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Exact reduced dynamics for a qubit in a precessing magnetic field and in contact with a heat bath
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The two-level quantum system (qubit) in a precessing magnetic field and in contact with a heat bath is
investigated. The exact reduced dynamics for the qubit in question is obtained. We apply the approach based
on the block operator matrices theory, in contrast with the standard methods provided by the theory of the open
quantum systems. We also present the solution of the Riccati operator equation associated with the Hamiltonian
of the system. Next, we study the adiabatic approximation for the system under consideration using quantum
fidelity as a way to measure validity of the adiabatic theory. We find that in the weak-coupling domain the standard
condition that ensures adiabatic behavior of the spin in the magnetic field also guarantees its adiabatic evolution
in the open-system variant of this model. Therefore, we provide the explicit example of the open quantum system
that satisfies the adiabatic approximation first formulated for the closed quantum systems.
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I. INTRODUCTION

The most established and useful time-dependent two-level
quantum system is, perhaps, the one that describes a spin-
half particle (qubit Q) in a precessing magnetic field [1]. The
Hamiltonian of this system in its basic variant is usually written
in the following form:

HQ(t) = −γ S · B(t), S = σ/2, (1)

where γ is a constant, called the gyromagnetic ratio (the
specific value of γ is irrelevant in context of our discussion),
and σ ≡ (σx,σ y,σ z) and σ i (i = x,y,z) are the standard Pauli
matrices. The magnetic field B(t) is assumed to have the form

B(t) = B1 cos(ωt)êx + B1 sin(ωt)êy + B0êz, (2)

where êx , êy , and êz are the unit vectors along x, y, and z axis,
respectively. B0, B1 define the amplitudes of the magnetic field
and ω is the frequency of the rotation. Using the equations
above one can also rewrite the Hamiltonian (1) in a more
readable form:

HQ(t,β) = βσ3 + α[σ2 sin(ωt) + σ1 cos(ωt)], (3)

where for the sake of convenience the abbreviations α =
1
2ω1 ≡ − 1

2γB1 and β = 1
2ω0 ≡ − 1

2γB0 were introduced.
In the case of no coupling with the external environment

(heat bath) the exact form of the evolution operator UQ(t)
and hence the density matrix ρQ(t) = UQ(t)ρQUQ(t)† for the
model (3), can be derived in an elegant and simple manner
(see, e.g., Refs. [1,2]). This problem is so common that it can
be found in almost every modern textbook on quantum me-
chanics. However, if the aforementioned coupling is present,
the exact form of the density matrix has not yet been derived.

If one allows the system to interact (not necessarily to
exchange the energy) with the environment then it becomes a
so-called open quantum system [3]. Its time evolution is not
unitary any more because of the decoherence process [4,5].
Nevertheless, it may always be described by trace-preserving
(TP) and completely positive (CP) quantum operation (or
quantum channel; see, e.g., Refs. [6]) Tt : ρQ → ρQ(t),
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ρQ(0) ≡ ρQ. Unfortunately, finding its exact form is almost
impossible in most cases, especially for the systems described
by the time-dependent Hamiltonian.

Naturally, the question arises: How difficult is this problem?
Recently, the efforts to answer this question were made [7,8].
It was shown that from the mathematical perspective this
task is at least as complicated as the problem of solving the
Riccati algebraic equation associated with the Hamiltonian
defining the model in question. Moreover, from the block
operator matrices theory point of view obtaining the exact
reduced dynamics for any system where decoherence is present
(beyond dephasing phenomenon) [9,10] is as complex as
solving this equation. Of course, the complexity of the analysis
strongly depends on the particular choice of the environment
responsible for the decoherence process.

First, we show that all the difficulties mentioned above,
including the problem of solving the Riccati equation, can
be overcome for the so-called spin environment. Therefore,
we provide the exact reduced dynamics for the open-system
version of the model (1) in the case when the system is
immersed within the spin bath. Next, as an application, we
investigate the adiabatic approximation for the open system
constructed in this way. Moreover, we show that in the
weak-coupling domain the condition ensuring the adiabatic
evolution of the system (1) also leads to the adiabatic behavior
of its generalization.

The layout of this article is as follows. In Sec. II we
briefly review the concept of the block operator matrix and
the procedure allowing one to diagonalize it. In Sec. II A
we introduce the Riccati operator equation and discuss its
connection with the Hamiltonian specifying the model. In
Sec. III the definition of the model is given and the exact
reduced dynamics is derived. We also indicate possible
applications of the model. In Sec. V we investigate the
adiabatic approximation. Finally, Sec. VI contains the final
remarks and the summary of the article.

II. BLOCK OPERATOR MATRICES APPROACH

A. Partial trace and reduced dynamics

Before we can go any further and present the main result
of this article let us first discuss the procedure allowing one to
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obtain the density matrix ρQ(t) for a two-dimensional system
(qubit) using the block operator matrices approach.

Let HQE be the Hamiltonian of the closed (qubit and
environment, Q + E) system. We will assume its following
form

HQE = HQ ⊗ IE + IQ ⊗ HE + Hint, (4)

where HQ, HE are the Hamiltonian of the qubit and the
environment, respectively, while Hint represents the interaction
between the systems. Hamiltonian (4) acts on HQE = HQ ⊗
HE space, where HQ and HE are the Hilbert spaces for the
qubit and the environment, respectively. The state ρQ(t) of the
qubit at any given time t can be computed using the following
formula (for more details see, e.g., Ref. [11])

ρQ(t) = TrE(UtρQ ⊗ ρEU
†
t )

≡ Tt (ρQ), (5)

where Ut = exp(−iHQEt) is the evolution operator of the total
Q + E system (we work with units h̄ = 1). By TrE(·) we
denoted the partial trace. In the literature the quantity ρQ(t)
is commonly called the reduced dynamics. In this article we
will be also referring to it as the solution of a given model. In
Eq. (5) the assumption that ρQE = ρQ ⊗ ρE was made, i.e.,
no correlation between Q and E are present initially (see, e.g.,
Refs. [12,13] and references therein).

Since HQ = C2 and the isomorphism C2 ⊗ HE = HE ⊕
HE holds, one can think of the operator HQE (and of any given
operator A acting on HQ ⊗ HE) as a 2 × 2 block operator
matrix [14]. Let us assume that A acts on HE ⊕ HE . Thus,
we can write A = [Aij ], where operators Aij , (i,j = 1,2)
act on HE . In this block operator matrices nomenclature the
procedure of calculating the partial trace TrE(·) can be written
as

TrE(A) =
(

TrA11 TrA12

TrA21 TrA22

)
, (6)

where Tr(·) denotes the trace on HQ. Equation (6) introduces
the concept of the partial trace in a very simple and, most
importantly, intuitive way. It is also possible to define the
partial trace locally, i.e., TrE(X ⊗ Y ) = XTr(Y ), where, as
mentioned, Tr(·) stands for the trace operation on the space
on which the operator Y acts. From Eq. (6) one can learn that
the partial trace is the operation which transforms operator
matrices into the “ordinary” matrices. Moreover, the partial
trace is a linear operation going from B(HQE) space to the
B(C2) space. Furthermore, from the block operator matrices
perspective one can easily understand why dealing with the
open systems is much more complex (from the mathematical
viewpoint) than dealing with the closed systems. The reason
is that the procedure that allows one to calculate the reduced
dynamics is not as straightforward as Eq. (6) might indicate.
Indeed, to compute the partial trace (5) one needs to write
the evolution operator Ut in a 2 × 2 block matrix form. The
last operation requires diagonalization of the block operator
matrix HQE , which is much more complicated than the
diagonalization of the standard 2 × 2 matrix. It leads to the
problem with solving the Riccati algebraic equation analyzed
below.

B. Riccati equation and block diagonalization

With every Hermitian block operator matrix of the form

R =
[

A B

B† C

]
, (7)

where A, B, and C are the Hermitian operators acting on HE ,
one can associate the following Riccati equation [15]

XBX + XA − CX − B† = 0, (8)

where X ∈ B(HE) is the operator to be determined.
If the solution X of Eq. (8) exists, then it may be used to

diagonalize operator matrix (7). The procedure that allows us
to do so is as follows (for details see Ref. [8] and references
therein)

U−1
X RUX =

[
A + BX 0E

0E C − (XB)†

]
, (9)

where the similarity matrix UX is given by

UX =
[
IE −X†

X IE

]
. (10)

We wish to emphasize that in most cases a general method
of finding the solution for the Riccati equation does not exist.
Therefore, solving the Eq. (8) with respect to X is a very
difficult task. Moreover, even if the solution is known, there
is still a problem of computing the inversed operator matrix
(UX)−1. Formally, if the operator X is normal, i.e., [X,X†] = 0,
then this matrix is given by the formula

U−1
X = (IE + XX†)−1

[
IE X†

−X IE

]
. (11)

Otherwise, the form of the inverse operator U−1
X becomes

more complicated. Fortunately, Eq. (11) is sufficient for our
analysis. Note that it may be difficult to handle computationally
the operator such as (IE + XX†)−1. In general the operator X

does not need to be Hermitian or unitary.
Perhaps those are the reasons why the approach to open

systems based on the operator matrices theory has not attracted
too much attention. In our opinion, however, the operator
matrix perspective can offers a better understanding of the
open quantum systems and might give some new results in
this area.

III. EXACT REDUCED DYNAMICS

A. Model

We consider the model defined by the following time-
dependent Hamiltonian

HQE(t,β) = HQ(t,β) ⊗ IE + IQ ⊗ HE + Hint, (12)

where HQ(t,β) is given by Eq. (3) and it represents a qubit
in the magnetic field (2). The environment is composed of
N independent and noninteracting spin-half particles. The
Hamiltonian HE of the bath is assumed to be of the form

HE =
N∑

n=1

ωnσ
z
n , (13)
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where ωn and σ z
n , (n = 1,...,N ) are the frequencies and

the Pauli matrices for nth qubit, respectively. The Hilbert
space HE on which the Hamiltonian (13) acts is given by
N -fold tensor product of C2 spaces, i.e., H = ⊗N

n=1 C
2.

Therefore for any n � N the operator σ z
n is understood as

σ z
n = I2 ⊗ . . . ⊗ σ z ⊗ . . . ⊗ I2, where σ z is the standard Pauli

matrix acting on C2 and I2 is the 2 × 2 identity matrix on
that space. In our model the coupling of a qubit with the
environment is governed by the Ising-typ Hamiltonian [16,17],
namely

Hint = σ z ⊗
N∑

n=1

gnσ
z
n , (14)

where gn are the coupling constants. We assume that the bath
is initially in the Gibbs thermal state at a temperature T , i.e.,

ρE = Z−1 exp(−HE/kT ), (15)

where Z = Tr[exp(−HE/kT )] and k is the Boltzmann con-
stant.

The model described by the Hamiltonian (12) with HE

and V specified by Eqs. (13)–(14) in the case of the
α = 0 (i.e., dephasing and static magnetic field case) was
investigated both in the context of the approximation methods
in the open-quantum-systems theory [16] and the capaci-
ties of the quantum channels [17]. Thus, for the detailed
discussion and possible applications we refer the reader
therein.

The quantum system discussed here can be thought of as
the generalization of the model introduced in the mentioned
articles to the case when the energy is exchanged between
the systems and the magnetic field depends on time. It is
worth mentioning the physical problems that make use of
this model. First, the Hamiltonian (12) may pose a useful
prototype describing any spin “resonance” phenomenon, like,
for instance, nuclear magnetic resonance (NMR) [18,19]. In
such a picture, the spin-half particle is the open system, and
we wish to describe its evolution in time. The spin bath
models the influence of the other spins on the open system in
question. Finally, the rotating magnetic field is used to induce
the resonance and to control the system.

The quantum devices of the future, like, for instance,
quantum computers [20], will be probably built from the
components that are composed of a large amount of the qubits
(spins, in particular), e.g., quantum memory [21], quantum
register [22], and so on. The model we investigate may serves
as a simple prototype that allows one to trace the evolution in
time of a single qubit of the register or memory. The magnetic
field may be then applied to program the device. Those are
just a few potential applications of the simple theoretical,
time-dependent spin-spins model (12).

B. Exact solution

To derive an exact reduced dynamics of the system
governed by the Hamiltonian (12) we first simplify this
problem to a time-independent one. In order to accomplish
this, we use a recently proven theorem that says if (for more
details see Appendix A and also Ref. [8]) (i) the total system
is defined by the Hamiltonian (12); (ii) the interaction term

Hint between the systems takes the form f (σ z) ⊗ V , where f

is an analytical function of σ z and V is a Hermitian operator;
and (iii) ρt (β) represents the solution of the system defined
by the Hamiltonian HQE(0,β) (note that Hamiltonian HQE

depends on β, hence so is ρt ), then the reduced dynamics
ηt for the model governed by the Hamiltonian (12) can be
obtained using the following simple formula:

ηt = Vtρt (βeff)V
†
t , βeff := β − ω/2, (16)

where the unitary matrix Vt is given by (diag-diagonal)

Vt = diag(e−iωt/2,eiωt/2). (17)

Equality (16) states that having the reduced dynamics ρt

one may easily obtain the solution we are interested in
simply by introducing the effective parameter βeff , then
replacing β by βeff , and finally performing the unitary
transformation (17).

The interaction term defined in Eq. (14) satisfies the
requirement of the theorem above, thus one should restrict
the analysis to the Hamiltonian HQE(β) ≡ HQE(0,β). The
latter can be easily rewritten as a 2 × 2 block operator matrix,
namely

HQE(β) =
[

H+(β) αIE

αIE H−(β)

]
, (18)

where

H±(β) :=
N∑

n=1

(
ω±

nσ
z
n ± β̄IE

)
, β̄ := β/N, (19)

and ω±
n := ωn ± gn, for each n � N . Henceforward, the

explicit dependence of any quantity of parameter β will be
omitted until the solution ρQ(t) is obtained.

The evolution operator for the total system generated by the
Hamiltonian (18) reads

Ut = exp(−iHQEt)

= UX exp(−iHd )U−1
X , (20)

where UX is given by Eq. (10) and X is the solution of the
Riccati Eq. (8), which in the present case takes the form

αX2 + XH+ − H−X − αIE = 0. (21)

The quantity Hd represents a diagonal form of the operator
matrix HQE . According to Eq. (9) it reads

Hd =
[

H+ + αX 0E

0E H− − αX†

]
. (22)

Note that for α = 0 the solution (possibly not the only one)
of Eq. (21) is given by X0 = 0E . It is obvious, since in
that case HQE is already in the diagonal form, i.e., HQE =
Hd = diag(H+,H−). In order to obtain the solution for α �= 0
more subtle investigation, provided in the next subsection, is
needed.

1. Solution of the Riccati equation for the α �= 0 case

First, one can observe that [H−,H+] = 0. Since the solution
X of Eq. (21) is a function of the operators H±, then it also
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must commute with those operators. The Riccati equation
in question can be simplified to the more compact form,
namely

αX2 + 2V X − αIE = 0, α �= 0, (23)

where we introduced

V =
N∑

n=1

(
gnσ

z
n + β̄IE

)
. (24)

Let us assume that the eigenvalue problem for the operator V

can be (easily) resolved. If this is the case we can write the
solution X of Eq. (23) in a manageable form using the spectral
theorem for the Hermitian operators. By doing so we obtain
that X = f (V ), where

f (λ) =
√

λ2 + α2 − λ

α
, λ ∈ σ (V ). (25)

We can also represent the solution f (V ) in an equivalent way,
i.e.,

f (V ) =
∑

λ∈σ (V )

f (λ)|λ〉〈λ|. (26)

Note that f = f ∗, i.e., f is a real function for any value of the
parameters α and β. Here, by σ (V ) we denoted the spectrum
of V . We want to emphasize that the representation (25) or
(26) of the solution X of Eq. (23) is useful computationally
if the eigenvalues of V can be computed. We show below
that this is the case. Note also that X = X† if and only
if V = V †.

Let i = i1i2...iN be a binary (in = 0,1, for n � N ) ex-
pansion of an integer number i ∈ [0,2N − 1]. Clearly, the
set of all eigenstates |i〉 = |i1〉 ⊗ |i2〉 ⊗ . . . ⊗ |iN 〉 forms an
orthonormal basis in HE . Moreover, because of the following
equality σ z|in〉 = (−1)in |in〉 we have

V |i〉 =
N∑

n=1

[gn(−1)in + β̄]|i〉

≡ Ei |i〉, 0 � i � 2N − 1. (27)

Thus, the eigenvalue problem for V has been solved. There-
fore, the solution of the Riccati Eq. (23) X reads

X =
2N −1∑
i=0

f (Ei)|i〉〈i|. (28)

At this point two remarks should be made. The first one
is that the operator (28) depends on the parameter α, i.e.,
X = X(α) and X(α) → X0 as α goes to 0. To see that this
statement holds we rewrite Eq. (25) in the form

f (λ) = 1√(
λ
α

)2 + 1 + λ
α

, λ ∈ σ (V ). (29)

Clearly, f (λ) → 0 as α → 0, unless λ = 0. The latter means
that the solution X of the Riccati Eq. (23) is a continuous
function of the parameter α, including the α = 0 value. From
the physical point of view it means that one can control energy
exchange between the systems in a continuous way. Note that

if α = 0, then the energy transfer is absent. This scenario can
be accomplished by taking limits α → 0 with the final solution
we are about to give. Note also that since for every α �= 0 and
each λ ∈ σ (V ) the eigenvalues f (λ) of the operator X we
constructed are positive. This solution is a positively defined
operator on HE .

The second remark is that there exists, at least one more
operator function that satisfies Eq. (23), namely the one
specified by the following formula: f2(λ) = (−√

λ2 + α2 −
λ)/α for λ ∈ σ (V ). This solution represents negatively defined
operator. The choice between the different solution of Eq. (23)
is not arbitrary and it has significant influence on the further
analysis. Indeed, if one decides to choose the second solution:
f2(λ) then one may meet a serious difficulties during the
examination of the dephasing phenomena, since f2(λ) → −∞
as α → 0.

At the end of this subsection let us note that one can resolve
the eigenvalue problem for H± as easily as for the operator V .
Indeed, we may readily verify that

H±|i〉 =
N∑

n=1

[ω±
n(−1)in ± β̄]|i〉

≡ E±
i |i〉, 0 � i � 2N − 1. (30)

Observe also that E+
i − E−

i = 2Ei , for 0 � i � 2N − 1, as one
may expected. In the |i〉 basis the density matrix ρE can be
expanded as

ρE =
2N −1∑
i=0

(e−	i/kT /Z)|i〉〈i|, (31)

where 	i = ∑
n ωn(−1)in are the eigenvalues of HE and Z =∑

i exp(−	i/kT ).

2. Total system evolution

We are now in a position to give the explicit and manageable
form of the evolution operator of the total system Q + E. First,
let us note that the similarity operator matrix UX can be written
as

UX =
2N −1∑
i=0

Ui ⊗ |i〉〈i|, (32)

where matrices Ui are given by

Ui =
(

1 −f (Ei)

f (Ei) 1

)
. (33)

This follows immediately from Eqs. (10) and (28). We also
used the resolution of the identity IE in the |i〉 basis. From the
expansion (32) one can readily see that the inversed operator
(UX)−1 takes the form

(UX)−1 =
2N−1∑
i=0

(Ui)
−1 ⊗ |i〉〈i|, (34)

where (Ui)−1 stands for the inverse of the matrix Ui . Since for
every integer i we have det (Ui) = 1 + f 2(Ei) �= 0, thus the
inverse exists. It is also easy to see that (Ui)−1 = det (Ui)U

†
i
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and UiU
†
i = 1/det (Ui). Because of the last equality, the

operator (32) can become unitary by a simple rescaling
procedure, i.e., Ui → √

detUiUi . Furthermore, according to
Eq. (20) the diagonal form Ud

t := exp(−iHdt) reads

Ud
t =

2N −1∑
i=0

Ud
i (t) ⊗ |i〉〈i|, (35)

where abbreviations

Ud
i (t) = diag(e−i[E+

i +αf (Ei )]t ,e−i[E−
i −αf (Ei )]t ), (36)

were introduced.
Finally, by combining all the results together we obtain the

evolution operator Ut of the total system:

Ut =
2N −1∑
i=0

Ui(t) ⊗ |i〉〈i|, (37)

where

Ui(t) = UiU
d
i (t)U †

i

= 1

1 + f 2
i

(
e+
i (t) + e−

i (t)f 2
i fi[e

+
i (t) − e−

i (t)]

fi[e
+
i (t) − e−

i (t)] e+
i (t)f 2

i + e−
i (t)

)
.

(38)

and e±
i (t) := exp[−i(E±

i ± αfi)t] with fi ≡ f (Ei). Let us
keep in mind that UiU

†
i = IQ for each integer i.

3. Reduced dynamics

We begin with the assumption that ρQ and ρE are arbitrary
density operators for the open system and its environment,
respectively. Furthermore, we consider only factorable initial
states ρQE of the closed system Q + E, i.e., ρQE = ρQ ⊗ ρE .
Using this assumption and the explicit form of the evolution
operator Ut given in Eq. (37), we have that the density operator
ρQE(t) = UtρQEU

†
t at any given time reads

ρQE(t) =
2N −1∑
i,j=0

Ui(t)ρQUj (t)† ⊗ |i〉〈i|ρE |j 〉〈j |. (39)

Tracing out the last equation over the environment degrees
of freedom, we obtain the reduced dynamics [note ρQ(t) =
TrE(ρQE(t))]

ρQ(t) =
2N−1∑
i=0

ρiUi(t)ρQUi(t)
†, (40)

where ρi ≡ 〈i|ρE|i〉. By introducing matrices Kij (t) such that
Kij (t) := δij

√
ρiUi(t), the equation above can be written in

a more familiar form, that is ρQ(t) = ∑
ij Kij (t)ρQKij (t)†.

Moreover, it is easily to verify that
∑

ij Kij (t)Kij (t)† = IQ.
Thus, Eq. (40) can be thought of as operator sum representation
of the state ρQ(t). The matrices Kij (t) are the Kraus operators.
The result (40) is general, i.e., it holds for the arbitrary states ρQ

and ρE . Nevertheless, we made assumption about the form of
the initial state ρQE . This assumption, however, is not essential
and does not lead to the limitation of the analysis. The evolution

operator (37) was written in a highly manageable form, and
by that we mean it can be applied to any given initial state. Of
course, if initial correlations are present, then Eqs. (39) and
(40) no longer hold, but the reduced dynamics ρQ(t) can still
easily be obtained. However, we will not focus on this issue in
the current article.

So far, we omitted the explicit dependency on β in the
introduced quantities. Note, however, that if Ui(t) = Ui(t,β),
then ρQ(t) = ρQ(t,β) and, in view of Eqs. (16), (40), and (17),
and comments following them, we have

ηt =
2N −1∑
i,j=0

Mij (t)ηQMij (t)†, (41)

where ηQ (ηQ = ρQ) is an arbitrary initial state. The Kraus
matrices Mij (t) are given by

Mij (t) = δij

√
ρiVtUi(t,βeff). (42)

The last two equations are the main result of the current
article. It is worth mentioning that the model with a similar
properties was studied in Ref. [23], where the authors
obtained the operator sum representation, yet the Kraus
operator introduced therein involved the time chronological
operator.

From Eqs. (41) and (42) one can learn that the time
evolution of the qubit interacting with the rotating magnetic
field (2) and in contact with the environment (13)–(14) can
be described using two quantum channels, i.e., ρQ(t) = T 2

t ◦
T 1

t (ρQ). The first channel, that is, T 1
t , is given by

T 1
t :=

2N −1∑
i=0

Mi(t)(·)Mi(t)
†. (43)

The second one is defined by the simple unitary operation,
namely T 2

t = Vt (·)V †
t . The matrices Mi are specified by

Mi(t) = √
ρi exp(−iHit), (44)

where the Hamiltonian Hi is the generator of the unitary
evolution Ui(t,βeff) [see (38)]. It is easy to compute that

Hi =
(

Ei − ω/2 α

α −Ei + ω/2

)
, (45)

where Ei is the eigenvalues of the operator V and it was
defined in Eq. (27). Channel T 2

t may be thought of as the
convex combination of the unitary channels [note Tt (IQ) =
IQ]. These types of channels are known as the random unitary
channels [24] and they often appear in the study of pure
decoherence.

Surprisingly, the matrix above and therefore the Kraus
matrices (44) does not depend on the function f (Ei). However,
to compute matrices exp(−iHit) that specified the Kraus
matrices (44) we need to diagonalize the Hamiltonians Hi .
The function f (Ei) is hidden in the similarity matrix Ui

given by Eq. (33). Observe that the mentioned diagonalization
procedure is based on the Riccati equation (matrices Ui are
composed with the eigenvalues of the solution of the Riccati
equation). This approach differs from the standard method
based on the characteristic equation. This is a new kind of the
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diagonalization procedure, so-called Riccati diagonalization
[25].

IV. SPECIAL CASES

Now, we look into some common cases that may arise
during the examination of the model (12). We will show that
in these particular situations the result (41) can be simplified
to the well-known expressions.

A. No coupling with the bath

In the case when the qubit under consideration has no
coupling with its environment, i.e., gn = 0 for all n � N we
have (a) Ei = βeff , hence and (b) fi ≡ f = (|z| − βeff)/α,
where (c) z := α + iβeff . Moreover, E±

i = 	i ± β, where
	i ≡ ∑

n ωn(−1)in . Using this simplification we obtain that
Ui(t,βeff) = e−i	i t Ū (t), where

Ū (t) =
(

e−i|z|t + f 2ei|z|t −2if sin(|z|t)
−2if sin(|z|t) f 2e−i|z|t + ei|z|t

)

= I2 cos(|z|t) − i

(
1−f 2

1+f 2
2f

1+f 2

2f

1+f 2 − (1−f 2)
1+f 2

)
sin(|z|t)

= I2 cos(|z|t) − iσ · �̂ sin(|z|t)
= exp(−i|z|σ · �̂t), (46)

with �̂ := �/‖�‖ and � := (2f,0,1 − f 2). As a result,
Mij (t) = δij

√
ρiVt Ū (t), where we dropped phase factor

e−i	i t . Therefore ηt = U (t)ηU (t)† (as one may anticipated),
where

U (t) = exp(−iωtσ z/2) exp(−i|z|σ · �̂t). (47)

This is the well-known formula for the (unitary) evolu-
tion operator of the system identified by the Hamiltonian
HQ(t,β) ≡ HQ(t). It is the solution of the differential equation
i∂tU (t) = HQ(t)U (t). Note, that the result (47) corresponds
to the Floquet decomposition of the unitary operator generated
by the periodic Hamiltonian. Note also that the evolution
operator (47) can be written in a more readable form,
especially useful for studying the adiabatic approximation (see
Sec. V), i.e.,

U (t) = Vt exp(−iH t), (48)

where the matrix Vt is given by Eq. (17) and H has the form

H =
(

βeff α

α −βeff

)
. (49)

One can easily see that this matrix can be obtained directly
from Eq. (45) if one sets gn = 0 for n � N .

B. Dephasing

If the constant α equals zero, then the Hamiltonian
HQE(t,β) becomes time independent. Moreover, in this cir-
cumstance [HQ,Hint] = 0, hence the open system does not
exchange energy with its environment, i.e., the pure decoher-
ence occurs. It poses no problems to check that Ui(t,βeff) =
e−i	i tV

†
t exp(−iEiσ

zt). Therefore, the Kraus operators take
the form Mij (t) = δij

√
ρi exp(−iEiσ

zt). Just like before the

phase factor e−i	i t was dropped. In agreement with (41),
the form above of the Kraus matrices leads to the following
manifestation of the density matrix ηt

η11(t) = η11, η12(t) =
2N −1∑
i=0

ρie
−i2Ei tη12. (50)

Naturally, η22(t) = 1 − η11(t) and η21(t) = η21(t)∗. Note that
the coherence C(t) := |η12(t)| does not decay exponentially
(or anyhow for finite N ) in the long time regime but manifests
oscillating behavior.

From the considerations above one can easily learn that
there is a substantial difference between the situation when a
transfer of the energy from the qubit to its bath is not present
and the case when the qubit is not coupled to the environment.
Let us also observe that in the model we study it is not
possible to construct a situation when the energy exchange
in not present (α = 0) and yet the magnetic field is rotating.
This follows from the fact that if α = 0 then the Hamiltonian
HQE(t,β) does not depend on ω.

C. Low-temperature regime

From the mathematical point of view the zero- (low-)
temperature limit is the most subtle special case. This comes
from the fact that most results obtained by using the known
approximation methods in the open-quantum-systems theory,
e.g., the Markovian or the singular coupling limit, cannot
be extrapolated to this regime. Luckily, the exactly solvable
models are unhampered by these difficulties.

To derive the exact reduced dynamics in the low-
temperature domain we begin with rewriting the density
operator ρE in a more suitable form in contrary with the one
given by Eq. (31). According to the result obtained in Ref. [16]
one may write

ρE =
N⊗

n=1

1

2
(IQ + βnσ

z), (51)

where βn = tanh(−ωn/kT ). From equality (51) one may
readily see when T → 0, then

ρi = 1

2N

N∏
n=1

[1 + βn(−1)in] → δi0, (52)

since βn → 1 as T → 0. All this means that in the low-
temperature domain the heat bath is its ground state, i.e., ρE =
|0E〉〈0E |. As an immediate result we obtain the following form
of the reduced dynamics (41)

lim
T →0

ηt = WtηW
†
t , (53)

where Wt := VtU0(t,βeff). Interestingly, the evolution of the
open system in question is unitary, which is rather unusual.
This is a direct consequence of the fact that for every integer i

the operator Ui(t) specified by Eq. (38) is unitary. This means
that in the low-temperature regime the dissipative properties
of the heat bath (13)–(14) are frozen.
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D. Equal couplings and frequencies

Henceforward and without essential loss of generality we
assume that ωn = 	 and gn = g for n � N , i.e., couplings
constants and the frequencies of the spins of the bath are
equal. In this situation Ei = g(N − 2k) + β, where k is the
Hamming weight of the integer number i (i.e., a number of
nonzero element in a binary expansion of i). Since there are
(N

k
) integer number i ∈ [0,2N − 1] with the same Hamming

weight k, the channel (43) takes the form

T 1
t =

N∑
k=0

(
N

k

)
Mk(t)(·)Mk(t)†, (54)

with Mk(t) given by Eq. (44). Note, in this case ρk [see Eq. (51)]
simplified to the form

ρk = 1

2N
(1 + δ)N−k(1 − δ)k, (55)

where δ := tanh(−	/kT ).

V. APPLICATION: ADIABATIC APPROXIMATION

The adiabatic theorem [26,27] for the closed quantum
system specified by the Hamiltonian H (t) in its basics variant
[i.e., discrete and no degenerate spectrum σ (H (t))] states that
if H (t) varies slowly (for rigorous meaning of that see e.g.,
Refs. [28] and references therein) and if the system is initially
prepared in one of the eigenstates of H (0), say |ψn(0)〉, then
at any given time t the probability |〈ψn(t)|ψ(t)〉|2 of finding
it in the eigenstate |ψn(t)〉 [an eigenvector of H (t)] is equal
to 1. Therefore, one may easily introduce the quantity F (t)
that measures the validity of the adiabatic approximation,
namely

F (t) = Tr(ρ(t)ρψ (t)), (56)

where ρψ (t) = |ψt 〉〈ψt | and ρ(t) = Utρ(0)U †
t with ρ(0) =

|ψ0〉〈ψ0|. Here, |ψt 〉 is the eigenvector of H (t) for t � 0 and
Ut represents the (unitary) evolution operator for the closed
system. If the system is evolving adiabatically then F (t) = 1.
Note that definition of the quantity F (t) coincides with the
standard definition of the quantum fidelity F (ρ(t),ρψ (t))
between pure states ρ(t) and ρψ (t) [29]. Since this is a
two-dimensional case it also coincides with the definition of
the superfidelity [30,31].

Observe that Eq. (56) is very useful since it can be
easily applied both to the closed and to the open quantum
systems. In the last case we need to replace the equality
ρ(t) = Utρ(0)U †

t representing the evolution of the closed
system by the channel describing evolution in time of the
open system. More precisely, ρ(t) = Tt (ρ(0)), where Tt is
TP-CP quantum operation. In the current section we use
Eq. (56) in order to investigate behavior of the model (12)
in the adiabatic regime. To make the article self-contained we
briefly discuss the adiabatic approximation for the system (1)
first.

A. The closed spin system case

For the sake of simplicity we put β = β0 cos ϕ and α =
β0 sin ϕ for certain ϕ and β0. This assumptions lead to the
following form of the Hamiltonian (3)

HQ(t) = β0

(
cos ϕ e−iωt sin ϕ

eiωt sin ϕ − cos ϕ

)
. (57)

It can be easily verified that the matrix above has the
eigenvalues E± = ±β0. The corresponding eigenvectors |ψ±

t 〉
are given by

|ψ+
t 〉 =

(
cos(ϕ/2)

eiωt sin(ϕ/2)

)
, |ψ−

t 〉 =
(

sin(ϕ/2)

−eiωt cos(ϕ/2)

)
.

(58)

The density matrix ρ+(t) = |ψ+
t 〉〈ψ+

t | takes the form

ρ+(t) =
(

cos2(ϕ/2) 1
2e−iωt sin ϕ

1
2eiωt sin ϕ sin2(ϕ/2)

)
. (59)

Observe that ρ+(t) = Vtρ+(0)V †
t , where Vt is specified in

Eq. (17). According to Eq. (48) the density matrix ρ(t) at
any given time t reads ρ(t) = VtŪ (t)ρ+(0)(VtŪ (t))†, thus the
fidelity (56) takes the form

F (t) = Tr(Ū (t)ρ+(0)Ū (t)†ρ+(0))

= ‖Ū (t)ρ+(0)‖2
F , (60)

where ‖ · ‖F is the Frobenius (Euclidean) norm, i.e.,
‖A‖2

F := Tr(AA†).
It is well known that for the system governed by the

Hamiltonian (57) condition that guarantees the adiabatic
evolution is β0 � ω. This statement is very intuitive; it means
that the magnetic field rotates slowly, in comparison with the
phase of the state vector (for a more detailed discussion, see,
e.g., Ref. [32]). We can also see this from Eq. (60). Indeed, if
one introduces the adiabatic parameter x := ω/2β0, then, in
agreement with (48) and (60), we have

F (t) = 1 − x2

1 + x2
sin2(	(x)t), (61)

where 	(x) := β0

√
1 + x2. Without loss of generality we set

ϕ = π/2 in the equation above. The parameter x measures
how slowly the magnetic field rotates in β0 units, thus in the
adiabatic limits (i.e., x → 0) the second term in Eq. (61) can
be neglected and therefore F (t) � 1.

B. The open-system case

By analogy to the closed spin case discussed above one
may write the fidelity (56) for the open system (12) as

F (t) = Tr(T 2
t ◦ T 1

t (ρ+(0))ρψ (t))

=
N∑

k=0

(
N

k

)
ρkFk(t), (62)

where Fk(t) := ‖Uk(t)ρ+(0)‖2
F . The channels T 1

t and T 2
t are

specified in Eq. (43) and comments below, respectively. The
unitary matrix Uk takes the form Uk = exp(−iHkt), with Hk
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given by Eq. (45). If we put ϕ = π/2 as before, then

Fk(t) = 1 − x2
k

1 + x2
k

sin2(	(xk)t), (63)

where xk := G(N − 2k)/β0 − x. Using this and Eq. (62) we
obtain F (t) = 1 − R(t), where R(t) reads

R(t) =
N∑

k=0

(
N

k

)
x2

k

1 + x2
k

ρk sin2(	(xk)t). (64)

From this equation one can readily see that in the adiabatic
domain (x → 0) we have R(t) �= 0 and thus F (t) < 1. There-
fore, the standard condition that leads to the adiabatic behavior
of the closed system (1) does not guarantee that in the case of
the open-system model (12) it holds true as well. However, if
one additionally assumes that coupling with the environment
is weak, in comparison with the energy split between the states
|0〉 and |1〉 of the qubit in question, that is to say, if G/β0 � 1,
then xk � 1 (for finite N ) and R(t) � 0, thus F (t) � 1.

VI. SUMMARY

In this article we investigated a qubit in contact with the spin
environment and interacting with a rotation magnetic field. The
considered model was constructed under a set of assumptions
which allow for its exact treatment. We hope that despite the
mathematical character the results of the article may serve
as starting point for further investigations. The exact models
not only can provide a reasonable approximate description of
real systems, as is the case for pure dephasing, but also are
often used as a basis and inspiration for various improvements
[33]. Although the article focuses mainly on mathematical
aspects it also includes the example of a natural application
of the model in question. This example relates our model to
important problems of physics such as, e.g., the problem of the
adiabatic approximation for the open quantum systems [34] or
the adiabatic quantum computation [35].

We provided the exact reduced dynamics for the system
mentioned above. In contrast to the standard methods available
in the theory of the open quantum systems our approach was
based on the block operator matrices theory. In particular,
we resolved the algebraic Riccati equation associated with
the Hamiltonian defining the model under consideration.
We wish to stress that the method we used in the current
article, although applied to the particular model, is general.
Nevertheless, its usefulness relies on the ability of solving the
Riccati equation. At the present time it is a very difficult task,
even for simple systems.

At this point one can ask: How relevant is it to assume a spin
environment, instead of a bosonic one, to solve the problem
exactly? Is it possible to do so for a bosonic bath? One may
pose a more general question: What is a connection between
the possibility of obtaining the exact reduced dynamics of the
qubit in question and the Hamiltonian specifying the bath?
This problem was addressed in Ref. [8]. The results of this
article as well as the analysis we carried out suggest that this
problem is at least as difficult as resolving the Riccati equation
associated with the total Hamiltonian.

Furthermore, we studied the adiabatic approximation for
the model in question. It was shown that the standard condition
that guarantees the adiabatic evolution in the the case of the

closed systems is not valid for the open-system generalization.
This is not an unexpected result. It is interesting, however,
that the aforementioned condition does ensures the adiabatic
behavior of the open system under consideration in the
weak-coupling limit.
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APPENDIX: PROOF OF EQ. (16)

In order to prove Eq. (16) let us note that the Hamiltonian
(12) satisfies the following condition:

H (t,β) = eiKtH (β)e−iKt , (A1)

where K = −ω
2 σ3 ⊗ IE . This can be easily proven using the

Baker-Campbell-Hausdorff formula [36]. As was shown, in
Ref. [2] every quantum system with Hamiltonian H (t,β)
satisfying (A1) for some Hermitian operator K evolves

Ut (β) = eiKte−iHeff (β)t , Heff(β) := H (β) + K. (A2)

Note that, in general, [H (β),K] �= 0 and therefore
[Heff(β),K] �= 0. In our case, from Eq. (12) we learn
that H (β) = (βσ3 + ασ1) ⊗ IE , thus

Heff(β) = (βσ3 + ασ1) ⊗ IE − ω

2
σ3 ⊗ IE

=
[(

β − ω

2

)
σ3 + ασ1

]
⊗ IE

= H
(
β − ω

2

)
. (A3)

From Eqs. (A2) and (A3) we have

Ut (β) = eiKtUt

(
β − ω

2

)
, (A4)

where Ut (β) is the evolution operator generated by H (t,β).
Let ρ̂t (β) and η̂t be a density operator for the closed system
Q + E associated with the Hamiltonian H (β) and H (t,β),
respectively, in some arbitrary time t . Let us also assume that
ρ̂0(β) = η̂0 ≡ ρ̂. Using Eq. (A4) one can easily see that

η̂t = Ut (β)ρ̂U
†
t (β)

= eiKtUt

(
β − ω

2

)
ρ̂U

†
t

(
β − ω

2

)
e−iKt

= V̂t ρ̂t

(
β − ω

2

)
V̂

†
t , (A5)

where we introduced V̂t = eiKt . To end the proof we
will show that if Â1, Â2 ∈ B(H ⊕ H) are a 2 × 2 block
operator matrix of the form Âi = Ai ⊗ IE , (i = 1,2) and
B̂ = [B̂ij ] ∈ B(H ⊕ H) then

TrE(Â1B̂Â2) = A1TrE(B̂)A2. (A6)

Equation (A6) follows from the linearity of the trace Tr(·) oper-
ation and the definition (6) of partial trace. Note that V̂t = Vt ⊗
IE , where Vt is given by Eq, (17), thus taking a partial trace of
Eq. (A5) and using (A6) we obtain (16) with Vt given by (17).
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[19] G. A. Álvarez and D. Suter, Phys. Rev. Lett. 104, 230403 (2010).
[20] T. D. Ladd, F. Jelezko et al., Nature 464, 45 (2010).
[21] A. I. Lvovsky, B. C. Sanders, and W. Tittel, Nat Photon. 3, 706

(2009).
[22] J. H. Reina, L. Quiroga, and N. F. Johnson, Phys. Rev. A 65,

032326 (2002); P. Neumann et al., Nat. Phys. 6, 249 (2010).
[23] M. Cetinbas and J. Wilkie, Phys. Lett. A 372, 1194 (2008).
[24] B. Rosgen, J. Math. Phys. 49, 102107 (2008).
[25] K. Fujii and H. Oike, (accepted, Int. J. Geom. Meth. Mod. Phys.),

e-print arXiv:1004.1207v2.
[26] K.-P. Marzlin and B. C. Sanders, Phys. Rev. Lett. 93, 160408

(2004).
[27] D. M. Tong et al., Phys. Rev. Lett. 95, 110407 (2005).
[28] J. Avron and A. Elgart, Commun. Math. Phys. 203, 445 (1999).
[29] R. Jozsa, J. Mod. Opt. 41, 2315 (1994).
[30] Z. Pucha�la and J. Miszczak, Phys. Rev. A 79, 024302

(2009).
[31] Z. Pucha�la et al., Quantum Inf. Comput. 9, 0103 (2009).
[32] D. J. Griffiths, Introduction to Quantum Mechanics (Prentice

Hall, Upper Saddle River, NJ, 1995).
[33] D. I. Schuster et al., Nature 445, 515 (2007).
[34] M. S. Sarandy and D. A. Lidar, Phys. Rev. A 71, 012331 (2005).
[35] D. A. Lidar, Phys. Rev. Lett. 100, 160506 (2008).
[36] A. Galindo and P. Pascual, Quantum Mechanics I (Springer-

Verlag, Berlin, 1990), Vol 1.

042115-9

http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/RevModPhys.75.715
http://dx.doi.org/10.1063/1.3442364
http://dx.doi.org/10.1103/PhysRevA.79.012104
http://dx.doi.org/10.1103/PhysRevA.79.012104
http://dx.doi.org/10.1103/PhysRevA.77.042316
http://dx.doi.org/10.1103/PhysRevA.77.042316
http://dx.doi.org/10.1103/PhysRevA.64.062106
http://dx.doi.org/10.1103/PhysRevA.67.029902
http://dx.doi.org/10.1103/PhysRevA.67.062109
http://dx.doi.org/10.1103/PhysRevA.67.062109
http://dx.doi.org/10.1006/jfan.2000.3680
http://dx.doi.org/10.1006/jfan.2000.3680
http://dx.doi.org/10.1103/PhysRevA.76.052117
http://dx.doi.org/10.1103/PhysRevA.81.062353
http://dx.doi.org/10.1103/PhysRevA.81.062353
http://dx.doi.org/10.1103/PhysRevLett.104.230403
http://dx.doi.org/10.1038/nature08812
http://dx.doi.org/10.1038/nphoton.2009.231
http://dx.doi.org/10.1038/nphoton.2009.231
http://dx.doi.org/10.1103/PhysRevA.65.032326
http://dx.doi.org/10.1103/PhysRevA.65.032326
http://dx.doi.org/10.1038/nphys1536
http://dx.doi.org/10.1016/j.physleta.2007.09.047
http://dx.doi.org/10.1063/1.2992977
http://arXiv.org/abs/1004.1207v2
http://dx.doi.org/10.1103/PhysRevLett.93.160408
http://dx.doi.org/10.1103/PhysRevLett.93.160408
http://dx.doi.org/10.1103/PhysRevLett.95.110407
http://dx.doi.org/10.1007/s002200050620
http://dx.doi.org/10.1080/09500349414552171
http://dx.doi.org/10.1103/PhysRevA.79.024302
http://dx.doi.org/10.1103/PhysRevA.79.024302
http://dx.doi.org/10.1038/nature05461
http://dx.doi.org/10.1103/PhysRevA.71.012331
http://dx.doi.org/10.1103/PhysRevLett.100.160506

