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Space and time renormalization in phase transition dynamics
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When a system is driven across a quantum critical point at a constant rate, its evolution must become
nonadiabatic as the relaxation time τ diverges at the critical point. According to the Kibble-Zurek mechanism
(KZM), the emerging post-transition excited state is characterized by a finite correlation length ξ̂ set at the time
t̂ = τ̂ when the critical slowing down makes it impossible for the system to relax to the equilibrium defined by
changing parameters. This observation naturally suggests a dynamical scaling similar to renormalization familiar
from the equilibrium critical phenomena. We provide evidence for such KZM-inspired spatiotemporal scaling
by investigating an exact solution of the transverse field quantum Ising chain in the thermodynamic limit.

DOI: 10.1103/PhysRevB.93.075134

I. INTRODUCTION

The study of the dynamics of second-order phase transitions
started in the cosmological setting with the observation by
Kibble [1,2] that in the course of the rapid cooling that follows
the Big Bang, distinct domains of the nascent Universe will be
forced to choose broken symmetry vacua independently. Their
incompatibility will typically lead to topological defects that
may have observable consequences.

The relativistic causal horizon is no longer a useful con-
straint in condensed-matter settings, but one can still define a
sonic horizon that plays a similar role [3–5]. The usual estimate
of the sonic horizon relies on the scaling of the relaxation time
and of the healing length, which depend on the dynamical and
spatial critical exponents z and ν characteristic for the relevant
universality class. The estimate predicts a characteristic time
scale t̂ ∼ τ

zν/(1+zν)
Q ∼ τ̂ and a correlation length (length scale)

ξ̂ ∼ τ
ν/(1+zν)
Q , where the quench time τQ quantifies the rate

of the transition. The correlation length enables prediction of
the scaling exponent that governs the number of the generated
excitations (e.g., the density of topological defects, when the
relevant homotopy group allows for their formation) as a
function of τQ for a wide range of quench rates.

The Kibble-Zurek mechanism (KZM) has been confirmed
by numerical simulations [6–19] and, to a lesser degree and
with more caveats, by experiments [20–37] in a variety of
settings, with the most recent results in solid-state physics
as well as in gaseous Bose-Einstein condensates providing
suggestive evidence of KZM scalings [31,32,38–41].

Refinements and extensions of KZM include a phase
transition in inhomogeneous systems (see [42] for recent
overview) and applications that go beyond topological defect
creation (see, e.g., [43–46]). Recent reviews related to the KZ
mechanism are also available [47–51].

We consider a zero-temperature quantum phase transition
in the transverse-field quantum Ising chain. Despite important
differences with respect to thermodynamic phase transitions—
where thermal rather than quantum fluctuations act as seeds of
symmetry breaking—the KZM can be generalized to quantum
phase transitions [52–57]; see, also, [49–51] for reviews. The
quantum regime was also addressed in some of the recent
experiments [58–62].

In this paper, we propose what can be considered a general-
ization and extension of the predictive power of KZM: In the
adiabatic limit, when τQ → ∞, both t̂ and ξ̂ diverge. Hence,
one can expect that they should be the only relevant time
and length scales in the low-frequency and long-wavelength
regime. This in turn suggests a dynamical scaling hypothesis,
similar to the one that underlies the renormalization paradigm
that is so useful for the equilibrium phase transitions, that
during the quench all physical observables depend on time
t through the rescaled time t/t̂ and on a distance x through
the rescaled distance x/ξ̂ . Though the basic ingredients of the
hypothesis were present in the KZM from the beginning (see,
e.g., the discussion of the rescaling of the Gross-Pitaevskii
equation in [5], as well as [43,63–65]), its fully fledged form,
taking into account the scaling dimension, was articulated first
in [66] for the correlation function of the ferromagnetic order
parameter in the quantum Ising chain. The idea was developed
further in [67].

Our aim here is a comprehensive study of this space-
time renormalizationlike scaling in the exactly solvable Ising
chain. We begin with a general discussion of the quantum
KZM in Sec. II. It is followed by the statement of the
KZM scaling hypothesis in Sec. III. In Sec. IV, we discuss
the sonic horizon. The Ising model is solved in Secs. V
and V A by mapping to a set of independent Landau-Zener
(LZ) systems. The scaling in the LZ context is identified
in Sec. V B. Then the same scaling is found in quadratic
fermionic correlators (Sec. V C), energy and quasiparticle
density (Sec. V D), spin-spin correlators (Sec. V E), mutual
information (Sec. V F), quantum discord (Sec. V G), entropy
of entanglement (Sec. V H), and entanglement gap (Sec. V I).
We conclude in Sec. VI.

II. QUANTUM KIBBLE-ZUREK MECHANISM

A distance from a quantum critical point can be mea-
sured with a dimensionless parameter ε. The ground state
of the Hamiltonian H (ε) changes character (e.g., breaks
a symmetry) when ε = 0. Thus, ε plays a role analo-
gous to the relative temperature in thermodynamic phase
transitions.
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FIG. 1. Schematic illustration of the quantum Kibble-Zurek
mechanism. The Hamiltonian is driven by a linear quench (3) across
the critical point at t = 0. The energy gap (2) closes like |ε|zν , where
z and ν are universal exponents, and the transition rate (4) diverges
at the critical point; hence the evolution cannot be adiabatic between
−t̂ and +t̂ . This figure shows the gap for z = 1 and ν = 1/2, i.e., the
mean-field scalings. In the quantum Ising model, z = ν = 1 and the
gap closes linearly as t → 0.

The correlation length in its ground state diverges as

ξ ∼ |ε|−ν, (1)

and the relevant gap closes,

� ∼ |ε|zν ; (2)

see Fig. 1. The system, initially prepared in its ground state, is
driven across the critical point by a linear quench,

ε(t) = t

τQ

, (3)

with a quench time τQ. Nonlinear “protocols” can also be
considered [67,68], but we shall not deal with them here.

The evolution sufficiently far from the critical point is
initially adiabatic. However, the rate of change of epsilon,

∣∣∣∣ ε̇ε
∣∣∣∣ = 1

|t | , (4)

diverges at the gapless critical point. Therefore, evolution (e.g.,
of the order parameter) cannot be adiabatic in its neighborhood
between −t̂ and t̂ ; see Fig. 1. Here, t̂ is the time when the
gap (2) equals the rate (4), so that

t̂ ∼ τ
zν/(1+zν)
Q ∼ τ̂ . (5)

Just before the adiabatic-to-nonadiabatic crossover at −t̂ , the
state of the system is still approximately the adiabatic ground
state at ε = −ε̂, where

ε̂ = t̂

τQ

� τ
−1/(1+zν)
Q , (6)

with a correlation length

ξ̂ ∼ ε̂−ν ∼ τ
ν/(1+zν)
Q . (7)

In a zeroth-order impulse approximation (which is the “cari-
cature” of the KZM often found in papers), this state “freezes

out” at −t̂ and literally does not change until t̂ . At t̂ , the frozen
state is no longer the ground state but an excited state with
a correlation length ξ̂ . It is the initial state for the adiabatic
process that follows after t̂ .

There are cases where this oversimplified view suffices [53].
Moreover, as we shall see below, it predicts the same scalings
for ξ̂ as the original derivation [3,5] based on the size of the
sonic horizon.

III. SPACE-TIME RENORMALIZATION
SCALING HYPOTHESIS

No matter how accurate is the impulse approximation or the
above “freeze-out scenario,” the scaling argument establishes
ξ̂ and t̂ , interrelated via

t̂ ∼ ξ̂ z, (8)

as the relevant scales of length and time. What is more, in the
adiabatic limit when τQ → ∞, both scales diverge, becoming
the unique scales in the long-wavelength and low-frequency
limit. Like in the static critical phenomena, this uniqueness
implies a scaling hypothesis:

〈ψ(t)|O(x)|ψ(t)〉 = ξ̂−�O FO(t/t̂ ,x/ξ̂ ). (9)

Here, |ψ(t)〉 is the state during the quench, O(x) is an operator
depending on a distance x, FO is its scaling function, and �O

is its scaling dimension. This hypothesis is analogous to the
static one in the ground state |ψGS〉,

〈ψGS|O(x)|ψGS〉 = ξ−�GS
O F

(GS)
O (x/ξ ), (10)

where ξ is a diverging correlation length near a quantum
critical point.

The diverging scales, ξ̂ and t̂ , become the unique scales in
a coarse-grained description at large distances and long times,
but the scaling hypothesis is not warranted to hold at short
microscopic distances of a few lattice sites, where microscopic
scales remain relevant. This is the same as in the static critical
phenomena.

The analogy to the static case is nearly an identity near
t/t̂ = −1, where |ψ(t)〉 = |ψGS〉 and ξ̂ = ξ . Consequently,

FO(−1,x/ξ̂ ) = F
(GS)
O (x/ξ̂ ), (11)

�O = �
(GS)
O . (12)

The dynamical dimension is the same as the static one. Ex-
ploiting further the adiabaticity before t/t̂ = −1, the adiabatic
scaling function is well approximated by

FO(t/t̂ < −1,x/ξ̂ ) = (ξ/ξ̂ )−�O F
(GS)
O

(
x/ξ̂

ξ/ξ̂

)

= (t/t̂)ν�O F
(GS)
O

[
x/ξ̂

(t/t̂)−ν

]
. (13)

Here, ξ is the correlation length in the adiabatic ground state
before −t̂ . It depends on time like ξ/ξ̂ = (ε/ε̂)−ν = (t/t̂)−ν .
What is more, in the impulse approximation, the nonadi-
abatic scaling function should not depend on the rescaled
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time,

FO(−1 < t/t̂ < 1,x/ξ̂ ) = FO(−1,x/ξ̂ )

= F
(GS)
O (x/ξ̂ ). (14)

If accurate, the dynamical function would be completely
expressible by the static one.

IV. QUASIPARTICLES AND SONIC HORIZON

However, the reality turns out to be more interesting. In the
following, we will see that all scaling functions do depend on
t/t̂ during the nonadiabatic stage. For instance, in Fig. 2, we
show the ferromagnetic correlation function in the quantum
Ising chain. Near t/t̂ = 0, its range grows almost as the size
of the “sound cone”—with twice the speed of quasiparticles
at the critical point. Between t/t̂ = −1 and t/t̂ = 1, it has
enough time to increase several times. The quench excites
entangled pairs of quasiparticles with opposite quasimomenta
that spread correlations across the system [69]. This sonic
horizon effect is, in a sense, at odds with the simplistic narrative
of the impulse approximation. Indeed, as the correlation range
grows with time, it appears to undermine the significance of ξ̂

as a preferred scale of length. Nonetheless, in the following,
we will see that the KZM scaling holds with ξ̂ as the relevant
length.

In order to relate scaling deduced from the “freeze-out”
picture implied by the impulse approximation (where the
evolution pauses in the interval [−t̂ ,t̂], and the scale ξ̂ is
“inherited” from the frozen-out pretransition fluctuations) and
the view based on causality and sonic horizon, we focus
on a quench-induced evolution in the near-critical regime.
After −t̂ , the state must depart from the adiabatic ground
state as otherwise its correlation length would diverge at the
critical point, since correlations cannot spread infinitely fast.
Respecting this speed limit, after the freeze out at −t̂ , the range
of correlations continues to grow, but with a finite speed set by

v̂ � ξ̂ /t̂ , (15)

given by a combination of the relevant scales that defines the
speed of the relevant sound. Indeed, the nonadiabatic evolution
excites low-frequency quasiparticles with quasimomenta up to

k̂ � ξ̂−1. (16)

For a quasiparticle dispersion ∝ kz at the critical point, the
maximal velocity of the excitations is

v̂ ∼ k̂z−1 = k̂z

k̂
� ξ̂

t̂
∼ τ

−(z−1)ν/(1+zν)
Q . (17)

With twice this velocity, the correlation length can grow from
the initial ξ̂ near −t̂ to a final ξ̂ + (2t̂)(2v̂) = 5ξ̂ near t̂ . The
final length, even though multiplied by factor of ∼5, is still
proportional to the original ξ̂ .

A few remarks are in order before we begin to illustrate this
discussion with the example of the Ising chain. We first note
that even though the impulse approximation is not accurate
in general, occasionally it yields remarkably accurate, or even
exact, results [70]. The correlation range of ∼5ξ̂ may help
explain some of the discrepancy between simple estimates
of defect density and numerical simulations (where it was
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FIG. 2. (a) The ferromagnetic correlation function in the quantum
Ising chain (18), Cxx

R = 〈σ x
n σ x

n+R〉 − 〈σ x
n 〉〈σ x

n+R〉, as a function of the
rescaled distance R/ξ̂ at different rescaled times t/t̂ = −2, . . . ,3.
Here, σ x

n is the x component of a spin 1/2 at the lattice site n and 〈σx
n 〉

is the ferromagnetic magnetization (order parameter). The quench
time is τQ = 1024. (b) A correlation range 〈R〉 as a function of
time. We define 〈R〉 as the distance R where the correlator Cxx

R falls
below 0.1. This cutoff is somewhat arbitrary. The behavior of 〈R〉
is similar for other cutoffs of this order. It is selected to provide the
size of domains that choose the same broken symmetry state (rather
than as an estimate of the correlation length, which is defined for
much smaller values of Cxx

R ). The range 〈R〉 increases several times
between −t̂ and t̂ before it freezes after t̂ . Similar plots to (a) and (b)
were made in Ref. [66]. (c) The velocity v = d〈R/ξ̂〉/d(t/t̂)—the
derivative of the plot in (b)—as a function of the rescaled time. Since
in the Ising chain z = 1 and ξ̂ = t̂ , it is also the velocity in the standard
units, v = d〈R〉/dt . Near t/t̂ ≈ 0, the correlation is spreading with
nearly twice the speed of quasiparticles, c = 2, at the critical point,
suggesting that “sound cones” (in analogy with “light cones”) are
responsible for the size of the domains.

noted that defects are separated by distances of several ξ̂ (see,
e.g., [6,7,9]). Last, but not least, we also note that the behavior
of the speed of sound in the near-critical regime is controlled
by the dynamical critical exponent z. In the quantum Ising
chain z = 1, which means that the speed of sound is constant
with respect to the quench time. We can, however, envisage
situations where propagation of quasiparticles is impeded (e.g.,
by damping or conservation laws). That would complicate the
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sonic horizon scenario and could even make the “freeze-out
paradigm” an accurate approximation.

V. QUANTUM ISING CHAIN

We test the KZM scaling in the quantum Ising chain,

H = −
N∑

n=1

(
gσ z

n + σx
n σ x

n+1

)
, (18)

with periodic boundary conditions. For N → ∞, it has two
critical points at gc = ±1 between a ferromagnetic phase
when |g| < 1 and two paramagnetic phases when |g| > 1.
We assume g > 0 for definiteness.

A linear quench runs from t = −∞ and across the critical
point when t = 0:

g(t) = 1 − t

τQ

= 1 − ε(t). (19)

The critical exponents are z = ν = 1. The KZM yields the
temporal and spatial scales,

t̂ � √
τQ, ξ̂ � √

τQ. (20)

In the following exact solutions, we will use definitions t̂ ≡√
τQ and ξ̂ ≡ √

τQ.

A. From spins to Landau-Zener model

Here we assume that N is even for convenience. Following
the Jordan-Wigner transformation,

σx
n = −(cn + c†n)

∏
m<n

(1 − 2c†mcm), (21)

σy
n = i(cn − c†n)

∏
m<n

(1 − 2c†mcm), (22)

σ z
n = 1 − 2c†ncn, (23)

we introduce fermionic operators cn that satisfy {cm,c
†
n} = δmn

and {cm,cn} = {c†m,c
†
n} = 0. The Hamiltonian (18) becomes

H = P +H+P + + P −H−P −. (24)

Above P ± = 1
2 [1 ± P ] are projectors on subspaces with even

(+) and odd (−) parity,

P =
N∏

n=1

σ z
n =

N∏
n=1

(1 − 2c†ncn), (25)

and

H± =
N∑

n=1

(
gc†ncn − c†ncn+1 − cn+1cn − g

2

)
+ H.c. (26)

are the corresponding reduced Hamiltonians. The cn’s in H−
satisfy periodic boundary condition cN+1 = c1, but the cn’s in
H+ are antiperiodic: cN+1 = −c1.

The initial ground state at g → ∞ has even parity; hence
we can focus on the even subspace. H+ is diagonalized by a
Fourier transform followed by a Bogoliubov transformation.

The antiperiodic Fourier transform is

cn = e−iπ/4

√
N

∑
k

cke
ikn, (27)

where the pseudomomentum takes half-integer values,

k = ±1

2

2π

N
, . . . , ± N − 1

2

2π

N
. (28)

The Hamiltonian (26) becomes

H+ =
∑

k

[2(g − cos k)c†kck + sin k(c†kc
†
−k + c−kck) − g].

(29)

Its diagonalization is completed by a Bogoliubov trans-
formation ck = Ukγk + V ∗

−kγ
†
−k, provided that Bogoliubov

modes (Uk,Vk) are eigenstates of the stationary Bogoliubov–de
Gennes equations

ωk

(
Uk

Vk

)
= 2[σ z(g − cos k) + σx sin k]

(
Uk

Vk

)
, (30)

with a positive eigenfrequency

ωk = 2
√

(g − cos k)2 + sin2 k. (31)

The corresponding normalized eigenstate (Uk,Vk) defines
a quasiparticle operator, γk = Ukck + V−kc

†
−k, bringing the

Hamiltonian to the diagonal form H+ = E+
0 + ∑

k ωkγ
†
k γk.

Thanks to the projection P +H+P + in Eq. (24), only states
with even numbers of quasiparticles belong to the spectrum of
H—in a periodic chain, kinks must be created in pairs.

The initial ground state at g → ∞ is a Bogoliubov vacuum
|0〉 annihilated by all γk . As g(t) is ramped down, the state
gets excited from the instantaneous ground state, but in the
Heisenberg picture it remains the initial vacuum. Instead, the
fermionic operators are time dependent,

ck = uk(t)γk + v∗
−k(t)γ †

−k, (32)

with the initial condition (uk,vk) = (1,0). They satisfy Heisen-
berg equations i d

dt
ck = [ck,H

+] equivalent to the time-
dependent Bogoliubov–de Gennes equations (30):

i
d

dt

(
uk

vk

)
= 2{σ z[g(t) − cos k] + σx sin k}

(
uk

vk

)
. (33)

A new time variable for k > 0,

t ′ = 4τQ sin k

(
−1 + t

τQ

+ cos k

)
, (34)

brings Eqs. (33) to the canonical LZ form,

i
d

dt ′

(
uk

vk

)
= 1

2

[
− t ′

τk

σ z + σx

](
uk

vk

)
, (35)

with a transition time τk = 4τQ sin2 k. The solution of Eqs. (33)
is

uk = e− π
16 τkD 1

4 iτk
(z)eiπ/4, (36)

vk = 1
2e− π

16 τkD−1+ 1
4 iτk

(z)
√

τk. (37)
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Here, Dm(z) is the Weber function with an argument,

z = e3πi/4 t ′√
τk

. (38)

The scaling is not apparent in this exact formula.

B. Scaling in Landau-Zener model

Only small quasimomenta up to

k̂ = 1/
√

τQ (39)

get excited. For k � 1, we can approximate

uk = e− 1
4 πq2

Diq2 (z)eiπ/4,

vk = e− 1
4 πq2

D−1+iq2 (z)q,

z = 2e3πi/4

(
t

t̂
− q2

2
√

τQ

)
, (40)

where q = k/k̂ is a rescaled quasimomentum.
Only q up to q ≈ 1 get excited. For them, when τQ is

large enough, we can further approximate z ≈ 2e3πi/4(t/t̂)
(see Fig. 3) and obtain

uk = e− 1
4 πq2

Diq2

(
2e3πi/4 t

t̂

)
eiπ/4,

vk = e− 1
4 πq2

D−1+iq2

(
2e3πi/4 t

t̂

)
q. (41)

As required by the space-time scaling, these nonadiabatic
modes depend on the rescaled t/t̂ and q only.

k

g

g cos k
g 1

non adiabat ic

t

k

k

t t

FIG. 3. The Landau-Zener modes (33) with different k pass
through their anticrossings at different gAC(k) = cos(k). In the
adiabatic limit, the size of the nonadiabatic regime k̂ � 1/

√
τQ

becomes small, 1 − gAC(k̂) � 1/τQ becomes much less than 1 −
g(t̂) � 1/

√
τQ, and we can safely approximate gAC(k) ≈ 1, as if all

of the anticrossings took place simultaneously at the critical g = 1.
This is the essence of the approximation between Eqs. (40) and (41).

C. Scaling in fermionic correlators

The state during the quench is fully determined by time-
dependent quadratic correlators. In the thermodynamic limit
N → ∞, they are given by integrals:

αR(t) ≡ 〈cRc
†
0〉 = 1

π

∫ π

0
dk|uk|2 cos(kR), (42)

βR(t) ≡ 〈cRc0〉 = 1

π

∫ π

0
dkukv

∗
k sin(kR). (43)

The integrals extend into the adiabatic regime, where the scal-
ing form (41) is no longer applicable. Instead, the modes uk,vk

can be approximated (up to an irrelevant dynamical phase) by
the adiabatic eigenmodes Uk,Vk at g = 1 − (t/t̂)/

√
τQ.

In order to demonstrate the scaling of αR , it is convenient
to rearrange it first as

αR = α
(KZ)
R + α

(GS)
R + α

(cr)
R , (44)

where

α
(KZ)
R = 1

π

∫ π

0
dk(|uk|2 − |Uk|2) cos(kR), (45)

α
(GS)
R = 1

π

∫ π

0
dk

(|Uk|2 − ∣∣UCP
k

∣∣2)
cos(kR), (46)

α
(CP)
R = 1

π

∫ π

0
dk

∣∣UCP
k

∣∣2
cos(kR). (47)

Here, Uk and UCP
k are the adiabatic eigenmodes at g = 1 −

(t/t̂)/
√

τQ and the critical g = 1, respectively.
Since the correlation length in the ground state at g =

1 − (t/t̂)/
√

τQ is ξ � √
τQ/(t/t̂), in Eq. (46) the integrand is

nonzero up to k̂ � ξ−1. Consequently, given that ξ � ξ̂ /(t/t̂),
a change of the integration variable k → kξ̂ is enough to show
that

α
(GS)
R = ξ̂−1F (GS)

α (t/t̂ ,R/ξ̂ ). (48)

Here, Fα is a scaling function.
In a similar way, in Eq. (45) the integrand is nonzero in

the nonadiabatic regime up to k̂. In this regime, uk has the
scaling form (41) and Uk has a characteristic quasimomentum
scale � ξ−1 ∼ ξ̂−1. Consequently, the same change of the
integration variable shows again that

α
(KZ)
R = ξ̂−1F (KZ)

α (t/t̂ ,R/ξ̂ ) (49)

for large enough τQ.
Finally, Eq. (47) is the ground-state correlator at the critical

point,

α
(CP)
R = − 1

4π

R2 − 1
4

= ξ̂−2 − 1
4π(

R

ξ̂

)2 − 1
4ξ̂ 2

≈ ξ̂−2 − 1
4π

(R/ξ̂ )2
. (50)

It has a scaling form, but its scaling dimension −2 is twice
the −1 in Eqs. (48) and (49). For slow enough quenches, α(CP)

R

becomes negligible as compared to the other two terms.
Collecting together Eqs. (48)–(50) and (44), we can

conclude with a dynamical scaling law,

αR = ξ̂−1Fα(t/t̂ ,R/ξ̂ ), (51)
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FIG. 4. Quadratic fermionic correlators in Eqs. (42) and (43). The first row shows the real αR = 〈cRc
†
0〉. The second and third rows show the

real and imaginary parts of βR = 〈cRc0〉, respectively. The left, middle, and right columns show the correlators before (t/t̂ = −1), at (t/t̂ = 0),
and after (t/t̂ = +1) the critical point, respectively. Different colors of the plots correspond to different quench times τQ. All plots are rescaled:
they are presented as a function of the rescaled distance R/ξ̂ = R/

√
τQ and the correlators are multiplied with ξ̂ = √

τQ. At large distance,
R � 1, the plots in all nine panels collapse asymptotically with increasing τQ, demonstrating the scaling hypotheses (51) and (53) for large
enough τQ. The collapse does not happen at short distance, R ≈ 1, where the microscopic lattice constant remains a relevant scale of length
and the scaling hypothesis is not expected to hold. The collapsed plots for large τQ are the scaling functions Fα(t/t̂ ,R/ξ̂ ) and Fβ (t/t̂ ,R/ξ̂ ).

valid for large enough τQ. In Fig. 4, we show rescaled plots
supporting this conclusion for large distances R � 1 and the
quench time τQ where the scaling hypothesis is expected to
hold. The plots were obtained by numerical integration in
Eq. (42); see the Appendix.

The argument for βR is similar except that in the critical
ground state, the scaling dimension is −1:

β
(CP)
R =

1
2π

R − 1
4R

≈ ξ̂−1
1

2π

(R/ξ̂ )
. (52)

This difference does not alter the overall scaling,

βR = ξ̂−1Fβ(t/t̂ ,R/ξ̂ ), (53)

with the same dimension. Figure 4 supports this conclusion
for large distances R � 1 and the quench time τQ where the
scaling hypothesis is expected to hold.

The quadratic correlators completely determine the Bogoli-
ubov vacuum state. They satisfy the KZM scaling. Therefore,
it is tantalizing to take the scaling for granted for any operator
O(x) in this state. However, as the quadratic correlators satisfy
the scaling only asymptotically for slow enough τQ, we cannot
assume that their convergence with τQ, or collapse in Fig. 4, is
fast enough to warrant similar collapse for any operator O(x).
Therefore, in the following, we study the most interesting
observables case by case.

D. Scaling in energy and number of excitations

To begin with operators that do not depend on any distance
x, we consider the density of quasiparticle excitations,

n

N
= 1

π

∫ π

0
dkpk, (54)
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FIG. 5. Top: the density of quasiparticle excitations in Eq. (54)
as a function of the rescaled time t/t̂ . Different colors of the plots
correspond to different quench times τQ. Each plot reaches up to
t/t̂ = √

τQ, corresponding to zero transverse field g = 0. The inset is
a focus on the nonadiabatic stage t/t̂ = −1 . . . 1. Bottom: the density
of excitation energy in Eq. (55) as a function of t/t̂ . In both panels,
the plots collapse asymptotically with increasing τQ, demonstrating
the scaling hypotheses (57) for large enough τQ. The collapsed plots
for large τQ are the scaling functions Fn(t/t̂) and FW (t/t̂) in Eq. (57).
The same quantities with a different rescaling of time can be seen in
Fig. 6.

and excitation energy,

W

N
= 1

π

∫ π

0
dkpk2ωk, (55)

both in the thermodynamic limit N → ∞. Here, ωk is
the instantaneous quasiparticle dispersion (31) and pk is
the excitation probability for a pair of quasiparticles with
quasimomenta (k, − k):

pk =
∣∣∣∣(−Vk,Uk)

(
uk

vk

)∣∣∣∣
2

. (56)

Since pk is nonzero in the nonadiabatic regime only up to
k̂ and, furthermore, ωk ∼ k in this regime, a change of the
integration variable from k to kξ̂ leads to the scaling forms

ξ̂ 1 n

N
= Fn(t/t̂), ξ̂ 2 W

N
= FW (t/t̂). (57)
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FIG. 6. (a) The density of quasiparticle excitations as a function
of g. Quasiparticles are excited at the two critical points, g = ±1. For
any fixed g, except near g = ±1, their density scales as n/N ∼ ξ̂−1

(i.e., the typical distance between the kinks is set by ξ̂ ). (b) The density
of excitation energy as a function of g. For any fixed g, it scales like
W/N ∼ ξ̂−1, except near the gapless critical points g = ±1. Apart
from the immediate vicinity of the critical points, the evolution is
adiabatic. That is, the increase of energy is caused by the increase
in the separations between the occupied energy levels. Thus, when
the Ising chain is still in its ground state [leftmost segment in (b)],
W = 0, but after the excitation caused by the passage through the
critical point at g = 1, the slope increases and remains constant until
g = −1. Additional excitations double the slope in the rightmost
segments of (b). Indeed, these slopes are set by the quasiparticle
densities seen in (a).

The last form is consistent with the prediction of Ref. [50] for
gapless systems. The collapsing plots in Fig. 5, similar to the
plots in Ref. [63], demonstrate this scaling. Interestingly, the
work density collapses well beyond t/t̂ = 1, even though the
gapless ωk ∼ k does not apply there.

In order to understand why, notice that the excitation
probability is a scaling function, pk(t) = p(t/t̂ ,k/k̂), that
is nonzero only up to k ≈ k̂ ≡ 1/

√
τQ. In this regime of

small k, the dispersion (31) is ωk ≈ 2
√

ε2 + k2 − εk2, where
ε = 1 − g = t/τQ. With a new integration variable q = k/k̂,

075134-7



FRANCUZ, DZIARMAGA, GARDAS, AND ZUREK PHYSICAL REVIEW B 93, 075134 (2016)

Q � 2

Q � 4

Q � 8

Q � 16

Q � 32

Q � 64

Q � 128

Q � 256

Q � 512

Q � 1024

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

R�

1�
4

C
R
xx

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

R�

1�
4

C
R
xx

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

R�

1�
4

C
R
xx

1 2 3 4 5 6
�0.05
�0.04
�0.03
�0.02
�0.01
0.00
0.01

R�

9�
4

C
R
yy

2 4 6 8
�0.04
�0.03
�0.02
�0.01
0.00
0.01
0.02

R�

9�
4

C
R
yy

0 2 4 6 8 10 12
�0.04
�0.03
�0.02
�0.01
0.00
0.01
0.02

R�

9�
4

C
R
yy

0 1 2 3 4 5 6
�0.01
0.00
0.01
0.02
0.03
0.04
0.05
0.06

R�

5�
4

C
R
xy

0 2 4 6 8
0.00

0.05

0.10

0.15

R�

5�
4

C
R
xy

0 2 4 6 8 10 12
0.00

0.05

0.10

0.15

R�
5�
4

C
R
xy

0 1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

R�

2
C

R
zz

0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5

R�

2
C

R
zz

0 2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

R�

2
C

R
zz

t ���t t ���tt ��0�

FIG. 7. Spin-spin correlation functions in Eq. (59). The left, middle, and right columns show the correlators before (t/t̂ = −1), at (t/t̂ = 0),
and after (t/t̂ = +1) the critical point, respectively. The first row shows the strongest ferromagnetic correlator Cxx

R , the second and third ones
show C

yy

R and C
xy

R , respectively, and the bottom one shows the transverse Czz
R . Different colors of the plots correspond to different quench

times τQ. All plots are rescaled: they are presented as a function of the rescaled distance R/ξ̂ = R/
√

τQ and the correlators are multiplied
with ξ̂�a+�b = (

√
τQ)�a+�b . At large distance, R � 1, the plots in all 12 panels collapse asymptotically with increasing τQ, demonstrating the

space-time scaling (59) for large enough τQ. The collapse does not happen at short distance, R ≈ 1, where the microscopic lattice constant
remains a relevant scale of length and the scaling hypothesis is not expected to hold. The collapsed plots for large τQ are the scaling functions
F ab

C (t/t̂ ,R/ξ̂ ) in Eq. (60).

Eq. (55) becomes

W

N
= 2k̂2

π

∫ ∞

0
dqp

(
t

t̂
,q

)√(
t

t̂

)2

+ q2 − q2

√
τQ

(
t

t̂

)
. (58)

In the adiabatic limit, the last term under the square root be-
comes negligible and the right-hand side becomes ξ̂−2FW (t/t̂),

i.e., a scaling function of t/t̂ only. For a given t/t̂ , the excitation
energy scales like W/N ∼ ξ̂−2 = τ−1

Q .
This seems to contradict Ref. [55], where the excitation

energy at g = 0 (proportional to the number of kinks) scales
like W/N ∼ ξ̂−1 = τ

−1/2
Q . However, there is no contradiction,

since the two scalings compare energies for different τQ either
at a constant t/t̂ or a constant g. At the constant g = 0,
corresponding to the τQ-dependent t/t̂ = √

τQ, we have a
flat dispersion ωk = 2 in Eq. (55) and the excitation energy
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FIG. 8. Mutual information in Eq. (63). The left, middle, and right panels show the mutual information before (t/t̂ = −1), at (t/t̂ = 0), and
after (t/t̂ = +1) the critical point, respectively. Different colors of the plots correspond to different quench times τQ. All plots are rescaled: they
are presented as a function of the rescaled distance R/ξ̂ = R/

√
τQ and the mutual information is multiplied with ξ̂ 4�a = (

√
τQ)1/2. The plots

in all three panels collapse asymptotically with increasing τQ, demonstrating the space-time scaling (65) for large enough τQ. The collapsed
plots for large τQ are the scaling function FI (t/t̂ ,R/ξ̂ ) in Eq. (65).

is proportional to the number of quasiparticle excitations,
W/N = 4n/N ∼ ξ̂−1 = τ

−1/2
Q . For illustration, in Fig. 6 we

show the quasiparticle and energy densities as a function
of g instead of t/t̂ . Everywhere except near the gapless
critical points, for a fixed g, the energy scales like W/N ∼
ξ̂−1 = τ

−1/2
Q . This is a remarkable change of perspective,

even though the picture away from criticality is sensitive to
relevant/nonintegrable perturbations of the Ising model.

E. Scaling in two-spin correlators

The quadratic fermionic correlators are the building blocks
for spin correlators:

Cab
R (t) ≡ 〈

σa
n σ b

n+R

〉 − 〈
σa

n

〉〈
σb

n+R

〉
. (59)

Except for the transverse Czz, they are Pfaffians of matrices
whose elements are the fermionic correlators (42) and (43);
see Ref. [72].

The KZ scaling implies that

Cab
R (t) = ξ̂−�a−�bF ab

C (t/t̂ ,R/ξ̂ ). (60)

Here, �a is the scaling dimension for the operator σa . In the
Ising chain, we have �x = 1

8 , �y = 9
8 , and �z = 1. Figure 7

shows rescaled plots of all nonzero correlators. Their collapse
for large enough τQ confirms the space-time scaling for large
distances R � 1, where the scaling hypothesis is expected to
hold.

F. Scaling in mutual information

The overall strength of spin-spin correlations can be
conveniently characterized by mutual information between the
two spins. A reduced density matrix for the nth spin is

ρ(1)
n = 1

2

(
1n + 〈σ z〉σ z

n

)
. (61)

A reduced density matrix for spins n and n + R includes their
correlations:

ρ
(2)
n,n+R = ρ(1)

n ⊗ ρ
(1)
n+R + 1

4

3∑
a,b=1

Cab
R σ a

n ⊗ σb
n+R. (62)

The correlations contribute to nonzero mutual information
between the spins,

IR = S
[
ρ(1)

n

] + S
[
ρ

(1)
n+R

] − S
[
ρ

(2)
n,n+R

]
. (63)

Here, S[ρ] = −Trρ ln ρ is the von Neumann entropy.
When the correlations Cab

R are weak, for large R or large
τQ or both, they are a small perturbation to the uncorrelated
product ρ(1)

n ⊗ ρ
(1)
n+R . To leading order, the mutual information

is a quadratic form in CR’s whose coefficients depend on
the transverse magnetization 〈σ z〉. For slow enough τQ, the
magnetization can be approximated by its value in the ground
state at the critical point, 〈σ z〉 ≈ 2/π , and it is enough to
keep only the dominant term that is quadratic in the strongest
correlator Cxx

R :

IR ≈ π

8

[
2π

π2 − 4
+ arctanh

(
2

π

)](
Cxx

R

)2

= 0.72
(
Cxx

R

)2
. (64)

Consequently, the mutual information should scale as

IR(t) = ξ̂−4�x FI (t/t̂ ,R/ξ̂ ), (65)

where FI ∝ (Fxx
C )2 is a scaling function. This scaling is

demonstrated by the collapsing plots in Fig. 8.

G. Scaling in quantum discord

A convenient measure of quantumness of correlations
between spins n and n + R is the quantum discord [71]:

δn|n+R = Minσ S[n|σn+R] + S
[
ρ

(1)
n+R

] − S
[
ρ

(2)
n,n+R

]
. (66)

Here,

S[n|σn+R] =
∑
j=±1

pjS

[
Pjρ

(2)
n,n+RPj

pj

]
, (67)

Pj = (1 + jσn+R)/2 is a projector on the measurement out-
come j = ±1 in the eigenbasis of a Pauli operator σn+R ,
and pj = TrPjρ

(2)
n,n+R is a probability of this outcome. In the

problem considered in this paper, the discord is symmetric,

δn|n+R = δn+R|n ≡ δR, (68)

and the minimum is achieved for σ = σx . Not surprisingly,
the strongest ferromagnetic correlations are the most classical.
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FIG. 9. Quantum discord in Eq. (66). The left, middle, and right panels show the discord before (t/t̂ = −1), at (t/t̂ = 0), and after
(t/t̂ = +1) the critical point, respectively. Different colors of the plots correspond to different quench times τQ. All plots are rescaled: they
are presented as a function of the rescaled distance R/ξ̂ = R/

√
τQ and the discord is multiplied with ξ̂ 4�a = (

√
τQ)1/2. The plots in all three

panels collapse asymptotically with increasing τQ, demonstrating the space-time scaling (70) for large enough τQ. The collapsed plots for large
τQ are the scaling function Fδ(t/t̂ ,R/ξ̂ ) in Eq. (70).

Like the mutual information, for slow enough τQ the discord
becomes

δR ≈ π

8

[
2π

π2 − 4
− arctanh

(
2

π

)](
Cxx

R

)2

= 0.12
(
Cxx

R

)2
. (69)

This suggests a space-time scaling,

δR(t) = ξ̂−4�x Fδ(t/t̂ ,R/ξ̂ ), (70)

that is demonstrated by the collapsing plots in Fig. 9.

H. Scaling in block entropy

In order to go beyond the two-point correlations, one can
consider a block of L consecutive spins. Their reduced density
matrix is obtained [73] from a correlator matrix,

�L =
(

A, B†

B, 1 − A

)
, (71)

where A and B are L × L Toeplitz matrices Am,n ≡
〈cmc

†
n〉 = αm−n and Bm,n ≡ 〈cmcn〉 = βm−n. The Hermitian

�L has eigenvalues 0 � N1 � · · · � N2L � 1, with a sym-
metry Nm = 1 − N2L+1−m. The eigenvalues N1, . . . ,NL are
average occupation numbers for Bogoliubov quasiparticles
�1, . . . ,�L localized on the L sites of the block, where we
have a Bogoliubov transformation

cn =
L∑

m=1

(Unm�m + V ∗
nm�†

m). (72)

The mth Bogoliubov mode (Unm,Vnm) is the eigenvector of
�L with the eigenvalue Nm.

In this Bogoliubov representation, the reduced density
matrix becomes a simple product,

ρL =
L∏

m=1

[Nm|1m〉〈1m| + (1 − Nm)|0m〉〈0m|]. (73)

Here, |1m〉 (|0m〉) is a state with one (zero) quasiparticle
annihilated by �m. Consequently, the entropy of entanglement

of the block of L spins with the rest of the lattice is a sum:

S = −TrρL ln ρL

= −
L∑

m=1

[Nm ln Nm + (1 − Nm) ln(1 − Nm)]

= −
2L∑

m=1

Nm ln Nm. (74)

Interestingly, the last sum is simply −Tr�L ln �L.
Near the critical point in the ground state with a long

correlation length ξ , the entropy is S = c
3 ln κξ for a large

block with L � ξ and S = c
3 ln κL for a relatively small one

with 1 � L � ξ . Here, c = 1
2 is the central charge and κ � 1

is a nonuniversal constant. With the KZ substitution ξ →
ξ̂ , motivated by the adiabatic-impulse approximation, in a
dynamical transition we expect [43], respectively, S = c

3 ln κξ̂

and S = c
3 ln κL. Beyond this approximation, we allow κ to

be a function of the rescaled time t/t̂ . This argument suggests
a space-time scaling,

S(t,L)
c
3 ln κ(t/t̂)ξ̂

= FS(t/t̂ ,L/ξ̂ ), (75)

for large enough τQ. Here we assume the normalization
FS(t/t̂ ,∞) = 1 so that the equation

S(t,∞) = c

3
ln κ(t/t̂)ξ̂ ≡ S∞ (76)

defines implicitly the function κ(t/t̂). The scaling is demon-
strated by the collapsing plots in Fig. 10. Since the entropy
is only logarithmic in τQ, the collapse requires much longer
quench times than the spin-spin correlators.

I. Scaling in entanglement gap

The entanglement gap is defined as a difference between the
two largest coefficients in the Schmidt decomposition between
the block of L spins and the rest of the spin chain or, equiva-
lently, between the square roots of the two largest eigenvalues
of ρL. Since the largest eigenvalues are (1 − N1) . . . (1 −
NL−1)(1 − NL) > (1 − N1) . . . (1 − NL−1)NL, the entangle-
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FIG. 10. Entanglement entropy in Eq. (74). The left, middle, and right panels show the entropy before (t/t̂ = −1), at (t/t̂ = 0), and after
(t/t̂ = +1) the critical point, respectively. Different colors of the plots correspond to different quench times τQ. All plots are rescaled: they are
presented as a function of the rescaled size of the block, L/ξ̂ = L/

√
τQ, and the entropy is divided by S∞(t/t̂) = c

3 ln kξ̂ = c

3 ln k + c

6 ln τQ.

In consistency with the exact c = 1
2 , the best fits yield c = 0.524(3),0.5030(4),0.478(2) at t/t̂ = −1,0,1, respectively. The plots in all three

panels collapse asymptotically with increasing τQ, demonstrating the space-time scaling (75) for large enough τQ. The collapsed plots for large
τQ are the scaling function FS(t/t̂ ,L/ξ̂ ) in Eq. (75).

ment gap reads

�λ =
√

(1 − N1) . . . (1 − NL−1)(
√

1 − NL −
√

NL). (77)

According to Ref. [74], in the ground state for a large block
with L � ξ̂ , the entanglement gap should scale as

�λ ∼ ξ−β/ν, (78)

where β = 1
8 is the critical exponent for the order parameter.

In a dynamical transition, we substitute in the above formula
ξ with ξ̂ . Even more generally, for a finite block of size L, we
can formulate a scaling law,

�λ = ξ̂−β/νF�λ(t/t̂ ,L/ξ̂ ), (79)

expected to hold for slow enough τQ. The collapsing plots in
Fig. 11 demonstrate this scaling law.

VI. CONCLUSION

We made an extensive overview of the KZ space-time
scaling in the quantum Ising chain. We conclude that it is
satisfied in the slow quench limit by all of the quantities we
have considered. The limit is approached the fastest for the

ferromagnetic correlator. The scaling dimensions proved to be
the same as in the static case.

It is tempting to speculate that our conclusion, while for
the moment verified only in the Ising chain, may be a useful
way of thinking about other quantum phase transitions as
well as second-order thermal phase transitions that cannot be
probed with exactly solvable models. This would pave the
way towards a vast extension of the renormalization from
the static equilibrium critical phenomena to the space-time
renormalization of phase transition dynamics.

ACKNOWLEDGMENTS

We appreciate discussions with Andrew Daley, Bogdan
Damski, Marek Rams, and Tommaso Roscilde. This work
was supported by the Polish National Science Center (NCN)
under Project No. DEC-2013/09/B/ST3/01603 (A.F. and J.D.),
the Polish Ministry of Science and Higher Education under
project Mobility Plus 1060/MOB/2013/0 (B.G.), and the
U.S. Department of Energy under the Los Alamos National
Laboratory LDRD Program (W.H.Z.).

Q � 128

Q � 256

Q � 512

Q � 1024

Q � 2048

Q � 4096

Q � 8192

Q � 16384

Q � 32768

Q � 65536

Q � 131072

0 1 2 3 4 5 6

0.5

0.6

0.7

0.8

0.9

L�

1�
8

0 2 4 6 8

0.45

0.50

0.55

0.60

0.65
0.70

L�

1�
8

0 2 4 6 8 10 12 14

0.005

0.010

0.050

0.100

L�

1�
8

t ���t t ���tt ��0�

FIG. 11. Entanglement gap in Eq. (77). The left, middle, and right panels show the gap before (t/t̂ = −1), at (t/t̂ = 0), and after (t/t̂ = +1)
the critical point, respectively. Different colors of the plots correspond to different quench times τQ. All plots are rescaled: they are presented
as a function of the rescaled block size L/ξ̂ = L/

√
τQ and the gap is multiplied by ξ̂ β/ν = (

√
τQ)1/8. The plots in all three panels collapse

asymptotically with increasing τQ, demonstrating the space-time scaling (79) for large enough τQ. The collapsed plots for large τQ are the
scaling function F�λ(t/t̂ ,L/ξ̂ ) in Eq. (79).

075134-11



FRANCUZ, DZIARMAGA, GARDAS, AND ZUREK PHYSICAL REVIEW B 93, 075134 (2016)

APPENDIX: QUASIMOMENTUM INTEGRALS IN
FERMIONIC CORRELATORS

The fermionic correlators (42) and (43) are obtained by
numerical integration in MATHEMATICA. In principle, the
integrals should be done with the exact solutions (37) in the full
integration range k = 0..π , but it quickly becomes impractical
above τQ ≈ 10. Therefore, we split the range into two. For
instance,

βR =
∫ Ak̂

0

dk

π
ukv

∗
k sin kR +

∫ π

Ak̂

dk

π
ukv

∗
k sin kR. (A1)

The first integral, covering more than the nonadiabatic regime
k = 0 . . . k̂ for A > 1, is done exactly. In the second integral,
where the evolution of the Bogoliubov modes is approximately
adiabatic, we could approximate the Bogoliubov coefficients
by just the positive-frequency adiabatic eigenstate,(

uk

vk

)
≈

(
Uk

Vk

)
; (A2)

compare Eq. (30). However, a much better approximation is
obtained at very little expense by also including a first-order
perturbative correction,

(
uk

vk

)
≈ 1√

1 + |B|2
[(

Uk

Vk

)
+ B

(−Vk

Uk

)]
. (A3)

Here, B is an amplitude of excitation to the adiabatic negative-
frequency mode,

B = 1

2iωk(g)τQ

(
Uk

Vk

)†
d

dg

(−Vk

Uk

)
. (A4)

The results do not depend on A in the range 2..3.
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