

ach neuron in the c th cluster, there are inhibitory weights w 

−( u,c)

 0 from the u th input neuron to each neuron in the c th cluster;

he u th input neuron will have a total inhibitory “exit” weight, or

otal inhibitory firing rate r u to all the clusters which is of value: 

 u = n 

C ∑ 

c =1 

w 

−( u, c ) (3) 
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Table 1 

ISA cluster validation. 

Query Google Yahoo Ask Bing Lycos 

1 WSE 

1 DLC 

0.5789 

0.3158 

0.4737 

0.7895 

0.7368 

0.4737 

0.4737 

0.6842 

0.7895 

0.7895 

2 WSE 

2 DLC 

0.7368 

0.6316 

0.3684 

0.7895 

0.7895 

0.7368 

0.2941 

1.0 0 0 0 

0.3684 

0.5789 

3 WSE 

3 DLC 

0.5263 

0.7368 

0.9474 

0.7368 

0.6842 

0.7895 

0.7059 

0.8824 

0.9474 

0.5789 

4 WSE 

4 DLC 

0.8421 

0.4211 

0.8947 

0.3684 

0.8421 

0.7895 

0.80 0 0 

0.20 0 0 

0.5263 

0.5789 

5 WSE 

5 DLC 

1.0 0 0 0 

0.6316 

0.5789 

0.1579 

0.8947 

0.5263 

0.9333 

0.40 0 0 

0.8947 

0.5789 

6 WSE 

6 DLC 

0.4737 

0.7368 

0.6842 

0.8947 

0.8947 

0.8421 

0.8421 

0.8947 

0.6842 

1.0 0 0 0 

7 WSE 

7 DLC 

1.0 0 0 0 

0.9474 

0.7368 

0.8947 

0.5263 

0.9474 

0.7368 

0.8947 

0.7368 

0.8421 

8 WSE 

8 DLC 

0.7368 

0.3684 

0.5263 

0.6316 

0.8421 

0.8947 

0.6842 

0.4737 

0.6316 

0.6316 

9 WSE 

9 DLC 

0.8421 

1.0 0 0 0 

0.8421 

0.6316 

0.7895 

1.0 0 0 0 

0.8462 

0.5385 

0.8421 

0.6842 

10 WSE 

10 DLC 

1.0 0 0 0 

0.5294 

0.5789 

0.8947 

0.9474 

0.8421 

0.5789 

0.8421 

0.8947 

0.8947 

11 WSE 

11 DLC 

0.8947 

0.2105 

0.5789 

0.5789 

0.4737 

0.3158 

0.6316 

0.6842 

0.4211 

1.0 0 0 0 

12 WSE 

12 DLC 

0.6842 

0.8947 

0.7368 

0.7895 

0.8421 

0.6842 

0.6471 

0.5294 

0.4737 

1.0 0 0 0 

13 WSE 

13 DLC 

0.6842 

0.5789 

0.2632 

0.7368 

0.3684 

0.8421 

0.7692 

0.2308 

0.6842 

0.6842 

14 WSE 

14 DLC 

0.8421 

0.7368 

1.0 0 0 0 

0.3684 

0.7895 

0.5789 

0.7895 

0.7368 

0.2632 

0.5789 

15 WSE 

15 DLC 

0.5882 

0.3529 

0.2632 

0.2105 

0.6842 

0.4737 

0.7368 

0.3158 

0.2632 

0.5789 

16 WSE 

16 DLC 

0.7692 

0.5385 

0.7895 

0.5789 

0.6842 

0.5263 

0.5789 

0.9474 

0.6842 

0.5263 

17 WSE 

17 DLC 

0.4737 

0.5263 

0.6316 

0.3158 

0.5789 

0.3684 

0.5789 

0.6842 

0.6316 

0.7368 

18 WSE 

18 DLC 

0.3529 

0.4118 

0.4737 

0.4737 

0.4211 

0.4737 

0.3333 

0.2667 

0.5263 

0.2632 

19 WSE 

19 DLC 

0.5294 

0.4118 

0.3684 

0.7368 

0.3158 

0.3684 

0.2308 

0.8462 

0.1579 

0.7368 

20 WSE 

20 DLC 

0.7895 

0.4737 

0.1579 

0.5789 

0.6842 

0.7368 

0.6154 

0.6923 

0.2632 

0.3158 

21 WSE 

21 DLC 

0.5385 

0.5385 

0.5263 

0.8421 

0.3684 

0.4737 

0.6316 

0.5263 

0.5789 

0.7895 

22 WSE 

22 DLC 

0.7368 

0.3158 

0.4737 

0.6842 

0.4211 

0.4211 

0.8421 

0.4211 

0.4737 

0.7368 

23 WSE 

23 DLC 

0.5789 

0.3684 

0.7895 

0.3158 

0.8947 

0.7895 

0.6923 

0.4615 

0.8947 

0.7895 

24 WSE 

24 DLC 

0.2941 

0.5294 

0.2105 

0.4211 

0.6842 

0.4737 

0.7059 

0.5882 

0.5789 

0.8947 

25 WSE 

25 DLC 

0.3158 

0.2632 

0.8947 

0.5263 

0.4211 

0.1579 

0.5789 

0.4737 

0.6316 

0.3684 

26 WSE 

26 DLC 

1.0 0 0 0 

0.5263 

0.2632 

0.9474 

0.3684 

0.6316 

0.9474 

0.6316 

0.6316 

0.6316 

27 WSE 

27 DLC 

0.5263 

0.7368 

0.7368 

0.4737 

0.3158 

0.3158 

0.5333 

0.6667 

0.8947 

0.7895 

28 WSE 

28 DLC 

0.7895 

0.7368 

0.7368 

0.7895 

0.6842 

1.0 0 0 0 

0.6154 

0.4615 

0.9474 

0.7368 

29 WSE 

29 DLC 

0.8421 

0.6316 

0.6316 

0.6316 

0.8947 

0.3158 

0.6316 

0.5263 

0.4211 

0.3158 

30 WSE 

30 DLC 

0.6842 

0.5263 

0.7895 

0.8947 

0.4211 

0.9474 

0.4667 

0.6667 

0.7368 

0.8947 

31 WSE 

31 DLC 

0.3158 

0.7368 

0.7368 

0.5263 

0.3684 

0.7368 

0.6316 

0.5263 

0.7895 

0.5263 

32 WSE 

32 DLC 

0.8947 

0.9474 

0.3684 

0.3158 

1.0 0 0 0 

0.8947 

0.7895 

0.7368 

1.0 0 0 0 

0.8421 

33 WSE 

33 DLC 

0.8947 

0.8421 

0.8421 

0.7368 

0.6842 

0.8947 

0.5455 

0.6364 

0.4211 

0.9474 

34 WSE 

34 DLC 

0.7368 

0.6842 

0.8421 

0.7895 

0.7895 

0.8947 

0.7895 

0.5789 

0.7895 

0.5789 

35 WSE 

35 DLC 

0.4737 

0.6316 

0.9474 

0.7895 

0.7368 

0.5789 

0.5263 

0.5789 

0.5789 

0.6316 

36 WSE 

36 DLC 

0.5882 

0.8824 

0.6842 

0.3684 

0.4737 

0.7368 

0.6316 

0.4211 

0.8421 

0.7368 

37 WSE 

37 DLC 

0.9474 

0.6316 

0.6842 

0.7368 

0.8421 

0.7895 

0.6842 

0.6842 

0.6842 

0.7368 

( continued on next page ) 

Table 1 ( continued ) 

Query Google Yahoo Ask Bing Lycos 

38 WSE 

38 DLC 

0.4211 

0.5263 

0.6842 

0.7368 

0.5263 

0.4737 

0.4737 

0.4737 

0.6842 

0.8421 

39 WSE 

39 DLC 

1.0 0 0 0 

0.5263 

0.5789 

0.5263 

0.4737 

0.7895 

0.7368 

0.5263 

0.9474 

0.5789 

40 WSE 

40 DLC 

0.6316 

0.8421 

0.9474 

0.5263 

0.6842 

0.6842 

1.0 0 0 0 

0.6316 

0.4211 

0.3684 

41 WSE 

41 DLC 

0.8421 

0.3158 

0.6842 

0.7368 

0.7895 

0.7368 

0.7368 

0.9474 

0.8421 

0.9474 

42 WSE 

42 DLC 

0.4118 

0.8235 

0.5789 

0.7895 

0.7368 

0.7368 

0.4211 

0.8421 

0.5263 

0.6842 

43 WSE 

43 DLC 

0.6316 

0.5263 

0.5789 

0.5789 

0.6842 

0.3684 

0.5789 

0.6842 

0.5789 

0.5789 

44 WSE 

44 DLC 

0.5789 

0.5789 

0.3158 

0.5789 

0.8947 

0.8947 

0.8421 

0.6316 

0.7368 

0.6316 

45 WSE 

45 DLC 

0.7895 

0.4737 

0.3158 

0.3158 

0.6316 

0.2632 

0.8421 

0.6842 

0.5789 

0.7895 

Average 

Google Yahoo Ask Bing Lycos 

WSE 

DLC 

0.6846 

0.5910 

0.6164 

0.6164 

0.6573 

0.6491 

0.6596 

0.6167 

0.6421 

0.6877 

Fig. 9. Intelligent search assistant user interface. 

Fig. 10. Intelligent search assistant result list. 

t  

c

q  
hen, from ( 2 ) and ( 3 ); the probability a neuron in cluster c be-

omes excited is: 

 c = 

�c + 

r c q c (n − 1)(1 − p c ) 

n − q c p c (n − 1) 

r c + λc + 

∑ U 
u=1 q u w 

−( u , c ) + 

r c q c p c (n − 1) 
(4)
n − q c p c (n − 1) 
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Fig. 11. Deep Learning Cluster validation. 
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Fig. 12. Management Cluster validation. 
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.6. Deep learning clusters 

The learning model of the Deep Learning Clusters [21,22] de-

nes: 

• I , a U -dimensional vector I Є [0,1] U that represents the input

state q u for the neuron u ; 

• w 

−( u,c ) is the U ×C matrix of weights from the U input neurons

to the neurons in each of the C clusters; 

• Y , a C -dimensional vector Y Є [0,1] C that represents the neuron

state q c for the cluster c . 

Let us now define the activation function of the c th cluster as:

( x c ) = 

b c 

2 a c 
−

√ 

b 

2 
c − 4 a c d c 

2 a c 
(5) 

here: 

 c = 

U ∑ 

u =1 

q u w 

−( u , c ) (6) 

nd: 

 c = ζ ( x c ) 

Gradient Descent learning algorithm optimizes the network

eight parameters w 

−( u,c ) from a set of input-output pairs ( i u ,y c ):

• the input vector I = ( i 1 , i 2 , …, i u ) where i u is the input state q u 
for neuron u ; 

• the output vector Y = ( y 1 , y 2 , …, y c ) where y c is the neuron

state q c for the cluster c . 

The desired output vector is approximated by minimizing the

ost function E c : 

 c = 

1 

2 

( q c − y c ) 
2 (7) 

The network learns the U ×C weight matrix w 

−( u,c ) by calcu-

ating new values of the network parameters for the input X and

( x mc ) = 

[ np ( �mc + r mc ) + n ( λmc + x mc ) − p ( �mc + r mc ) + r mc ] 

2 p mc ( n − 1 ) [ λmc + x mc ] 
−

−
√ 

[ np ( �mc + r mc ) + n ( λmc + x mc ) − p ( �mc + r mc ) + r mc ]

2 p mc ( n −) [ λmc + x mc 
utput Y using Gradient Descent ( Fig. 5 ). The rule for weight up-

ate can take the generic form: 

 

−
k 
(u , c) = w 

−
k −1 (u , c) − η( q c − y c ) 

d q c 

d x c 
(8) 

here η is the learning rate and k the iteration number. The

erivative is calculated as: 

d q c 

d x c 
= 

n 

2 a c 
+ 

p(n − 1) b c 

a 2 c 

+ 

n b c +2p(n − 1) d c 

2 a c 
√ 

b 

2 
c − 4 a c d c 

(9) 

The complete learning algorithm can be specified. The weight

atrix w 

−( u,c ) with a random initialization needs first to be ap-

ropriately initiated. A value for η needs to be selected: 

1. Set the input values to I = ( i 1 , i 2 , …, i u ) 

2. Calculate q c 
3. Calculate derivative d q c /d x c 
4. Update the weight matrices w 

−( u,c ) following the Eq. (8) using

the results of Eq. (5) and Eq. (9) 

5. Evaluate the cost function E c according to Eq. (7) using the re-

sults of Eq. (8) 

This learning algorithm iterated until the value of the cost func-

ion from the network weight matrices is smaller than some pre-

etermined value ( Fig. 6 ). 

.7. Management cluster 

This paper proposes the Management cluster model in this sec-

ion: 

• I m c , a C-dimensional vector I mc Є [0,1] C that represents the in-

put state q c for the cluster c ; 

• w 

−( c ) is the C -dimensional vector of weights from the C input

clusters to the neurons in the Management Cluster mc; 

• Y mc , a scalar Y mc Є [0,1], the neuron state q mc for the Manage-

ment Cluster mc . 

Let us now define the activation function of the management

luster mc as: 

 p mc ( n − 1) [ �mc + x mc ] n �mc 
(10)

here: 

 mc = 

C ∑ 

c=1 

q c w 

−( c ) (11) 
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Fig. 13. Deep Learning Cluster validation – average results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vance. 
and: 

y mc = ζ ( x mc ) 

The input state q c for neuron c represents the result relevance

from each learning cluster; w 

−( c ) is the C -dimensional vector of

weights that represents the learning quality of each learning clus-

ter c; y mc is the final result relevance assigned by the Management

Cluster ( Fig. 7 ). 

3. ISA with Deep Learning Clusters model 

Our ISA associates a Deep Learning Cluster to each Web Search

Engine ( Fig. 8 ). Each Deep Learning Clusters learns its assigned

Web Search Engine Relevant Centre Point [3] where the outputs

y c of the Deep Learning Clusters are the identical values as the

inputs i u . 

Let’s define or ISA with Deep Learning clusters as: 
Table 2 

ISA cluster validation – average values. 

Web Search 

Engine 

Quality Web 

Search Engine 

Quality 

Cluster 

I 

Google 0.6846 0.5910 −
Yahoo 0.6164 0.6164 0.

Ask 0.6573 0.6491 −
Bing 0.6596 0.6167 −
Lycos 0.6421 0.6877 7.1

Average 0.6520 0.6322 −
• I Google , I Yahoo , I Ask , I Lycos , I Bing , as five U -dimensional vector I Є
[0,1] U ; one for each Web Search Engine that represents the each

different Deep Learning Cluster Relevant Centre Point; 

• w Google 
−( u,c ), w Yahoo 

−( u,c ), w Ask 
−( u,c ), w Lycos 

−( u,c ), w Bing 
−( u,c ) as

five U × C matrices of Web Search Engine weights; one for each

different Deep Learning; 

• Y Google , Y Yahoo , Y Ask , Y Lycos , Y Bing , as five C- dimensional vector Y Є
[0,1] C one for each Web Search Engine that represents the each

different Deep Learning Cluster Relevant Centre Point. 

The Deep Learning Management Cluster is defined as: 

• I mc , a C -dimensional vector I mc Є [0,1] that represents the result

relevance for the Web Search Deep Learning cluster c; 

• w mc 
−( c ) is the C -dimensional vector of weights that represents

the learning quality of each Web Search Deep Learning cluster

c ; 

• Y mc , a scalar Y mc Є [0,1] that represents the final result rele-
Quality Cluster 

Final 

I 

13.67% 0.820 38.75% 

0% 0.815 32.26% 

1.25% 0.805 23.96% 

6.50% 0.756 22.95% 

0% 0.7587 9.86% 

2.86% 0.79094 25.56% 
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Fig. 14. Best Performing Cluster validation – average results. 

 

o  

g  

r  

e  

I  

T

 

C  

v  

t  

e  

a  

w

4

 

g  

a  

d  

n

 

s  

r  

t  

Table 3 

Best performing cluster validation – average values. 

Web Search Engine Quality 

ISA Cluster 

Quality ISA 

Best Preforming Cluster 

I 

Google 0.5910 0.6554 10.88% 

Yahoo 0.6164 0.6959 12.9% 

Ask 0.6491 0.6421 −1.08% 

Bing 0.6167 0.6854 11.14% 

Lycos 0.6877 0.6351 −7.65% 

Average 0.6322 0.6628 5.24% 

m  

o

5

 

a  

r  

c  

r  

u  

E  

e  

e  

a  

t

A Web user in the validation transmits a search request, then

ur ISA associates a Deep Learning cluster to each Web Search En-

ine, retrieves the top N results of each Web Search Engine and

earrange them using our defined cost function independently for

ach Deep Learning cluster. The cost function is defined in [3] . Our

SA presents a reordered result list grouped by Web Search Engine.

he user selects relevant results for each list. 

Each learning cluster learns each Web Search Engine Relevant

entre Point as defined in [3] where the outputs y c are the same

alues as the inputs i u . ISA reorders each Web Search Engine clus-

er result list following to the minimum error to the cluster Rel-

vant Centre Point ( I Google , I Yahoo , I Ask , I Lycos , I Bing ).Once our ISA has

ssessed the best performing cluster; it applies its neural network

eights to rearrange the other cluster’s result lists. 

. Implementation 

The Intelligent Search Assistant emulates how Web search en-

ines work by using a very similar interface to introduce queries

nd display results ( Fig. 9 ). The ISA acquires up to eight different

imensions values from the user however Web search engine and

umber of result options are fixed. 

Our ISA has been codified to parse snippets from five Web

earch engines (Google, Yahoo, Ask, Lycos, Bing). The search is di-

ect; our ISA obtains the query key words from the Web user and

ransmit it to the different Web search engines selected without
odifying it ( Fig. 10 ). The ISA shows to the user a rearranged list

f results grouped by Web Search Engine. 

. Validation 

A user in the experiment introduces a query. ISA assigns

 learning cluster per Web Search Engine, acquires the first N

esults of each Web Search Engine and reorders them applying the

ost function independently for each cluster. Finally ISA shows a

eordered list clustered by Web Search Engine. In the validation,

sers have been asked to select Y relevant results per Web Search

ngine, not to rank them, as they normally do using a Web search

ngine therefore it is considered a result is either relevant or irrel-

vant. The results are shown to the user on random order to avoid

 biased result rank evaluation where the users indirectly follow

he order shown by the selected algorithm. 
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Table 4 

Management Cluster validation. 

Query Cost Function 

Q 

Cluster 

Q 

γ = 1/4 γ = 1/2 γ = 1.0 γ = 2.0 γ = 4.0 

1 0.2063 0.2306 0.2298 0.2298 0.2306 0.2282 0.2259 

2 0.4008 0.5584 0.5420 0.5412 0.5461 0.5437 0.5486 

3 0.2351 0.3502 0.3380 0.3380 0.3380 0.3371 0.3355 

4 0.2483 0.2942 0.2891 0.2891 0.2925 0.2934 0.2934 

5 0.2423 0.3537 0.3435 0.34 4 4 0.3342 0.3257 0.2781 

6 0.2518 0.2878 0.2714 0.2729 0.2737 0.2729 0.2816 

7 0.2620 0.3161 0.3122 0.3129 0.3129 0.3122 0.3114 

8 0.2227 0.2706 0.2753 0.2753 0.2784 0.2769 0.2722 

9 0.2518 0.2686 0.2677 0.2624 0.2535 0.2074 0.1711 

10 0.2522 0.3102 0.2963 0.2939 0.2931 0.2816 0.2514 

11 0.2769 0.2055 0.2063 0.2063 0.2063 0.2125 0.2345 

12 0.2808 0.3224 0.2882 0.2857 0.2824 0.2588 0.1910 

13 0.2252 0.2296 0.2225 0.2216 0.2225 0.2199 0.2207 

14 0.2078 0.2973 0.2996 0.3004 0.2996 0.3027 0.3012 

15 0.1682 0.20 0 0 0.2139 0.2147 0.2171 0.2171 0.2180 

16 0.2154 0.2420 0.2473 0.2473 0.2473 0.2456 0.2420 

17 0.1976 0.1765 0.1906 0.1890 0.1812 0.1718 0.1686 

18 0.1729 0.2934 0.2996 0.2996 0.2996 0.2996 0.3005 

19 0.2044 0.1896 0.2313 0.2285 0.2202 0.2118 0.2054 

20 0.3316 0.4379 0.4 4 41 0.4 4 41 0.4424 0.4 4 41 0.4362 

21 0.2101 0.2730 0.2890 0.2881 0.2855 0.2801 0.2757 

22 0.2094 0.2518 0.2588 0.2471 0.2392 0.2220 0.1639 

23 0.2128 0.2385 0.2367 0.2385 0.2367 0.2367 0.2305 

24 0.3265 0.2236 0.2270 0.2253 0.2245 0.2168 0.2151 

25 0.1624 0.2024 0.2188 0.2118 0.2055 0.1898 0.2025 

26 0.1796 0.3396 0.3396 0.3396 0.3388 0.3380 0.3380 

27 0.2109 0.2151 0.2287 0.2287 0.2321 0.2347 0.2398 

28 0.3023 0.3174 0.2970 0.2988 0.3014 0.3050 0.3129 

29 0.1780 0.2118 0.2204 0.2173 0.2157 0.2173 0.2180 

30 0.3155 0.3418 0.3427 0.3418 0.3401 0.3350 0.3019 

31 0.2047 0.1475 0.1529 0.1529 0.1624 0.1655 0.1671 

32 0.2345 0.2533 0.2549 0.2557 0.2573 0.2620 0.2690 

33 0.2720 0.3090 0.2979 0.2988 0.2997 0.3025 0.3090 

34 0.2580 0.3224 0.3184 0.3137 0.3114 0.3114 0.2996 

35 0.2078 0.2831 0.2761 0.2761 0.2761 0.2776 0.2839 

36 0.2098 0.2441 0.2531 0.2539 0.2506 0.2490 0.2457 

37 0.3027 0.2180 0.2588 0.2588 0.2604 0.2604 0.2627 

38 0.2078 0.2259 0.2384 0.2361 0.2314 0.2267 0.1992 

39 0.2047 0.2259 0.2588 0.2588 0.2580 0.2596 0.2698 

40 0.2094 0.20 0 0 0.2063 0.2047 0.2016 0.1937 0.1953 

41 0.2910 0.3569 0.3592 0.3576 0.3553 0.3475 0.3122 

42 0.3461 0.3576 0.3543 0.3543 0.3543 0.3543 0.3543 

43 0.1945 0.2518 0.2855 0.2831 0.2792 0.2737 0.2604 

44 0.2110 0.2729 0.2580 0.2494 0.2337 0.2157 0.2141 

45 0.2353 0.3325 0.3114 0.3043 0.2910 0.2675 0.1945 

Average Cost Function 

Q 

Cluster 

Q 

γ = 1/4 γ = 1/2 γ = 1.0 γ = 2.0 γ = 4.0 

Query 0.2389 0.2767 0.2789 0.2776 0.2759 0.2712 0.2627 
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5.1. Deep Learning Cluster validation 

In order to measure search quality we can affirm the better

learning cluster provides with a list of more relevant results on top

positions ( Fig. 11 ). The following quality description is described

where within a list of N results N is scored to the first result and

1 to the last result, the value of the quality proposed is then the

summation of the position score based of each of the selected re-

sults [3] . Quality, Q , can be defined as: 

Q = 

Y ∑ 

i =1 

RS E i (12)

where RSE i is the rank of the result i in a particular search engine

with a value of N if the result is in the first position and 1 if the re-

sult is the last one. Y is the total number of results selected by the

user. The best Deep Learning cluster or Web search engine would

have the largest Quality value. Normalized quality, Q̄ , is defined

as the division of the quality, Q , by the optimum figure which it

is when the user consider relevant all the results provided by the

Web search engine. On this situation Y and N have the same value:
¯
 = 

Q 

N ( N+1 ) 
2 

(13)

Let us define I as the quality improvement between a Deep

earning Cluster and a reference: 

 = 

QC − QR 

QR 

(14)

here I is the Improvement, QC is the quality of the Deep Learning

luster and QR is the quality reference. 

.2. Management cluster validation 

The management cluster is validated with different values of

 

−( c ): 

 

−(c) = 

(
1 

Q c 

)γ

(15)

here Q c is Quality of Cluster c and γ the Management Cluster

earning coefficient ( Fig. 12 ). 
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Fig. 15. Average results management cluster validation – average results. 

Table 5 

Management cluster validation – average values. 

Learning 

Coefficient 

Cost Function 

Q 

Cluster 

Q 

Management Custer 

Q 

MC vs. Cluster 

I 

MC vs. Cost Function 

I 

γ = 1/4 0.2389 0.2767 0.2789 0.81% 16.75% 

γ = 1/2 0.2389 0.2767 0.2776 0.34% 16.20% 

γ = 1.0 0.2389 0.2767 0.2759 −0.30% 15.46% 

γ = 2.0 0.2389 0.2767 0.2712 −1.97% 13.53% 

γ = 4.0 0.2389 0.2767 0.2627 −5.05% 9.97% 
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. Experimental results 

Validators have been asked to introduce up to 8 dimensions per

uery. There are no rules in what users can search, however they

ave been advised their queries may be published. ISA acquires the

rst 10 results of each Web Search Engine, independently reorders

hem applying the cost function and finally shows a 50 result ran-

omly reordered list joining the 10 results Web Search Engine clus-

er list. In the validation users have been asked to select 2 relevant

esults per Web Search Engine cluster list; this enables us to bet-

er compare performance between learning clusters. The proposed

eep Learning Cluster model has been validated with 45 different

ser queries. 

.1. Deep Learning Cluster results 

The proposed Deep Learning Cluster structure has been vali-

ated with 45 different user search requests. Table 1 below shows
he Normalised Quality ( Q ) for the different Web Search Engines

WSE) and Deep Learning Clusters (DLC). 

The Quality values of the different Web search engines and the

eep Learning Clusters before and after the user validation is rep-

esented in the Table 2 and Fig. 13 with the Improvement between

he quality of the Deep Learning clusters after and before the user

alidation with the final average values. 

On average; the Deep Learning clusters do not improve Web

earch Engine performance before the user interaction; however,

hey improve Quality over 25% after the first user iteration due to

heir capability to learn user relevance. 

Table 3 and Fig. 14 show the Quality values of the different

lusters when the neural weights of the best performing cluster

re selected and duplicated to each Deep Learning cluster. It is also

epresented the Improvement between the Learning Clusters with

nal average values. 

When the best performing Deep Learning cluster is applied to

ther Web Search Engines; the search Quality improves almost 5%
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on average. The best performing Deep Learning cluster can be used

to teach or replace the other clusters; this improves result accuracy

and relevance while reduces learning time and network weigh’s

computation. 

6.2. Management cluster results 

Table 4 shows the Quality values for the 45 different user

queries at the different stages: before the user validation (Cost

Function), after the user validation (Cluster) and with the Manage-

ment Cluster (Management Cluster) adjusted to five different Man-

agement Cluster learning coefficients. 

Table 5 and Fig. 15 show the average Quality values at the dif-

ferent stages: before the user validation (Cost Function), after the

user validation (Cluster) and with the Management Cluster (Man-

agement Cluster) adjusted to five different Management Cluster

learning coefficients. It is also represented the Improvement be-

tween the quality of the Management cluster after and before the

user validation. 

The Quality improvement from the Deep Learning Management

Cluster is very dependent with γ with greater chance to highly

degrade Quality than slightly improve it. 

7. Conclusions 

This paper has presented a biological inspired learning algo-

rithm: the Random Neural Network in a Deep Learning structure

with a Management Cluster. The Intelligent Search Assistant has

been validated in a similar artificial environment where not all in-

formation can be processed due it is large amount: the Web. 

On average; the results prove that the Deep Learning clusters

outperform other Web search engines with a significant improve-

ment after the user iteration. Cluster performance can be improved

by learning from best performing clusters. The proposed applica-

tion improves result accuracy and relevance while reduces learning

time and network weigh’s computation. 

The Management cluster improves the overall Quality only

when its learning coefficient is less than one; it has a detriment

effect if it is equal to or greater than one. The Management Cluster

needs to be the tuned to take the right decisions. 
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Appendix. List of queries 

Random Neural Network – Art Exhibitions London – Art

Galleries Berlin – Night Clubs London – Night Clubs Berlin –

Vegetarian restaurant Stoke Newington – Techno Festivals Europe

– Indie Rock London – Flights Tokyo – Gentrification World-Best

documentaries 2016 – Book shops soho – Boutique hotels Mexico

city – Brownie cafe London – Haute couture catwalks 2016 – Mid

Century Patterns – Recycling Center London – Vintage Arm Chair

– Wedding Design Gifts Shops – Weekend Paris Break Tory Party

Conference – restaurants Forest Gate – compare energy prices –

mid century furniture – reclaimed wood London – Best dinner

date London – Best holiday destinations – Holiday deals packages

– Best rooftop bars London – cheap flights Shanghai – Film clubs

Edin–urgh – fundraising jobs arts heritage Edinburgh – Holiday

cottages rent Stoke on Trent 10 people – Home remedies sore

throats – Volunteering opportunities Edinburgh – Brexit invest-

ments – Bristol breweries – Harmonica shops London – Narrow

boats sale London – How get Irish passport – Best Pizza New York

– Islington History – Southern rail overground – US presidential

election forecast – Yorkshire dales walks 
ppendix. ISA neural schematic 
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