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Repeatability of measurements: Non-Hermitian observables and quantum Coriolis force
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A noncommuting measurement transfers, via the apparatus, information encoded in a system’s state to the
external “observer.” Classical measurements determine properties of physical objects. In the quantum realm,
the very same notion restricts the recording process to orthogonal states as only those are distinguishable by
measurements. Therefore, even a possibility to describe physical reality by means of non-Hermitian operators
should volens nolens be excluded as their eigenstates are not orthogonal. Here, we show that non-Hermitian
operators with real spectra can be treated within the standard framework of quantum mechanics. Furthermore,
we propose a quantum canonical transformation that maps Hermitian systems onto non-Hermitian ones. Similar
to classical inertial forces this map is accompanied by an energetic cost, pinning the system on the unitary path.
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I. INTRODUCTION

The no-cloning theorem states that unknown quantum states
cannot be copied [1], since no measurement can distinguish
arbitrary states with certainty. Similarly, the unitary transfer of
information from a quantum system to the measuring device—
apparatus—cannot distinguish between nonorthogonal states
[2,3]. In contrast, all physical properties of classical systems
can be determined with arbitrary precision as the recording
process does not perturb the system. To put it differently,
classical measurements do not involve any backaction.

Those profound facts rely on a rather natural assumption
regarding the physical world—the repeatability of measure-
ments. The latter requires that consecutive measurements
should result in the same outcome. Consequently, the demand
for all physical observables to be Hermitian seems to be
justified from the “first principles” [3]. Therefore, even
a possibility to represent observables using non-Hermitian
operators should volens nolens be excluded as their eigenstates
are nonorthogonal [4].

Nevertheless, a variety of experimental findings can be
explained by means of non-Hermitian operators. For instance,
a spontaneous symmetry breaking observed in Refs. [5,6]
has been linked to P7 -symmetry, a condition weaker than
Hermiticity [7]. Here P and 7 denote the parity and time
reflection, respectively, and P7 -symmetry guarantees that
[P7T,H] =0, where H is the system’s Hamiltonian. Addi-
tionally, exceptional eigenenergies of complex value have
also been measured [8]. Recent years have witnessed great
theoretical progress towards the understanding of such non-
Hermitian systems [4,9]. It has been shown, for example,
that conventional quantum mechanics can be extended to
the complex domain [10]. Interesting examples are optical
systems with a complex index of refraction [11], tilted optical
lattices with defects [12], or systems undergoing topological
transitions [13,14]. The latter can serve as realizations of
‘PT -symmetry in Bose-Einstein condensates [15]. Also, many
breakthroughs in thermodynamics and statistical physics have
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been reported for non-Hermitian systems. The Jarzynski
equality [16] or the Carnot bound [17] may serve as good
examples [7,18].

It is only natural to ask whether such theories are fun-
damental or provide only an effective description of nature
[19] (e.g., open systems with balanced loss and gain [5]).
In this article we show that the requirement to be able to
repeat measurements does not exclude all non-Hermitian
“observables” from the description of physical reality. We
prove that non-Hermitian observables with real spectra are
as physical as their Hermitian counterparts. In fact, a formal
correspondence between the two classes can be established by
means of a quantum canonical transformation [20]. To put it
differently, non-Hermitian operators provide a convenient way
of representing quantum systems in a physically equivalent
way [21,22]. This situation is completely analogous to classical
mechanics where classical canonical transformations are used
to simplify Hamilton’s equations of motion [23].

II. REPEATABILITY OF QUANTUM MEASUREMENTS

Let H be a non-Hermitian observable, i.e., H t #* H.
Without loss of generality we assume that H is the Hamiltonain
of a quantum system. To be physically relevant H needs to be
at least diagonalizable. This requirement assures the existence
of an orthonormal [24] basis, {|E,)}, and eigenenergies, E,,
that can be measured. However, |E,) are not the eigenvectors
corresponding to E,,. These will be constructed shortly. For the
sake of simplicity, we further assume that the energy spectrum
is discrete and nondegenerate. Therefore, we can write [25]

V’IHV=ZE,1|E,,)(E,1|, with E,eC, (1)

n

where (E,|E,) = 8,n. Generally, H is non-Hermitian, and
thus the similarity transformation V is not unitary, i.e.,
V1 = V=1 Let us rewrite Eq. (1) as

H =Y E,Vu)($ul. (2)

where |v,) := V|E,) and (¢,| := (E,|V . By construction,
these states form a biorthonormal basis [7,26], that is,
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(nlYm) = 8ym and T =" |¥,)(¢a]. Moreover, the eigen-
value problem for H can be stated as

Hlyy) = ExlYp)  and (¢ |H = E (¢l 3)

We emphasize the importance of this biorthonormal set of
vectors used for non-Hermitian quantum systems. It plays a
role, both conceptually and computationally, analogous to a
complete set of eigenvectors of a Hermitian operator. As a
result, the left (¢,| corresponds to the right |i,) in Dirac
notation [27]. Hence, the way probability is assigned to a
physical process has to be revisited. For instance, consider a
system that is prepared in one of its energy eigenstates, say
|Y,), and then immediately perturbed by a map, U (e.g., time
evolution or a measurement). Then the probability to measure
the energy E,, reads

Pam = p(W) = U = [¥) = [l Ul D)

This formula provides a natural generalization of the “stan-
dard” recipe, |(V,,|U|v,)|?, for calculating probabilities in
Hermitian quantum mechanics [27].

Thus far we have seen that the proper identification of
probabilities of the measurement outcomes allows us to
include non-Hermitian operators into the usual framework
of quantum mechanics rather naturally. This is done, in a
physically consistent way, by properly accounting for the fact
that non-Hermitian observables have different left and right
eigenstates. The probability p, = |(¢,|¥)|* to find the system
in its eigenstate |y, ) can also be rewritten, using this state
explicitly, as

pu =IO g =D 1u)igul. (5

Thus, the Dirac correspondence between bra and ket vectors
can now be understood as (¥ |g <> |Y). Above, g is a
positive-definite, invertible linear operator—that is, a metric
[28]. Indeed, we have

(Wlglv) =Y [gul¥) g7 =Y V)Wl (6)

where the first equality expresses positivity and the second
expression provides an explicit formula for the inverse map in
terms of eigenstates |1,,). As a result, assigning probabilities
when measuring non-Hermitian “observables” defines a new
inner product, namely, (1, g¢). Moreover, a simple calculation
shows that Hfg = gH and therefore (Hy,g¢) = (Vg Ho)
for all states |y) and |¢). This fact can also be interpreted as
H is Hermitian with respect to this new inner product.

It is important to realize that non-Hermitian operators such
as those in Eq. (1) can generate unitary dynamics. This is
possible if and only if the energy spectrum is real. Therefore, a
priori, non-Hermitian operators do not necessarily violate the
conservation of probability. Note not only that every superpo-
sition of states |, is allowed but also an arbitrary state )
can be expressed in such a manner, [o) = ), c4|¥,), where
> leal?> = 1 and |c,|* is the probability for the system to be
found in its eigenstate, |1,). The corresponding (¢y| is given
by

(pol =Y ciiul. (7)
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FIG. 1. Schematic representation of the unitary transfer of infor-
mation from a quantum system S to the measuring device—apparatus
A. Information encoded in the quantum state |y/) is being recorded
by A and is written down into its state |A, ). The recording process
|Ag) — |Ay)is unitary and does not influence the information carried

by [¥).

The initial state |y) evolves under the Schrodinger equa-
tion, i ho,|y,) = H|y,). Therefore, the solution reads |y,) =
> e Ent/fe, |yr,), and, as a consequence of Eq. (7), the
corresponding (¢, | evolves according to

(gl =Y et e (g, ], ®)

Thus, ifand only if all eigenvalues E, are real, then the system’s
dynamics is unitary and therefore

(@) =D lea P EEDR = (o), (9)

n

proving that the probability is indeed conserved.

We have demonstrated that a fully consistent quantum
theory can be built with non-Hermitian operators. We have
imposed that “observables” are diagonalizable, which assures
that the spectrum can be measured. Its reality, on the other
hand, yields unitary dynamics and thus the conservation of
probability.

Let |Ap) be a “ready to measure” initial state of the
apparatus A. Further, by |¥,) and |¥,,) we denote distinct
(n # m) eigenstates of H. Also, we assume that E = E,
and, without loss of generality, we choose A to be a Hermitian
system. The repeatability of measurements guarantees that
every unitary transfer of information from system S to A4
leaves states |y,,) and |v,,,) undisturbed. It follows that

U = Y Ao) — V)| Ax) - for

where U/ is a unitary map (e.g., UU' =) modeling the
recording process. As illustrated in Fig. 1, after the transfer
has been completed, new states |A,,) and |A,) of the apparatus
A encode the information about the system’s eigenstates |v,,)
and |¥,,). The measurement preserves the norm on the Hilbert
space S ® A as well. Hence

(Dm|¥n)(A — (Am|An)) = 0. (1)

k=nm, (10)
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As a result, the apparatus states |A,,) and |A,) can dif-
fer (indicating some information being stored) only when
(@m|¥) = 0. To put it differently, extracting information that
distinguishes between two measured states is possible only
when the transition probability between states |y,,) and |,,)
vanishes.

The above analysis demonstrates that the reality of the
spectrum, which guarantees unitarity, rather than Hermiticity
is necessary to acquire information. We stress that | (,, |1/,,)]?
is not the transition probability between states |y,,) and |v,,).
That is given by |(¢,,|¥,)|* and the two coincide only when
H is Hermitian as only then the left and right eigenstates are
the same.

Adopting the similar formula that was derived for Hermitian
systems [2] one could write (¥, |¥,,)(1 — (Au|A,)) = 0. Asa
result, one would have to conclude that (A,,|A,) = 1, showing
the apparatus cannot tell the measured states apart. However,
as we have shown, since H is non-Hermitian, Eq. (11) applies,
which allows nonorthogonal states to be measured.

III. RELATION TO HERMITIAN SYSTEMS

As we have seen, from the viewpoint of a measurement,
there is no physical difference between non-Hermitian oper-
ators with real spectra and Hermitian observables. Therefore,
one should be able to represent quantum systems either
way depending on the situation. Of course, in complete
analogy to classical physics the goal is to find the simplest
possible Hamiltonian. One can establish a correspondence
between H and its Hermitian counterpart K in the following
way [29]:

K — gl/ZHg—l/Z — (Ol =G2
(12)

1 1
H+ 2[G,H] + 2!22[G’[G’H]] +
where G :=1In(g). In the second line we have used the
Baker-Campbell-Hausdorf-like formula [30]. Note that since
the metric g is positive definite its logarithm and square root
exist and, moreover, both of these quantities are Hermitian
operators [31]. Although Eq. (12) was introduced in Ref. [29]
as a similarity map between Hilbert spaces, its physical
significance was missed. Generally this infinite series does not
truncate after a finite number (see Sec. V B below). We stress
that Eq. (12) can be used to transform an arbitrary observable
O between Hermitian and non-Hermitian representations.
The first of the above Egs. (12) shows that K is indeed
Hermitian, whereas the second one demonstrates an interesting
feature of physical reality. Namely, a quantum system can be
represented equivalently either by a Hermitian operator or a
non-Hermitian one with a real spectrum. Although there is no
essential physical difference between the two representations,
their mathematical structures are quite different. It follows
directly from Eq. (12) that a complicated Hermitian system
may have a very simple non-Hermitian representation and
vice versa. Transformation (12) plays a role analogous to
the canonical transformation well established in classical
mechanics [23]. Note that this transformation cannot be unitary
as it changes the Hermiticity of an operator. However, it
preserves the canonical commutation relation and as such
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belongs to a class of quantum canonical transformations
[20,32].

IV. QUANTUM CORIOLIS FORCE

In classical mechanics, Newtonian equations of motion
have to be modified in nonstandard, time-dependent, frames
of reference [23]. As a result, one observes so-called inertial
forces. Typical examples include Coriolis or centrifugal
forces that are present only in rotating frames of reference.
Therefore, there are experimentally accessible consequences
of using such noninertial coordinates. One of the most famous
examples is the Foucault pendulum whose motion (precession)
directly reflects on the Earth’s rotation around its own axis
[33].

Interestingly, if the non-Hermitian Hamiltonian is time
dependent, then the corresponding Schrodinger equation also
has to be modified to preserve unitarity [34-36]:

) ih _,

lﬁ8,|1/f,) =(H; + F)lYy), F= _?A, 0 A (13)
Above, A, is a time-dependent metric that does not necessarily
coincide with g, [35]. More importantly, this metric is not
unique. However, it can be chosen so that the corresponding
Hermitian Hamiltonian K, in Eq. (12) (i) is the generator of
dynamics and (ii) has exactly the same spectrum as H,.

Therefore, the dynamics in these two representations differ
considerably. Nevertheless, if we replace 9, with the covari-
ant derivative D; := 9, + A 19,A,/2 [37], the Schrodinger
equation (13) can be put into its standard form, i.e., with H,
being the generator, ihD;|y,) = H|Y¥,). However, one can
also think of the extra energetic contribution NAt’lB,A, /2 as
being a manifestation of a force of inertia keeping a quantum
system along the unitary path during its evolution (see Sec. V C
below). We can interpret this force as a quantum Coriolis
force.

It is worth mentioning that the existence of F; in non-
Hermitian representations has been noticed yet disregarded
as unphysical (see, for example, Ref. [21] and comments that
followed). It was treated rather as a mathematical necessity, not
having much to do with physical reality. We now illustrate the
novel concepts with several analytically tractable examples.

V. EXAMPLES

A. PT symmetric system

As a first example consider a harmonic oscillator with a
non-Hermitian perturbation, for instance [38],

2

H= L + lma)zx2 +iex’ = Hy + €H,,

2m 2

where Hj corresponds to the unperturbed harmonic oscillator
and H; is an anharmonic perturbation. Parameters m and
o correspond to the system’s mass and the size of the
harmonic trap, respectively. Here € is a small perturbation.
The momentum p and position x operators obey the standard
canonical commutation relation, [x, p] = iA. This model has
been extensively investigated in literature [39]. Numerical
studies have confirmed the reality of its spectrum for all
real €. Using perturbation theory one can establish that

(14)
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K = Hy + V(x,p), where the momentum-dependent poten-
tial V(x,p) up to O(e>) reads [29]

2

1 3mw
V(x,p>=m({x2,p2}+px2p+ 5 x4)ez, (15)

where {A,B} := AB + BA is the anticommutator between
A and B. Observe that this very complicated, momentum-
dependent potential can effectively be replaced by a simple
non-Hermitian term, V ~ ix3, which only depends on the
position x [40].

B. Localization in condensed-matter physics

Another interesting example is a general one-dimensional
quantum system whose Hamiltonian reads K = p?/2m +
V(x), where V(x) is an arbitrary potential. This standard
textbook Hermitian model can be turned into a very powerful
non-Hermitian system that can explain localization effects in
solid-state physics [41,42]. Indeed, we have

(p — ihn)?
2m

where the real parameter n expresses an external magnetic
field [43]. Note that the metric g = €2™ in this case can be
calculated explicitly. Furthermore, it depends on the external
control parameter—the magnetic field [44]. Also, since the
commutator [x,p] =ik is a complex number, the infinite
series in Eq. (12) truncates after only two terms.

H=¢"Ke™ = + V(x), (16)

C. Time-dependent metric and force of inertia

Finally, assume that the metric g from the previous example
depends explicitly on time (e.g., the magnetic field n, is
time dependent). We further choose V(x) to be a harmonic
trap, V(x) = mw?x?/2, where w is its frequency. Then the
Hamiltonian in Eq. (16), now time dependent, can be written
using the second quantization [45] as

1
H, = hw[(a — ) (a + o) + 5], a7
where o = \/A/2mw and a and a' are annihilation and cre-
ation operators, respectively. As explained above, to preserve
unitarity the evolution generator H, in the non-Hermitian

representation has to be modified accordingly. By setting
A; = g [17]in Eq. (13) we have

H, — H,+ F,, where F, = —in,a(a+a’). (18)

To analyze the evolution of this system we turn to numerical
simulations. We further assume that 1, changes on the time
scale t linearly, thatis, n, = t /7 for0 < ¢ < 7. The initial state
is given by |¥g) = (|0) + |1))/«/§, where |0) is the ground
state of K = Hy and |1) = a7|0).

Figure 2 shows the average position (x) of a quantum
particle as a function of time ¢ computed in both the Hermitian
(blue solid line) and the non-Hermitian (red points) representa-
tion. According to the Ehrenfest theorem, (x) corresponds to
the classical trajectory in the sense that it obeys Newton’s
equations of motion [46]. As we can see, only when the
proper energetic contribution F; is accounted for the two paths
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FIG. 2. The average position (x) of a quantum particle as a
function of time ¢. The blue solid curve is the exact solution to
the Schrodinger equation obtained in the Hermitian representation.
Red points represent a numerical solution to the same problem
computed in the non-Hermitian (time-dependent) representation. The
two paths coincide only if the inertial force is accounted for [see
Eq. (18)]. Finally, the green dashed line depicts a “naive” solution
obtained without taking into account this contribution. Parameters are
h=m =1.0,w = 0.5, and n, = t/7, where t = 10. The initial state
is [Yo) = (]0) + |1))/\[2, where |0) is the ground state of K = H)
and |1) = a|0).

coincide. The dashed green line, on the other hand, depicts
a nonunitary path resulting from not taking into account this
contribution. As expected, F; does not have any influence on
the system’s dynamics in nonaccelerating frames of reference
where 7, = 0.

VI. SUMMARY

The very question whether physical observables should be
Hermitian or not reflects on a long-lasting debate regarding
physical reality. Nowadays, this issue is no longer only of
academic interest as leading groups are beginning to investi-
gate it experimentally [5,8]. In this article we have revisited
this problem showing that the repeatability of measurements
does not exclude non-Hermitian operators from the usual
framework of quantum mechanics. We have argued that
operators which admit real spectra are canonically equivalent
to Hermitian ones. As a result, all fundamental notions (e.g.,
repeatability of a measurement, no cloning theorem, etc.) that
have been associated with unitarity apply to all non-Hermitian
systems with real spectra as well.

The question which of these two representations is more
adequate to describe a quantum system depends on the
problem under investigation. It may be more natural to use
a non-Hermitian frame of reference. However in that case, as
a result of using a nonstandard representation, the resulting
Schrodinger equation has to be modified accordingly [see
Eq. (13)]. There is an extra energetic contribution that has
to be accounted for to preserve unitarity. We have associated
this energetic cost F; with an inertial force (quantum Coriolis
force) that keeps a quantum system on the unitary path during
its evolution (see Sec. V C). As it does in classical mechanics,
F; vanishes for all nonaccelerating frames of reference, i.e.,
with g, = 0.
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We should stress here that not all non-Hermitian systems
have real spectra. Those whose eigenenergies (at least some
of them) are complex were explicitly excluded from our
considerations. Such systems are open [47]. During their
evolution they lose or gain energy and information in a way
that cannot be balanced [4]. Therefore, a unitary map is
not sufficient to capture their dynamics anymore. Interesting
examples can be found, e.g., in Refs. [8,11].
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