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Thermodynamic universality of quantum Carnot engines
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The Carnot statement of the second law of thermodynamics poses an upper limit on the efficiency of all
heat engines. Recently, it has been studied whether generic quantum features such as coherence and quantum
entanglement could allow for quantum devices with efficiencies larger than the Carnot efficiency. The present
study shows that this is not permitted by the laws of thermodynamics—independent of the model. We will
show that rather the definition of heat has to be modified to account for the thermodynamic cost of maintaining
non-Gibbsian equilibrium states. Our theoretical findings are illustrated for two experimentally relevant examples.
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I. INTRODUCTION

Harnessing energy stored in inaccessible forms such as
heat or chemical energy and transforming it into useful
work is one of the most important technological achieve-
ments. Nevertheless, the underlying principles and ultimate
limitations imposed by quantum mechanics on such ther-
modynamic processes are still an active field of research
[1,2]. Modern studies range from implementations of quantum
heat engines in ion traps [3] over thermodynamic cycles
in optomechanical systems [4,5] to the description of the
principles of photosynthesis, such as photo-Carnot engines
[6,7]. The natural question arises as to how generic quantum
features such as coherence and entanglement affect classical
formulations of the thermodynamic axioms. This problem has
been studied from many different perspectives [8], including
stochastic thermodynamics [9–11] and information theory
[12–14]. However, a conclusive consensus appears still to be
lacking.

In particular, it has been studied whether quantum cor-
relations could be harnessed and whether quantum devices
could operate with efficiencies larger than the Carnot efficiency
[15–18], therefore demanding a reformulation of the Carnot
statement of the second law of thermodynamics.

The Carnot statements of the second law of thermodynam-
ics declares [19],

No engine operating between two heat reservoirs can be
more efficient than a Carnot engine operating between those
same reservoirs.

Recent studies, however, have raised the question of
whether quantum effects such as coherence and entanglement
could provide means to break the limit posed by the Carnot
efficiency [14–16,20]. To this end, a variety of theoretical and
experimental setups have been developed [3,4,21].

Thermal equilibrium states of classical systems are univer-
sally described by the Boltzmann-Gibbs distribution [22,23].
It can be easily shown that the Carnot statement is only a
consequence of this universality of equilibrium states [22].
The situation is dramatically different for thermally open
quantum systems. Generically, quantum systems which are
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not ultraweakly coupled to their environment do not relax
into Gibbs states [24,25]. This can be seen most clearly for the
analytically solvable case of quantum Brownian motion [26]. It
has been shown that the quantum correlations between system
and environment prevent relaxation into the Gibbs equilibrium
state [27]. Therefore, such non-Gibbsian equilibrium states
are not fully “thermalized” and contain additional information
encoded in quantum coherence and entanglement [28,29].

It is only natural to ask whether a quantum heat engine
such as in Fig. 1 could be realized that utilizes this “extra”
information and thus constitutes a device operating with an
efficiency larger than predicted by Carnot [15]. The present
study will elucidate that this is not permitted by the laws
of thermodynamics. In particular, we will argue that there
is a specific thermodynamic price that has to be to paid to
maintain quantum correlations and thus to prevent the system
from relaxing into a Gibbs state. How to properly modify the
definition of heat has been recently studied with great intensity
for various model systems [5,30–33]. However, to the best
of our knowledge, the only rigorous and model-independent
distinction has been previously discussed in the context of the
heat capacity [34] of open quantum systems (see Eq. (23) of
Ref. [34]).

In the present work we further develop this notion of quan-
tum heat. As a main result we will see that the classical Carnot
statement remains unchanged for open quantum systems with
arbitrary coupling to their environment. More specifically, we
will show,

No quantum heat engine operating in quasistatic Carnot
cycles can harness quantum correlations.

This insight has far-reaching consequences for all areas
of engineering at the nanoscale. Nanoengines performing
beyond the Carnot limit necessarily operate far from thermal
equilibrium [35]. To the best of our knowledge, however, this
has only been proven rigorously, if at least the initial state is
Gibbsian [36–38].

II. QUASISTATIC PROCESSES

Before we analyze the quantum Carnot cycle, let us estab-
lish an important concept, first. Consider a quantum system
with Hamiltonian H (ωt ), where ωt is an external control
parameter. Then the dynamics of the system is governed by the
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FIG. 1. (Color online) Illustration of a generic quantum heat
engine: a quantum particle inside in a quantum piston consisting,
e.g., of an optical cavity.

Liouville-type equation ρ̇ = Lωt
(ρ), where the superoperator

Lωt
reflects both the unitary dynamics generated by H and

the nonunitary contribution induced by the interaction with
the environment. We further have to assume that the equation
for the steady state, Lωt

(ρ) = 0, has a unique solution [39].
The classical Carnot statement is formulated for cycles of
quasistatic (infinitely slow) processes, i.e., successions of
stationary states [40]. In complete analogy to the classical
theory, quasistatic processes are the only processes considered
in the present analysis.

III. THERMODYNAMICS OF GIBBS
EQUILIBRIUM STATES

We begin with a brief review of fundamental thermody-
namic concepts for Gibbs equilibrium states,

ρ = exp (−βH )/Z, where Z = tr{exp (−βH )} . (1)

Here β is the inverse temperature of the environment, β =
1/T , and we work in units for which the Boltzmann constant
is unity. The thermodynamic entropy is then given by the
Gibbs entropy [22], S = −tr{ρ log ρ} = β(E − F ), where
E = tr{ρH } is the internal energy of the system, and F =
−T log Z denotes the Helmholtz free energy. For isothermal,
quasistatic processes, β̇ = 0, the change of thermodynamic
entropy dS becomes

dS = β (tr{δρ H } + (tr{ρ δH } − dF )) = β tr{δρ H } , (2)

where δ denotes an infinitesimal change. Therefore, two forms
of energy can be identified [1]: heat is the change of internal
energy associated with a change of entropy; work is the change
of internal energy due to the change of an extensive parameter,
i.e., change of the Hamiltonian of the system. We have

dE = δQ + δW ≡ tr{δρ H } + tr{ρ δH } . (3)

The first law of thermodynamics (3) is a universally valid
expression of the conservation of energy. However, the

identification of heat δQ and work δW (3) is consistent with
the second law of thermodynamics for quasistatic processes
(2) if, and as will shortly see, only if ρ is a Gibbs state (1).

It is worth emphasizing that for isothermal, quasistatic
processes we have

dS = β δQ and dF = δW , (4)

for which the first law of thermodynamics takes the form

dE = T dS + dF . (5)

In this particular formulation it becomes apparent that changes
of the internal energy dE can be separated into “useful”
work dF and an additional contribution, T dS, reflecting the
entropic cost of the process.

IV. THERMODYNAMICS OF NON-GIBBSIAN
EQUILIBRIUM STATES

For systems whose equilibrium states are not described by
a Boltzmann-Gibbs distribution (1), the identification of heat
only with changes of the state of the system (3) is no longer
possible [34]. Mathematically similar situations have been
studied for classical systems under nonconservative forcing
[41–43]. Such systems relax into so-called nonequilibrium
stationary states, and it has been recognized that not all heat
absorbed by the system accounts for the entropic cost [42].
Some contribution to the total heat, coined housekeeping
energy (or heat) δQhk [41–43], fulfills the sole purpose of
preventing the system from relaxing into the thermal Gibbs
state. The concept of quantum housekeeping heat has been
analyzed carefully in Refs. [44,45].

For generic quantum systems, whose thermal equilibrium
states are non-Gibbsian, the situation is mathematically anal-
ogous. However, we stress that in the present context we are
interested in quantum systems in non-Gibbsian equilibrium
states, and not in generic nonequilibrium situations. The
deviation from the Gibbsian equilibrium is only due to the
interaction and correlations between the system and the envi-
ronment. In particular, there is no continuous supply of energy
from the environment into the system. For instance, it has been
seen explicitly in the context of quantum Brownian motion [27]
that the system and the environment are generically entangled.
In such situations the reduced equilibrium state σ of the system
can be written as [24]

σ = exp [−β (H + �)]/Z�, (6)

where H is the reduced Hamiltonian and Z� denotes the
modified partition function. A similar situation is encountered
in classical systems with non-negligible interacting energy
between a system of interest and its environment. For such
classical systems it has been shown that H + � can be
interpreted as a potential of mean force [46], and that the
identification of thermodynamic work is subtle [46].

Note, however, that generically the physical situation is
even more involved in the quantum case. Whereas � for
classical systems only includes contributions from interaction
energies, solvation energies, and classical correlations, for
quantum systems � is also governed by quantum correlations.
This means that even for situations for which the surface terms

042126-2



THERMODYNAMIC UNIVERSALITY OF QUANTUM CARNOT . . . PHYSICAL REVIEW E 92, 042126 (2015)

such as the interaction energy are vanishingly small, the purely
quantum part of � cannot necessarily be neglected [24].

Therefore to formulate thermodynamics consistently, the
energetic back action due to the correlation of the system and
environment always has to be considered carefully [27,34].
During quasistatic processes parts of the energy exchanged
with the environment are not related to a change of the
thermodynamic entropy of the system but rather constitute
the energetic price to maintain the non-Gibbsian state, i.e., co-
herence and correlations between the system and environment.

In complete analogy to stochastic thermodynamics, we
identify the thermodynamic entropy with the von Neumann
entropy [42,44,47–49]. With σ being the stationary state, we
can write

H = −tr{σ log σ } + (tr{σ log ρ} − tr{σ log ρ})
= β(E − [F + T D(σ ||ρ)]) = β (E − F), (7)

where E = tr{σH } is the internal energy of the system,
and F ≡ F + T D(σ ||ρ) is the information free energy [47].
Here, D(σ ||ρ) ≡ tr{σ (log σ − log ρ)} is the quantum relative
entropy [50]. Note that it has been shown that F is the only
thermodynamically consistent definition of a free energy for
non-Gibbsian states [47,51].

As before (2), we now consider isothermal, quasistatic
processes for which the infinitesimal change of the entropy
reads

dH = β [tr{δσH } + (tr{σδH } − dF)]

≡ β (δQtot − δQc), (8)

where we identified the total heat as δQtot ≡ tr{δσH } and the
correlation part as δQc ≡ dF − tr{σδH }.

The total heat exchanged with the environment has two
contributions. The correlation heat is the energetic price that
has to be paid to maintain coherence and quantum correlations.
The excess heat δQex is the only contribution that is associated
with the entropic cost,

dH = β δQex, and δQex = δQtot − δQc . (9)

Notice that δQex is mathematically analogous to the excess
heat for classical systems under nonconservative driving [42].

Accordingly, the first law of thermodynamics takes the form

dE = δWex + δQex, (10)

where δWex ≡ δW + δQc is the excess work [47], which
reduces in the classical limit to the notion analyzed in Ref. [46].
Finally, Eq. (5) generalizes for isothermal, quasistatic pro-
cesses in generic quantum systems to

dE = T dH + dF . (11)

In the remainder of the present analysis we will show how
the universal Carnot statement follows from these generalized
thermodynamic relations.

V. UNIVERSAL EFFICIENCY OF QUANTUM
CARNOT ENGINES

Imagine a generic quantum system that operates between
two heat reservoirs with hot, Thot, and cold, Tcold, temperatures,
respectively. Then, the Carnot cycle consists of two isothermal

processes during which the system absorbs/exhausts heat
and two thermodynamically adiabatic, i.e., isentropic strokes
during which the extensive control parameter ω is varied.

During the first isothermal stroke, the system is put into
contact with the hot reservoir. As a result, the excess heat
Qex,1 is absorbed at temperature Thot and excess work Wex,1 is
performed,

Wex,1 = F(ω2,Thot) − F(ω1,Thot),

Qex,1 = Thot [H(ω2,Thot) − H(ω1,Thot)].
(12)

Next, during the isentropic stroke, the system performs work
Wex,2 and no excess heat is exchanged with the reservoir,
�H = 0. Therefore the temperature of the engine drops from
Thot to Tcold:

Wex,2 = �E = E(ω3,Tcold) − E(ω2,Thot)

= �F − (Thot − Tcold)H(ω3,Tcold). (13)

In the second line we employed the thermodynamic identity
E = F + T H, which follows from the definition of F .
During the second isothermal stroke, the excess work Wex,3

is performed on the system by the cold reservoir. This allows
for the system to exhaust the excess heat Qex,3 at temperature
Tcold. Hence we have

Wex,3 = F(ω4,Tcold) − F(ω3,Tcold),

Qex,3 = Tcold[H(ωc,Tcold) − H(ω3,Tcold)].
(14)

Finally, during the second isentropic stroke, the cold reservoir
performs the excess work Wex,4 on the system. No excess heat
is exchanged, and the temperature of the engine increases from
Tcold to Thot:

Wex,4 = �E = E(ω1,Thot) − E(ω4,Tcold)

= �F + (Thot − Tcold)H(ω1,Thot). (15)

As before, Eq. (15) reflects the isentropic condition,
H(ω1,Thot) = H(ω4,Tcold).

The efficiency of a thermodynamic device is defined as the
ratio of “output” to “input.” In the present case the “output” is
the total work performed during each cycle, i.e., the total excess
work, Wex = W + Qc. There are two physically distinct con-
tributions: work in the usual sense, W , that can be utilized, e.g.,
to power external devices, and correlation energy, Qc, which
cannot serve such purposes, as it is the thermodynamic cost
to maintain the non-Gibbsian equilibrium state. Therefore the
only thermodynamically consistent definition of the efficiency
has to read

η =
∑

i Wex,i

Qex,1
= 1 − Tcold

Thot
≡ ηC, (16)

which is identical to the classical Carnot efficiency. Earlier
analyses did not distinguish between correlation and excess
part of the heat, and the efficiency was simply defined as
η = W/Qtot (see, for instance, Ref. [15]).

Example 1. To illustrate these concepts and to build
intuition, we now turn to illustrative systems. As a first example
we consider quantum Brownian motion, i.e., a harmonic
oscillator coupled to an ensemble of harmonic oscillators. In
this case the non-Gibbsian equilibrium state of a Brownian
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FIG. 2. (Color online) Efficiency of the quantum Carnot cycle for
Eq. (17). The blue, solid line results from W/Qtot, which does not
properly account for the correlation energy Qc. The red, dashed line
is the Carnot efficiency (16). Parameters are Tcold = 1, Thot = 1.5,
ω1 = 0.2, ω2 = 0.6, � = 1, and m = 1.

particle with mass m becomes [27]

〈x|σ |y〉 = 1√
2π 〈x2〉

exp

(
− (x + y)2

8〈x2〉 − (x − y)2

2�2/〈p2〉
)

, (17)

where 〈x2〉 = (Dpp + mγDxp)/m2γ 2ω2 and 〈p2〉 = Dpp/γ .
Here γ is the damping constant, and Dpp and Dxp are diffusion
coefficients, which read in a high-temperature expansion
Dpp = mγ/β + mγβ�

2 (ω2 − γ 2)/12 and Dxp = �
2γ 2β/12

[52]. To implement the cycle we assume that the angular
frequency ω is controlled externally.

In Fig. 2 we plot the resulting efficiency. We observe that
the Carnot efficiency is, indeed, attained for all values of γ if
one properly accounts for the correlation heat. The blue, solid
line is the ratio of work over total heat, W/Qtot. Notice that in
this case η = W/Qtot deviates from ηC .

Example 2. This deviation becomes even more dramatic in
our second example. Consider a quantum particle in a quantum
piston as in Fig. 1. Such a system can be realized, for instance,
as a qubit coupled to an optical cavity with Hamiltonian (� = 1)

H = ωq

2
σz + ωba

†a + g σx ⊗ (a† + a) . (18)

Here, a, a† are the annihilation and creation operators of
bosonic modes with frequency ωb [53]. The base frequency ωb

is the parameter to be changed, which can be experimentally
realized by varying the laser in the cavity. Pauli matrices σz, σz

represent a two-level atom with energy ωq/2 and its coupling
to the cavity [4]. Finally, the last term σx ⊗ (a† + a) ≡ σx ⊗ x̂

describes the interaction of qubit and piston and can be
interpreted as an intrasystem, nonconservative forcing of
strength g.

Finally, the thermal reservoirs are phenomenologi-
cally modeled by a Lindblad master equation [54],
L(ρ) = −i[H,ρ] + Dq(ρ) + Db(ρ), where

Dq(ρ) = γq

(
Nωq

+ 1
)(

σ−ρσ+ − 1
2 {σ−σ+,ρ})

+ γq Nωq

(
σ+ρσ− − 1

2 {σ+σ−,ρ}), (19)

with ladder operators for the atom, σ±, and

Db(ρ) = γb

(
Nωb

+ 1
)(

a−ρa† − 1
2 {aa†,ρ})

+ γb Nωb

(
a†ρa − 1

2 {a†a,ρ}). (20)

Here, Nx = 1/( exp (βx) − 1) and γq , γb are fermionic and
bosonic coupling constants, respectively. Lindblad master
equations are generally applicable only to describe a quantum
system weakly coupled to the (classical) environment. For the
present case this assumption is justified, as the Hamiltonian
(18) describes a generic quantum optomechanical system, for
which Lindblad master equations have been proven to be
adequate [54,55]. Moreover, we do not have to account for
dynamical corrections, as we are only interested in quasistatic,
i.e., infinitely slow processes. It is worth emphasizing that from
microscopic treatments one would expect that the interaction
between the two subsystems changes the individual dissipators
[56]. However, for a macroscopic Lindblad master equation
those corrections would force the system to relax into a Gibbs
state. For the present purposes, we have specifically chosen a
phenomenological model which does not relax into a Gibbs
equilibrium state.

In this model the two subsystems are coupled to the
thermal reservoir independently. However, they “feel” each
other through the direct interaction. Only in the limit g → 0
is the steady state a Gibbs state [54]. For finite interaction the
qubit and cavity are correlated and they share information. The
thermodynamic price for maintaining this correlation during
the thermodynamic cycle is the correlation energy Qc (8).

Figure 3 plots the resulting efficiency (16). We observe
again that the classical Carnot efficiency is, indeed, attained
for all values of g. The green circles are the ratios of work
over total heat, W/Qtot. Notice that in this case the Carnot
statement appears to be violated, as η = W/Qtot can be larger
or smaller than ηC as a function of g. This apparent violation

FIG. 3. (Color online) Efficiency of the quantum Carnot cycle for
Eq. (18) with Eqs. (19) and (20). The blue triangles are a numerical
verification of (16), whereas the green circles result from W/Qtot,
which does not properly account for the correlation energy Qc. The
inset is a magnification for small values of g. Parameters are ωq = 1,
γq = γb = 0.05, Tcold = 1, Thot = 1.5, ω1 = 0.2, and ω2 = 0.6.
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is not physical but rather is rooted in a thermodynamically
inconsistent identification of the excess heat.

VI. CONCLUDING REMARKS

The present study analyzed the thermodynamics of non-
Gibbsian quantum heat engines—devices that operate cycli-
cally in non-Gibbsian equilibrium states. We investigated the
thermodynamic processes underlying such nanodevices and
concluded that it is impossible to harness quantum correlations
in quasistatic processes to enhance the maximum efficiency of
such devices. Instead, one has to modify the definition of heat
and account for the correlation energy necessary to maintain
coherence and correlations. In conclusion, we showed that the

Carnot statement of the second law is universally valid also
for quantum heat engines.
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