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Abstract. Using the Energy Packet Network (EPN) model, we show
how energy can be shared between heterogenous servers at the edge
to minimize the overall average response time of jobs. The system is
modeled as a probabilistic network where energy and jobs are being
dispatched to the edge servers using G-Networks with a product-form
solution for the equilibrium probability distribution of system state. The
approach can also be used to design energy dispatching systems when
renewable energy is used to improve the sustainability of edge computing.

1 Introduction

Heterogeneous sensors, other digital devices and computer servers or worksta-
tions (WS) are being incorporated into the Internet of Things (IoT) [33, 28, 41,
3, 7] to manage cities, services and industry [44] with applications in practically
all areas of socuial activity [4, 26, 1], creating massive energy requirements that
can benefit from energy harvesting from wind, fluid flows, photovoltaic, and
electromagnetic fields, with energy stores (ES) such as batteries to buffer the
effect of intermittent energy sources [40, 5, 36]. Harvested energy can contribute
to the sustainability of information and computer technology (ICT) [39, 19], but
it raises new questions. Research is needed to understand how system Quality of
Service (QoS) can be maintained in the presence of intermittent harvested en-
ergy [42, 34, 17, 6, 10, 30], including optimal network routing for energy savings
[35, 31], data transmission for scheduling for energy usage optimization [2], and
greater energy efficiency in data centers [32] needed to process the massive data
from the IoT.

Recent work on the Energy Packet Network (EPN) paradigm [14–16, 9] has
proposed a discrete state-space modeling approach to evaluate the QoS and
energy consumption in systems where computer jobs, data packets, and energy
packets (EPs), interact in complex interconnected information processing and
data transmission systems. EPNs were recently applied to backhaul networks
operatig with renewable energy sources [18]. Other work has suggested hardware
schemes for simultaneously forwarding both data packets and energy [38, 37].
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Previous work [25], discussed some optimization algorithms based on qeueing
networks for dispatching network packets so as to minimize a composite cost
function that combines overall network energy consumption and QoS. In [20],
the EPN model has been used to study architectures which interconnect energy
prosumer systems, so that energy consumption and leakage, and the response
time to service requests, are minimized. In [21] a utility function, which is a
linear combination of the throughput and the probability that the system does
not run out of energy, maximized. The EPN paradigm has recently generated
interest and further work [24, 9, 43, 29] to model and optimize sensor networks
and servers that operate with harvested energy.

In this paper we consider servers or workstations (WS), each of which is
powered by a battery or energy store (ES) which is charged from a source of
intermittent energy such as wind or photovoltaic. We assume that the energy is
represented by discretized EPs, where one EP is the amount of energy needed to
process one or more jobs depending on the different jobs being considered; this
approach generalizes previous work where one EP corresponds to the amount of
energy needed to process exactly one job or forward on data packet. EPs can
also circulate in the system so that an ES can process transfer them to other
WSs. Energy in batteries may be lost through leakage at a rate that depends on
the particular EB.

Based on these assumptions, we assume that neither EPs nor jobs may be
moved are not moved between WSs, and that the system receives a total fixed
power rate, expressed in EPs per second. We are given a fixed distribution for
the number of jobs that a single EP can process at any given WS, but this
distribution may be different at the different WSs. The problem is then to select
the fraction of jobs that we send to each of the WSs so as to minimize the
overall average response time W of jobs. The case where we move a fraction Di

of the jobs at node i to some other server j according to a probability matrix
M = [Mij ] is discussed in [27].

In Section 2, we briefly discuss G-Networks, and relate the EPN model to this
more general queueing network model. We present the EPN model parameters
in Section 3. Then we detail the optimization problem and a numerical example.
We present conclusions and suggestions for further work in Section 4.

2 EPN and its G-Network Representation

The EPN system considered is schematically presented in Figure 1. In the ap-
proach taken in this paper, jobs or tasks that need to be executed in the system
are modelled as ordinary customers in a queueing network. They arrive to any
one of N WSs which are represented as queues. Jobs first arrive to a given WS,
call it Wi, at rate λi jobs/sec. Each Wi has an energy storage battery denoted
Ei, so that there are a total of N ESs. EPs arrive from an external intermittent
energy source at rate γi EPs/sec to Ei which can be viewed as a “queue of EPs”.
We denote the number of jobs at WS Wi at time t by Ki(t), while Bi(t) denotes
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the number of EPs at Ei. EPs at the Ei are expended (locally consumed) or
moved in the following manner:

– If Bi(t) > 0 then Ei will leak energy at some rate δi ≥ 0 EPs/sec. Thus
when Bi(t) > 0, after a time of average value δ−1i , we will have one less EP
at ES i due to energy leakage.

– ES Si provides EPs at rate wi when Bi(t) > 0. With probability Mij an
EP is moved to another other Ej so that Bi(t

+) = Bi(t)− 1, and Bj(t
+) =

Bj(t)+1. Such transfers may be made to share energy with other ESs which
are being depleted more rapidly.

– Or with probability di = 1−
∑N
j=1 Pij the EP is forwarded to Wi and with

probability 1 ≥ Di ≥ 0, one EP is expended to serve a batch of up to bi
jobs at the WS. If Ki(t) > 0 then the EP will serve max[Ki(t), bi] jobs in
one step and after service we end up with Ki(t

+) = Ki(t)−max[Ki(t), bi].
Since different jobs may have different energy requirements when running at
a given Wi, we assume that bi (i.e., the number of jobs that are processed
with a single EP at Wi), is a random variable with probability distribution
πis = Pr[bi = s], s = 1, 2, ....

– With probability 1−Di, if Ki(t) > 0 one EP will be used to serve just one
job, and then forward that job to another Wj according to the transition
probability matrix M = [Mij ]. As a result we will have Ki(t

+) = Ki(t)− 1,
Kj(t

+) = Kj(t) + 1.
– If an EP arrives to a WS i and Ki(t) = 0, then the EP will just be expended

to keep the WS in working order, and no jobs will be processed or moved.

2.1 The G-Network Model

The EP is a special case of G-Networks [12, 11, 8] which are queueing networks
that have the remarkable“product form solution” which simplifies their compu-
tational structure. An EPN is a multi-class G-Network with Batch Removal [13,
23]. This is an open queueing network with v of service stations or WSs. The
EPN “jobs” can be computer programs that need to be executed, or data packets
that need to be transmitted, and belong to one of C classes. Each ach customer
class has distinct arrival rates to the network, and distinct routing probabilities
in the network. Customer also belong to three Types, of “positive” and “neg-
ative” customers, or “triggers”. Other types of customers include “resets” [22]
and “adders” [8].

Positive customers are the normal queueing network customers which request
and obtain service at the queues, and belong to one of the C classes. At all of
the v queues, positive customers have i.i.d. exponential service times of rate
r(1), . . . , r(v) which are identical for all classes of customers. After completing
service and leaving a node i, a positive customer of class c can change into a pos-
itive customer of class c′ at node j with probability Π+

c,i,c′,j , the corresponding

transition probability matrix is Π+ = [Π+
c,i,c′,j ], or the positive customer leaves

the network with probability lc,i, or it changes into a negative customer of class
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Fig. 1. A EPN system with N WSs and ESs. EPs are accumulated in the ESs denoted
Ei, and jobs queue at the WSs denote Wi. The EPs can be forwarded to the corre-
sponding Wi or moved to other ESs. Jobs in the Wi can finish processing locally or
they may be forwarded to other WSs for further processing.

c′ and join node j with probability Π−c,i,c′,j , in which case it will remove, or “in-
stantaneously serve”, a batch of positive customers of class c′, and the batch is of
maximum size Bj,c′,j at queue j, where Bc′,j is a random variable with probabil-
ity distribution πc′,j,s = Pr[Bc′,j = s] ≥ 0, s ≥ 1. If a negative customer of class
c at node i arrives to queue j as a class c′ customer at time t, and the number
positive customers of class c′ at j is Kc′,j(t), then a total of max [Kc′,j(t), Bc′,j ]
positive customers of class c′ will be instantaneously removed from the queue
at j so that Kc′,j(t

+) = 0 if B,c′,j ≥ Kc′,j(t), and Kc′,j(t
+) = Kc′,j − Bc′,j if

Bc′,j < Kc′,j(t), and the negative customer disappears at time t+. If Kc′,j(t) = 0
then the negative customer disappears and no customer is removed from queue
j. The positive customer of class c leaving queue i can become a “trigger” of class
c′ at queue j with probability ΠT

c,i,c′,j , in which case it will move a class c′ cus-
tomer from queue j to queue l, and that customer becomes a class c′′ customer
at queue l, with probability Qc′,j,c′′,l ≥ 0. If queue j does not contain a class c′

customer when the trigger arrives to queue j, then no customer is transferred
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from j to l, and the trigger disappears. These probabilities that we have satisfy:

1 = lc,i +

C,v∑
c′=1,j=1

[Π+
c,i,c′,j +Π−c,i,c′,j +ΠT

c,i,c′,j ],

1 =

C,v∑
c′′=1,l=1

Qc′,j,c′′,l, and 1 =

∞∑
s=1

πc′,j,s, for all c
′, j.

The effect of a negative customer and of a trigger are instantaneous: they oc-
cur in zero time; i.e. the effect of a negative customer or trigger arriving to a
queue at time t will modify the queue’s state at time t+. Furthermore, both a
negative customer and a trigger will themselves disappear after they have vis-
ited queue j. Queues also have external positive, negative and trigger arrivals
of rates λ+c,i, λ

−
c,i, λ

T
c,i which can differ for each class c and queue i, according

to independent Poison processes at each of the queues. Furthermore, externally
arriving customers will have exactly the same effect at a queue as the ones that
arrive from another queue.

Let Λ+
c,i, Λ

−
c,i, Λ

T
c,i denote the total arrival rate to queue i of class c customers

that are of positive, negative and of trigger type, respectively. Then the “traffic
equations” for the system are given by:

Λ+
c,i = λ+c,i +

|C|,v,v∑
c′,j,l

r(c′, j)qc′,j [Π
T
c′,j,c′′,lqc′′,lQc′′,l,c,i +Π+

c′,j,c,i],

Λ−c,i = λ−c,i +

|C|,v∑
c′,j

r(c′, j)qc′,jΠ
−
c′,j,c,i, Λ

T
c,iλ

T
c,i +

|C|,v∑
c′,j

r(c′, j)qc′,jΠ
T
c′,j,c,i,

where qc,i =
Λ+
c,i

r(c, i) + ΛTc,i + Λ−c,i .[
1−

∑∞
s=1 q

s
c,iπc,i,s

1−qc,i ]
. (1)

In the sequel we will assume that at any queue i only positive, negative cus-
tomers, and triggers of a single class ci can arrive. Thus for a specific ci we
have ΛTc,i = Λ−c,i = Λ+

c,i = 0, if c 6= ci, Λ
T
ci,i
≥ 0, Λ−ci,i ≥ 0, Λ+

ci,i
≥ 0. Also

we assume that service rates are the same for all classes of positive customers
r(c′, i) = r(c, i) = r(i). As a consequence we have:

qci,i =
Λ+
ci,i

r(i) + ΛTci,i + Λ−ci,i .[
1−

∑∞
s=1 q

s
ci,i

πci,i,s

1−qci,i
]
. (2)

With these assumptions, the following result follows from previous work [13, 23]:

Result Let K(t) = (K1(t), ... ,Kv(t)). If the equations (1) have an unique
solution such that all the 0 < qc,i < 1, for 1 ≤ i ≤ v and 1 ≤ c ≤ C, then
denoting by qi = qci,i, the following result holds:

lim
t→∞

Pr[K(t) = (k1, ... , kv)] =

v∏
i=1

qkii (1− qi). (3)
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Directly following from the above PFS, we can show that the marginal queue
length probability distribution for any queue j is given by:

lim
t→∞

Pr[Kj(t) = kj ]

=

v∑
i=1,i6=j

v∑
ki=1, i 6=j

[

v∏
i=1

qkii (1− qi)]

= q
kj
j (1− qj). (4)

3 The EPN System

The EPN of Figure 1 can be represented by a G-Network with v = 2N queues,
where the WSs are represented by the queues 1, . . . , N , while the ESs are repre-
sented by the queues N + 1, . . . , 2N .

With regard to the notation in Section 2 and Section 2.1, the network has
C = 2, i.e. two classes of customers where Class 1 refers to the jobs, while Class
2 refers to the EPs, and negative customers and triggers cannot arrive to any
of the queues from the outside world, i.e. λ−c,i = λTc,i = 0 for c = 1, 2 and i ∈
{1, . . . , 2N}. Class 1 customers are “positive customers” representing jobs being
served at the WSs with λ+1,i = λi, and λ+2,i = λ−1,i = λ−2,i = 0 for i = 1, . . . , N .
Furthermore jobs at the WSs are only removed, or moved to another WS, under
the effect of EPs, i.e. r(i) = 0 and l1,i = l2,i = 0 for i = 1, . . . , N .

Class 2 customers are EPs acting as positive customers at the storage units
or ESs, represented by queues N + 1, ... , 2N . Hence for i, j ∈ {N + 1, . . . 2N}:
λ+2,i = γi, λ

−
2,i = 0, λ+1,i = λ−1,i = 0, and r(i) = wi + δi. Also Π+

2,i,2,j = Pij , and

Π−2,i,2,j = 0; note that l2,i = δi
δi+wi

. EPs become negative customers or triggers

when they arrive with probability dj .
wj

δj+wj
to a queue i from a queue j = N + i,

i ∈ {1, . . . , N}. With probability Di an EP becomes a negative customer with
batch removal, so that the EP is used to process one or more jobs at a WS and
the probability distribution of the size of the batch of jobs that can are served is
π1,i,s = Pr[B1,i = s], and Π−2,j,1,i = Di.dj .

wj

δj+wj
, with j ∈ {N + 1, . . . 2N} and

i = j −N .

With probability 1 − Di an EP becomes a trigger, so that ΠT
2,j,1,i = (1 −

Di)dj .
wj

δj+wj
, and q1,i,1,m = Mim, for j ∈ {N + 1, . . . 2N}, i = j −N , 1 ≤ m ≤

N . Note that ΠT
2,j,2,i = ΠT

1,j,2,i = ΠT
1,j,1,i = 0 for all i, j ∈ {1, . . . , 2N}, and

ΠT
2,j,1,i = 0 if i 6= j − N for N + 1 ≤ j ≤ 2N . Also, P+

1,i,1,j = (1 − Di)Mij ,

P+
1,i,1,j = (1 − Di)Pij , P

+
1,i,2,j = 0, P+

2,i,1,j = 0, l1,i = 0, for i, j ∈ {1, . . . N}.
Furthermore l1,i = 0, l2i = 0 for i = 1, . . . , N , and l1i = 0, l2,i = δi

δi+wi
for

i = N+1, . . . , 2N . Finally 1−di =
∑N
j=1 Pij for i = 1, . . . , N , and

∑N
j=1Mij = 1

for i = 1, . . . , N

With regard to (2) in the G-Network Model, the two classes representing
jobs and EPs in the EPN are characterized by two equations that represent the
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probabilities that the job queues and ES queues (batteries) are busy:

q1,i =
Λ+
1,i

q2,i+Nwidi[(1−Di) +Di
1−

∑∞
s=1 q

s
1,sπ1,i,s

1−q1,i ]
, (5)

where Λ+
1,i = λi +

∑N
j=1 q1,j(1−Dj)djwjMjiq2,j+N and

q2,i+N =
γi +

∑N
j=1 wjq2,j+NPji

wi + δi
. (6)

And according to G-Network Theory outlined in the Section 2.1, the following
expressions hold:

lim
t→∞

Pr[K(t) = (k1,1, ... , k1,N , k2,N+1, ... , k2,2N )] = (7)

N∏
i=1

q
k1,i
1,i (1− q1,i)q

k2,i+N

2,i+N (1− q2,i+N ).

provided that (5) and (6) have an unique solution such that all the 0 < qc,i < 1
for 1 ≤ i ≤ 2N and 1 ≤ c ≤ 2. The marginal probability distribution of the
queue length for the queue i and class c is

lim
t→∞

Pr[Kc,i(t) = kc,i] = q
kc,i
c,i (1− qc,i) (8)

3.1 Cost Function, Parameters and Optimization

In previous work, G-Networks were used to optimize energy consumption in
packet networks [25], and the model in [20] can help to determine the best
architecture, distributed or centralized, for storing and dispatching harvested
energy. In [21] the EPN model is used under the assumption that one EP is the
amount of energy needed to process a job.

Here our objective is to minimize the average response time for jobs that
come into the system, where the jobs arrive from the outside world to WS i
at a given rate λi. Furthermore, the total arrival rate of EPs is fixed at some
value γ and each of the ESs has a transfer rate of EPs to the corresponding
WS given by wi and a local energy leakage rate δi, for i = 1, ... , N . In order

to obtain an intuitively appealing result, we will assume that π1,i,s =
(1−ui)u

s
i

u(i)

where 0 < ui < 1 is a real number and
∑∞
s=1(1 − ui)us−1i = 1. Consider the

case where the EPs cannot moved between ESs so that Mji = 0 and di = 1.
Also assume that jobs cannot be moved between WSs, i.e. Di = 1. In this case,
assume that the total renewable energy flow into ES i is γi = pi.γ.

The cost function that needs to be minimized is the overall average job
response time for all jobs arriving to the system:

W =
1∑N
i=1 λi

N∑
i=1

q1,i
1− q1,i

. (9)
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Regarding equations (5) and (6) with the specific restrictions for this case with
di = 1, Di = 1, for 1 ≤ i ≤ N , we have :

q1,i =
λi

q2,iwi[
1−

∑∞
s=1 q

s
1,i . π1,i,s

1−q1,i ]
, (10)

q2,i+N =
γpi

wi + δi
. (11)

Our problem is then to choose p = (p1, ... , pN ) so as to minimize W for a given
value of γ and for given energy leakage rate δi at each ES i.

Using Little’s Formula we can write:

W =
1

λ+

N∑
i=1

q1,i
1− q1,i

, where λ+ =

N∑
i=1

λi. (12)

Note that Λ+
1,i = λi when Di = 1 for all i = 1, . . . , N . Substituting

(1−ui)u
s
i

ui
into

(10), we have

q1,i =
λi

q2,i+Nwi
×
[1−∑∞s=1

(1−ui)u
s
i

ui
qs1,i

1− q1,i
]−1

=
λi

uiλi + q2,i+Nwi
. (13)

Substituting (13) into the cost function W , we get:

W =
1

λ+

N∑
i=1

λi
σiγpi + λi(ui − 1)

, with σi =
wi

wi + δi
. (14)

where σi is the energy efficiency with regard to leakage, of i− th ES node.
Choosing the pi ≥ 0 so as to minimize W is an optimization problem subject

to the constraint
∑N
i=i pi = 1. Therefore we apply the method of Lagrange

multipliers and choose the Lagrangian

L = W + β(

N∑
i=1

pi − 1), (15)

where the Lagrange multiplier β is a real number. Suppose p∗ is a local solution
of the optimization problem. Then the necessary Kuhn-Tucker conditions are:

∇pL(p∗, β∗) = 0, and

N∑
i=1

p∗i − 1 = 0, (16)

from which we derive

∂W

∂pi
=

−λiσiγ
λ+
[
σiγpi + λ(ui − 1)

]2 = −β. (17)
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Then rearranging (17), the solution p∗i is

p∗i =
λi(1− ui)

σiγ
+

√
λi

λ+σiγβ
. (18)

Moreover, the second necessary condition

N∑
i=1

(
λi(1− ui)

σiγ
+

√
λi

λ+σiγβ

)
= 1, (19)

also must hold. Solving (18) and (19) simultaneously, we see that the optimal
solution must be:

p∗i =
λi(1− ui)

σiγ
+

√
λi

σi∑N
i=1

√
λi

σi

(
1−

N∑
i=1

λi(1− ui)
σiγ

)
. (20)

However, the sufficient condition that there exists an optimum solution p∗ also
needs to be examined. To guarantee the existence of the strict constrained local
minimum, the Hessian ∇ppL muust be positive definite. Notice that ∇ppL is a
diagonal matrix with diagonal entries:

∂2L(p∗, β∗)

∂p2i
=
∂2W

∂p2i
=

2λiσ
2
i γ

2

λ+
[
σiγp∗i + λi(ui − 1)

]3 . (21)

Thus the sufficient condition holds if the inequality

σiγp
∗
i > λi(1− ui), (22)

is satisfied for all i = 1, . . . , N . Substituting p∗i into (22), we see that the in-
equality is equivalent to:

γ >

N∑
i=1

λi
σi

(1− ui). (23)

This condition is physically meaningful since it implies that the total rate of
harvested EPs has to be sufficiently large so as to provide enough energy so as
to power the WSs despite the energy leakage that also will occur.

3.2 An Example

In order to illustrate the optimal solution, consider a system with three WSs
and ESs with parameters given in Table 1.

The sufficient condition (22) allows us to determine the range of p1, p2 and p3
that guarantee that every ES can provide sufficient power to its corresponding
WS:

0.2933 < p1 < 1, 0.1760 < p2 < 1, 0.0597 < p3 < 1,
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Table 1. Parameters for the system with three WSs and ESs

Parameters Values

γ 150 EPs/sec

λ1, λ2, λ3 50, 30, 10 jobs/sec

D1, D2, D3 1, 1, 1

w1, w2, w3 100, 80, 50 EPs/sec

u1, u2, u3 0.2, 0.2, 0.2

Mij for all i, j 0

Mij for all i, j 0

δ1, δ2, δ3 10, 8, 6 EPs/sec

d1, d2, d3 1, 1, 1

with the constraint p1 +p2 +p3 = 1. The resulting values of W for all (p1, p2, p3)
are shown in Figures 2 and 3 where the x and y axes are p1 and p2, and p3 =
1− p1 − p2. From (20) we obtain the optimum operating point which minimizes
the total average response time as being (p∗1, p

∗
2, p
∗
3) = (0.5049, 0.3399, 0.1552)

with the minimum value W ∗ = 42.9 ms.

0.8

0.60

p
1

0.7

1

0.6 0.40.5

p
2

2

d
e
la

y
 i
n
 s

e
c
o
n
d
s

0.4
0.3

3

0.2 0.20.1

4

Fig. 2. Average response time with all
(p1, p2) pairs. The red dot is the op-
timal solution of equation (20). The
range of the values pi is not [0, 1] due
to the constraint and the sufficient con-
ditions, and the curve is not convex.

0.8

0.6

p
1

0.04
0.40.7

0.042

0.6

p
2

0.5

0.044

0.4

d
e
la

y
 i
n
 s

e
c
o
n
d
s

0.046

0.3 0.20.2

0.048

0.1

0.05

Fig. 3. The neighbourhood of the op-
timum point at a much smaller scale of
W along the z-axis.



Sharing Energy for Optimal Edge Performance 11

4 Conclusions

We have considered an EPN model where jobs and energy packets cannot be
transferred to other workstations, so that each workstation executes locally the
jobs that it receives, using energy from its own energy storage unit. We have de-
rived a key result where a common flow of energy is distributed optimally among
the workstations so that the average response time of jobs can be minimized. The
problem has been solved analytically for the geometrically distributed number of
jobs processed with one energy packet. In other work [27] the average response
time has been minimized when jobs can be moved among WSs according to a
given probability transition matrix, but each station decides locally whether to
move a job or not. Future work will investigate the minimization of a cost func-
tion that combines the average response time of jobs, and the energy wastage
through leakage or due to idle workstations which consume energy when they
do not process jobs.
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