
Deep Learning Intrusion Detection and Mitigation
of DoS Attacks

Mohammed Nasereddin∗, Mert Nakıp†, and Erol Gelenbe‡
∗†‡Institute of Theoretical and Applied Informatics, Polish Academy of Sciences (IITIS-PAN), Gliwice, Poland

‡King’s College London, London, United Kingdom
‡Lab. I3S Université Côte d’Azur, Nice, France
{∗mnasereddin, †mnakip, ‡seg}@iitis.pl

Abstract—Internet of Things (IoT) networks are highly vul-
nerable to common network DoS and DDoS attacks, which flood
limited system resources or IoT devices, overwhelming them
with large numbers of attack packets. In order to mitigate such
attacks, this paper develops a lightweight yet effective Intrusion
Detection and Prevention System (IDPS), that sequentially detects
and mitigates the attack via a Deep Random Neural Network
(DRNN) and a Drop-Idle-Repeat process. The IDPS is evaluated
for UDP Floods, attacks on an experimental test-bed. The results
show that UDP Flood attacks can be mitigated with the proposed
IDPS, allowing the system to continue routine operations, and
resume communications when the attack ends.

Index Terms—Internet of Things (IoT), Intrusion Detection
and Mitigation, DoS attacks, Deep Random Neural Network

I. INTRODUCTION

Denial of Service (DoS) and Distributed Denial of Service
(DDoS) attacks are two of the most common and damag-
ing cyber threats to networked systems [1], which disable
networked systems by flooding them with large streams of
requests, causing productivity decline, financial losses, and
reputational damage. In 2022, a total increase of 150% in
such attacks was observed worldwide [2], with 109% more
occurring at the network layer and 72% more occurring at
the application layer [1]. Therefore, this paper develops an
Intrusion Detection and Prevention System (IDPS) that learns
only from normal traffic packets and generalizes its knowledge
to differentiate attack traffic.

Section II describes the test-bed and the traffic generation
we use. Section III presents the proposed IDPS, as well as the
packet drop process when attacks are detected. Section III-A
details the learning algorithm. Section IV evaluates the IDPS
performance when Flood attacks occur, and Section V offers
concluding remarks.

A. Related Work

In [3], an IDPS against port-scanning and DoS attacks is
developed, and an adaptive IDPS utilizing an intelligent agent
for IoT networks is presented in [4]. In [5] a network-level
IDPS that inspects the IoT network activity, drops malicious
packets and blocks their source address is shown, while. In
[6], a neural network-based IDPS to mitigate DoS attacks
in mobile ad hoc networks is presented. Abdulqadder et al.

This research was supported by the European Commission’s H2020 DOSS
Project under Grant Agreement No. 101120270.

[7] use deep reinforcement learning in their multi-layer IDPS
to mitigate flow table overloading attacks in SDNs. In order
to mitigate secure shell (SSH) brute-force and DDoS attacks
in SDNs, Finally, in preliminary work [8], a performance
evaluation of deep learning based attack detection on a small
experimental test-bed shows promising results. While existing
research mostly evaluates their methodologies using publicly
available datasets, specialized test-beds tailored for cyber-
physical systems, industrial control, and IoT environments
have been suggested [9], in particular for industrial control
systems [10], Smart Grid Substation Automation Systems
(SCIDS) [11], and for Supervisory Control and Data Acquisi-
tion (SCADA) systems [12], WAN network security [13], and
DoS attacks on software-defined networks and autonomous
vehicle testbeds [14]. Recently [15] it was also shown that the
QDTP traffic shaping policy can significantly protect an IoT
server from massive Flood attacks.

II. EXPERIMENTAL SETUP

In order to analyse the impact of DoS attacks and the perfor-
mance of the IDPS developed in this paper, we build a Local
Area Network (LAN) environment for experimental testing.
As shown in Figure 1, this environment presently consists
of four IoT devices and a Server; however, it can easily be
expanded to include an arbitrary number of connected devices
with multiple sources of traffic and attacks. Three of the IoT
devices (RPi1, RPi2, and RPi3) generate and transmit normal
– benign – IP packet traffic, while the last device (RPi4)
generates a combination of benign and malicious traffic.

The test-bed comprises four Raspberry Pi 4 Model B Rev
1.2 units that emulate IoT devices. They include a 1.5 GHz
ARM Cortex-A72 quad-core processor, 2GB LPDDR4 - 3200
SDRAM, and run Raspbian GNU/Linux 11 (bullseye). An
Intel Core i7 - 8705G-powered robust Server with 16GB of
RAM, eight 3.10 GHz cores, and a 500GB hard drive, operat-
ing on Linux 5.15.0-60-generic 66-Ubuntu SMP, assumes the
pivotal role of detecting attacks and storing incoming packets.
All devices are interconnected through a central Ethernet hub,
as shown in Figure 1, and communicate via UDP. Attacks are
generated from a public MHDDoS repository [16], containing
56 different types of DoS attacks against the IP transport and
application layer.RPi1, RPi2, and RPi3 generate normal traffic,
and RPi4 generates normal and Flood attack traffic.

RPi1

Server

Ethernet

Hub

RPi2

Ethernet

Ethernet

RPi3

Ethernet

RPi4

Ethe
rnet

Port
5555

Server

IDS Packet Content

ProcessorInput
Buffer

Output
Buffer

Normal
Packets

SNMP

Attack
Packets

Buffer Manager

IDPS

SNMP
Protocol

Fig. 1. The LAN test-bed (above) communicates using Ethernet, with four
Raspberry Pis as sources for both normal and attack traffic, and an Intel 8-
Core Processor as the Server. The description of the Server that supports the
IDPS is shown below.

III. INTRUSION DETECTION AND PREVENTION SYSTEM

The IDPS is resident on the Server, and is composed of
the Intrusion Detection (ID) algorithm and the mitigation
algorithm based on dropping packets. It receives externally
arriving packets via the “Buffer Manager”, which queues the
packets at the entrance of the IDPS. The ID classifies each
packet as “benign” or “malicious” using the ADRNN from
the traffic metrics of batches of M successive packets. Let ti
be the instant when packet i is transmitted from its source,
and bi be its length in bytes. The three metrics ID uses are:

1) The total size of the last I packets up to and including
the latest packet i, and the

2) The average inter-transmission time of those packets,

x1
i =

I−1∑
j=0

b(i−j), and x2
i =

1

I

I−1∑
j=0

[
t(i−j) − t(i−j−1)

]
.

(1)
3) The total number of packets transmitted in the last T

seconds up to the transmission of packet i:

x3
i =

∣∣{j : (ti − T) ≤ tj < ti}
∣∣. (2)

Each metric is then normalized via min-max scaling on the
whole dataset Dtrain

xm
i ← min

[xm
i −minj∈Dtrain x

m
j

maxj∈Dtrain x
m
j −minj∈Dtrain x

m
j

, 1
]
, ∀m. (3)

The ID learning algorithm we use is described in [17]. It uses
the auto-associative Deep Random Neural Network (ADRNN),
an instance of the G-Network [18] that learns only from
normal traffic. For each packet i, the ID computes the decision
yi ∈ {0, 1} based on the input vector xi = [x1

i , x
2
i , x

3
i], and the

Deep Random
Neural Network

based
Auto-Associative

Memory

Postprocessing

Ne
tw

or
k

Tr
af

fic
 M

etr
ics

At
tac

k
De

cis
io

n

Fig. 2. The ID algorithm is composed of the Auto-Associative Deep Random
Neural Network (AADRNN) and the decision making module. It computes
the decision variable yi from the traffic metrics [x1

i , x
2
i , x

3
i].

AADRNN weights that are learned from normal traffic, so that
the ID outputs x̂i = [x̂1

i , x̂
2
i , x̂

3
i]. The decision making module

computes the decision variable yi (attack or non-attack) from
the difference between xi and x̂i.

A. Learning Algorithm for Attack Detection

The AADRNN is a Deep Random Neural Network neuronal
network model [19] whose auto-associative learning provides
accurate attack detection in large scale test cases [20]. It is
organized in L feed-forward layers, each comprised of Nl

clusters of nl identical neurons, l ∈ {1, . . . , L} . The weight
matrices Wl connect the clusters of layers l to l + 1, and the
weights are learned to create an auto-associative memory. The
forward pass of the AADRNN is:

x̂l
i = ζ([x̂l−1

i , 1]Wl−1), 1 ≤ l ≤ L,

x̂i = [x̂L−1
i , 1]WL−1, (4)

where x̂l
i is the output of layer l for packet i, x̂0

i = xi, while
[x̂l

i, 1] indicates that 1 is concatenated to the output of each
layer l as a multiplier of the bias, and ζ(λ) is the DRNN
specific neuron activation function [19].

If nl is large we can simplify the activation function to:

ζ(λ) =
[r(1− p)− pλ+]

[
1±

√
1− 4p(λ+λ−)[λ+−r−λ−λ−]

r(1−p)−pλ+

]
2p(λ+ λ−)

,

(5)
where r is the total firing rate of each neuron, λ+ and λ− are
external excitatory and inhibitory spike rates arriving at the
given cell, and p is the probability that any other neuron in
the network fires when a given neuron fires, representing the
soma-to-soma interactions.

The binary decision variable yi is then: using the threshold
1 > γ > 0:

yi =

{
1, if 1

3

∑3
m=1

∣∣xm
i − x̂m

i

∣∣ ≥ γ

0, otherwise.
(6)

The learning algorithm for the IDPS uses a three-layer
AADRNN (i.e. L = 3), where each layer contains 3 clusters,
whose weights are learned using only normal (benign) traffic.
At system initialization, the first 500 traffic packets received
by the Server are selected to be normal traffic, and during this
cold-start period, the connection weight matrices Wl between

each layer l and l + 1 are calculated using the Fast Iterative
Shrinkage-Thresholding Algorithm (FISTA) [21]:

Wl = arg min
W :W≥ 0

[
||W ||L1

+||[adj(ζ(X̂ train
l−1 WR)),1(|Dtrain|×1)]W − X̂ train

l−1 ||2L2

]
,

where X̂ train
l = {x̂l

i}i∈Dtrain ,

and X̂ train
l is the matrix of outputs of layer l resulting from

the training dataset Dtrain (i.e. the first 500 normal packets),
and 1(|Dtrain|×1) is a column vector of ones, of length |Dtrain|.

Fig. 3. The performance of AADRNN with a parameter setting of γ = 0.55
is assessed and compared to the optimal value of γ = 0.5167, with respect
to Accuracy, True Positive Rate (TPR), and True Negative Rate (TNR) in the
experimental scenario where RPi4 launches a UDP Flood attack lasting for
10 seconds.

B. Mitigation

Based on the binary intrusion decision yi provided by the
ID algorithm for packet i, the IDPS Mitigation and Server
protection system prevents the Server from receiving attack
packets and being overwhelmed by the overload created by
the attack. If an intrusion is detected by the ID, all the packets
in the Server input buffer are simply dropped, and the Server
shuts down its communication with other devices, and runs its
own task processing for some time interval, so that its critical
operations, and its data, remain secure.

Algorithm 1 The IDPS
1: p← 0

2: while |Bin| > 0 do
3: p← p+ 1

4: xp ← CalcMetrics
(
Bin, p

)
5: yp ← ID

(
xp

)
6: if

(
p ≥M

)
and

(∑p
j=(p−M+1) yp ≥

M
2

)
then

7: Bin ← ()

8: back-off
(
τ
)

9: p← 0

10: end if
11: end while

The pseudo-code of the IDPS is given in Algorithm 1,
where it is assumed that the externally arriving packets are
received into the buffer – denoted by Bin – which is updated
by the Buffer Manager in parallel to the operations of the

IDPS. As shown in this algorithm (between Lines 2-11),
IDPS analyzes each packet that is added to Bin. For each
packet indexed by p in Bin, first, the intrusion decision is
obtained: in Line 4, the traffic metrics are calculated via the
CalcMetrics function which operates through (1) - (3). In Line
5, the intrusion decision is computed by the trained ID. Then,
between Lines 6-10, if the majority of the most recent M
packets are classified as an attack, the drop process starts. In
order to eliminate the long processing of the enormous number
of packets sent by the attacker, on Line 7, Bin is emptied.
Subsequently, in line 8, the packet processing system of the
Server, including the Buffer Manager and the IDPS, backs-off
for τ seconds, and the Buffer Manager does not accept any
new packet and drops all incoming packets. At the end of τ
secs, the ID continues with new incoming packets.
M which is chosen so that the ID decisions are accurate,

and we observe from Figure 4 that the number of false positive
decisions is minimized when M = 40.

Fig. 4. Total number of packets classified as an attack with false decision for
different values of M during a UDP Flood attack that lasts 10 seconds

The average inter-transmission time Tn for any normal
packet is greater than the execution time per packet Te of
the ID algorithm. On the other hand, when an attack occurs,
the average packet inter-transmission time Tm of malicious
traffic will typically be smaller than Te.

The second critical parameter τ is the back off period after
a drop decision, and should satisfy τ > Td. Otherwise, if
the attack continues during the decision process between two
successive back-off periods, a large amount of malicious traffic
may flood the input queue and cause system slowdown (or
even shutdown). Accordingly, we write:

τ =
1

β
Td, (7)

where we empirically set β = 0.2 in our experiments. As M =
40, Tn = 0.25 s, and Te = 3.2 ms, the resulting τ = 25.32 s.

IV. PERFORMANCE EVALUATION

Our experiments provided the results summarized in Fig-
ure 5 for a 60-second UDP Flood attack. They reveal that the
proposed IDPS successfully mitigates the attack resulting in a
short packet queue. Although the UDP Flood attack transmits
more than 400, 000 packets, the IDPS mitigates the attack
after 912 packets are received, and prevents the Server from
becoming paralysed. Figure 5 (top) shows that the IDPS takes
successive decisions fast enough that the input queue length
reaches up to 39 packets between two decisions, and Figure 5

(middle) shows that these decisions keep packet delay under
1 second for the packets that are processed after the 60 sec.
attack ends. Figure 5 also reveals that the IDPS has made a
false positive decision just after the attack ends, resulting in an
extra τ = 25.32 s spent in the idle state, and causing additional
packet loss. Figure 5 (bottom), shows that the cumulative
packet loss during a total of three idle states reaches only
up to 297 packets.

Fig. 5. Queue length (top), packet delay (middle), and packet loss (bottom),
measurements on the Server utilizing the proposed IDPS during the 60-second
UDP Flood attack; the decision to perform mitigation via the DIR process
results in short packet queue length, avoiding Server paralysis

V. CONCLUSIONS

DoS and DDoS Floods are common attacks against IoT
networks, that overwhelm system resources, causing delayed,
lost, or inaccurate data and service interruptions. In this paper,
we have described an IDPS that detects and mitigates such
attacks and secures the overall IoT system. IDPS is comprised
of a Deep Random Neural Network (DRNN) [19] together
with an algorithm that drops all the packets in the system’s
input buffer if an intrusion is detected by DRNN among the
most recent M packets, where M is set to 40. Experiments
on a system test-bed show that IDPS successfully detects and
mitigates Flood attacks.

REFERENCES

[1] ExtraHop, Denial of Service Attack: Definition, Examples, and Preven-
tion, accessed: 2023-03-09 (January 2022).
URL https://www.extrahop.com/resources/attacks/dos/

[2] S. Staff, Organizations fought an average of 29.3 attacks daily in late
2022 (Feb 2023).
URL https://www.securitymagazine.com/articles/
98958-organizations-fought-an-average-of-293-attacks-daily-in-late-2022

[3] C. Birkinshaw, E. Rouka, V. G. Vassilakis, Implementing an intrusion
detection and prevention system using software-defined networking:
Defending against port-scanning and denial-of-service attacks, Journal
of Network and Computer Applications 136 (2019) 71–85.

[4] S. T. Bakhsh, S. Alghamdi, R. A. Alsemmeari, S. R. Hassan, An
adaptive intrusion detection and prevention system for internet of things,
International Journal of Distributed Sensor Networks 15 (11) (2019)
1550147719888109.

[5] A. Kumar, K. Abhishek, M. R. Ghalib, A. Shankar, X. Cheng, Intru-
sion detection and prevention system for an iot environment, Digital
Communications and Networks 8 (4) (2022) 540–551.

[6] M. Islabudeen, M. Kavitha Devi, A smart approach for intrusion
detection and prevention system in mobile ad hoc networks against
security attacks, Wireless Personal Communications 112 (2020) 193–
224.

[7] I. H. Abdulqadder, S. Zhou, D. Zou, I. T. Aziz, S. M. A. Akber, Multi-
layered intrusion detection and prevention in the sdn/nfv enabled cloud
of 5g networks using ai-based defense mechanisms, Computer Networks
179 (2020) 107364.

[8] M. Nasereddin, M. Nakıp, E. Gelenbe, Measurement based evaluation
and mitigation of flood attacks on a lan test-bed, in: 2023 IEEE 48th
Conference on Local Computer Networks (LCN), IEEE, 2023, pp. 1–4.

[9] O. A. Waraga, M. Bettayeb, Q. Nasir, M. A. Talib, Design and
implementation of automated iot security testbed, Computers & Security
88 (2020) 101648.

[10] M. Kaouk, F.-X. Morgand, J.-M. Flaus, A testbed for cybersecurity
assessment of industrial and iot-based control systems, in: Lambda Mu
2018-21è Congrès de Maı̂trise des Risques et Sûreté de Fonctionnement,
2018.

[11] M. Annor-Asante, B. Pranggono, Development of smart grid testbed
with low-cost hardware and software for cybersecurity research and
education, Wireless Personal Communications 101 (2018) 1357–1377.

[12] B. Reutimann, I. Ray, Simulating measurement attacks in a scada system
testbed, in: Critical Infrastructure Protection XV: 15th IFIP WG 11.10
International Conference, ICCIP 2021, Virtual Event, March 15–16,
2021, Revised Selected Papers 15, Springer, 2022, pp. 135–153.

[13] S.-U. Park, S.-M. Hwang, Test bed construction for apt attack detection,
International Journal of Control and Automation 11 (4) (2018) 175–186.

[14] P. V. Sontakke, N. B. Chopade, Impact and analysis of denial-of-service
attack on an autonomous vehicle test bed setup, in: Proceedings of
Third International Conference on Intelligent Computing, Information
and Control Systems: ICICCS 2021, Springer, 2022, pp. 221–236.

[15] E. Gelenbe, M. Nasereddin, Protecting iot servers against flood attacks
with the quasi deterministic transmission policy (best paper award,
ieee trustcom 2023), in: IEEE 22nd International Conference on Trust,
Security and Privacy Computing and Communications (TrustCom),
Exeter, UK, 2024. doi:10.1109/TrustCom60117.
URL https://arxiv.org/pdf/2306.11007.pdf

[16] MHDDoS - DDoS Attack Script With 56 Methods, Online, accessed:
2023-02-22 (May 2022).
URL https://github.com/MatrixTM/MHDDoS

[17] M. Nakıp, E. Gelenbe, Mirai botnet attack detection with auto-
associative dense random neural network, in: 2021 IEEE Global Comm.
Conference (GLOBECOM), IEEE, 2021, pp. 01–06.

[18] E. Gelenbe, G-networks with instantaneous customer movement, Journal
of Applied Probability 30 (3) (1993) 742–748.

[19] E. Gelenbe, Y. Yin, Deep learning with random neural networks, in: 2016
International Joint Conference on Neural Networks (IJCNN), IEEE,
2016, pp. 1633–1638.

[20] E. Gelenbe, M. Nakıp, Traffic based sequential learning during botnet
attacks to identify compromised iot devices, IEEE Access 10 (2022)
126536–126549.

[21] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm
for linear inverse problems, SIAM journal on imaging sciences 2 (1)
(2009) 183–202.

