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Abstract—There is a growing awareness of the need to reduce
carbon emissions from the operation of mobile networks. The
massive deployment of ultra-dense 5G and IoT networks will
significantly increase energy demand and put the electricity
grid under stress while also driving up operational costs. In
this paper, we model the energy performance of an off-grid
sustainable green cellular base station site which consists of
a solar power system, Battery Energy Storage (BESS) and
Hydrogen Energy Storage (HESS) system, and various types of
macrocells, microcells, picocells, or femtocells, with broadband
optical or microwave transmission systems, and other electrical
and electronic systems (air conditioner, power converters, and
controllers. We propose diffusion-based models of the charging
and discharging processes of the energy storage systems, and
obtain the probability of charging them to their full capacities
during the day and completely discharging them at the end of
each day. We also investigate the impact of design parameters
such as the mean charging rate and the mean discharging rate
on the probability densities of charging BESS and HESS to their
full capacities during the day and of completely discharging them
before the end of each night period.

Index Terms—Diffusion process, Energy Performance, sustain-
ability, green energy, cellular base stations, battery energy storage
systems (BESS), hydrogen energy storage systems (HESS).

I. INTRODUCTION

The exponential demand for data causes mobile network
operators to constantly seek ways to increase network capacity
while keeping investment and operating costs at acceptable
levels. With the growing awareness about the need to reduce
carbon emissions of mobile networks [1], [2], network opera-
tors put efforts to increase network capacity while minimizing
energy consumption, cost and security [3]. Likewise, the Euro-
pean Union and other agencies have invested in many research
projects in this area [4]. The massive deployment of ultra-
dense 5G and IoT networks also significantly increases energy
demand and drives up the network operating costs. Thus,
renewable energy sources may supply small cell networks in
the 5G infrastructure and IoT infrastructure, in an attempt to
reduce energy costs and increase environmental sustainability
[5], [6].

The authors gratefully acknowledge the partial support for this research
by the European Commission’s H2020 Program through the H2020 IoTAC
Research and Innovation Action, under Grant Agreement No. 952684.

Mobile communications have contributed enormously to the
social and economic development of every society worldwide,
including the less developed or the remote parts of the world
[7]. Despite the huge growth and potential of the mobile
communication industry in developing countries (especially
those in the Sub-Saharan African region), there re major
challenges in powering existing networks (both in on-grid
and off-grid areas) because of unreliable power supplies and
heavy reliance on expensive diesel generators [8]. Electricity
supply in sub-Saharan Africa is subject to frequent outages
due to insufficient energy generation and poor transmission
distribution infrastructure [9]. Also, many rural communities
in these regions aren not yet connected to the grid. Thus,
Information and Communication (ICT) infrastructures (e.g.,
base stations, network access points, transmission systems)
deployed in off-grid environments can be reliably powered
using energy harvesting and storage infrastructures.

There is increasing use of renewable energy to power
base station sites to reduce carbon footprint and operational
expenditures (OPEX) [10]. With the recent increase in energy
prices, energy cost has become the dominating operational
cost for mobile network operators [11]. Although the base sta-
tions of next-generation mobile networks (e.g., 5G/6G mobile
networks) are designed to be energy efficient, the dense and
large-scale deployment of these base stations will increase the
energy demands of mobile networks. Therefore, increasing the
energy mix of mobile networks to include renewable energy
sources and energy storage systems could reduce the carbon
emission and operation of mobile networks.

A major drawback of relying on renewable energy to
directly supply base station sites is its intermittent nature,
resulting in erratic and unpredictable energy production pat-
terns [12], [13]. Energy storage systems (mostly rechargeable
batteries) are often used to store excess energy, which will be
used to supply the site when the renewable energy sources
are unable to generate sufficient energy to meet the energy
needs of the site, e.g. during the night in the case of solar
plants. Deploying green energy infrastructure (e.g., photo-
voltaic panels and energy storage systems) requires significant
Capital Expenditure (CAPEX). However, lower Operational
Expenditure (OPEX) compensates for it in the medium term,



as less expensive fossil fuel energy sources are used [13].
In most off-grid renewable-based station sites, diesel gen-

erators are still used as backup energy sources to supply
the site in case there is a failure in the renewable energy
system (energy generation and storage systems) to generate a
sufficient amount of energy to supply the site or when there is a
technical failure. Diesel generators are becoming less suitable
as a backup power supply system for base station sites because
of challenges such as reliability, availability, high operational
and maintenance costs, and negative environmental impact
[14] and the limited shelf life of diesel fuel. The seasonal
variation of renewable energy sources has motivated long-
term energy storage systems like hydrogen to store energy
during seasons with favourable weather conditions for certain
renewable energy sources [14]. For example, solar energy can
be harvested during spring and summer to be used during
winter when there is minimal solar radiation to generate
sufficient energy. Therefore, The battery is used for short-term
storage to compensate for the intermittent nature of renewable
sources. The hydrogen energy storage system can replace the
diesel backup.

The interplay of multiple factors influencing energy gener-
ation and consumption implies that deterministic models are
insufficient for the energy modelling and dimensioning off-
grid green sustainable based station sites. In [15], [16] discrete
energy, computation and communication units in continuous
time within a Markovian framework are introduced to repre-
sent the “energy packet model” for ICT energy consumption,
and various stochastic models have been applied to model the
changes in the energy content of the battery energy storage
of base stations [10], [12], [17], [18]. In [7] an energy packet
model is developed to analyse battery storage systems to store
energy in green base station sites supplied by renewable energy
sources.

Recent Markovian models of energy storage systems (ESS)
are based on the quantisation of energy as energy packets [19]–
[24]. With data about the number of energy units delivered
to the ESS within a given time interval, the mean number
of energy units delivered to the ESS can be obtained, and
stochastic models are then used to model the changes in the
energy content of the ESS [25], [26]. One of the limitations of
Markovian models is the assumption that the time required to
deliver a unit of energy to the ESS is exponentially distributed,
which may deviate from reality. Thus continuous state-space
modelling methods such as fluid approximations, and the
diffusion approximation for energy harvesting introduced in
[27], were used to model the changes in the energy content
of ESSs, and to estimate their relevant performance metrics
[28]–[30].

A. Main contribution of the present paper

Most of the work that models solar-powered based stations
the sites, does not model the day and night periods separately.
The authors in [12] modelled a solar-powered base station site
considering a time step granularity of 24 hours.

Fig. 1. A simple structure of an off-grid sustainable green base station site.

In this paper, we also model a green sustainable base station
site using a time step granularity of 24 hours, but the charging
process of the energy storage system comprised of a Battery
Energy Storage System (BESS) and Hydrogen Energy Storage
System (HESS) during the day, and the discharging process
during the night, are explicitly reresented. We obtain the
distribution of the energy content of BESS and HESS during
the day and night, and derive the probability of charging BESS
to its full capacity so that the energy harvested when BESS is
full is then stored in HESS for backup or long-term storage.
Thus it can be used during the worst season when insufficient
energy is harvested to meet the energy demand of the base
station site.

We aderive the probability of completely discharging the
BESS or HESS during the night before the charging process
starts, and also investigate the influence of mean charging
and discharging rates on the probability of charging the
ESSs to their full capacity and the probability of completely
discharging them during the night.

II. THE ENERGY STORAGE SYSTEMS BESS AND HESS

The system we consider consits of a Base Station, PV Plant,
Battery Energy Storage System (BESS), and Hydrogen Energy
Storage System (HESS), as shown in Fig. 1. It is modeled over
successive day and night periods of constant duration Td and
Tn; Td + Tn = 24 hours.

During the day, the solar radiation is strong enough to
continuously generate sufficient energy to satisfy the demand
of the base station and store any excess in the battery energy
storage system (BESS). If the BESS is full, the energy
harvested is stored in HESS. During the night, energy is not
produced, and BESS supplies the base station, and after it
is completely depleted, the base station site is supplied by
HESS. When HESS is empty, the entire base station site is
shut down, degrading the performance of the cellular network
and inflicting financial losses on the network operator.

Our model is based on diffusion approximation, a method
introduced in [31]–[34] to evaluate computer systems. Here,
dynamic changes in the energy content of BESS and HESS are



represented by two interacting diffusion processes. The unre-
stricted diffusion process has the probability density function:

∂f(x, t;x0)

∂t
=
α

2

∂2f(x, t;x0)

∂x2
− β ∂f(x, t;x0)

∂x
, (1)

where β and α refer to the mean and variation of the process,
and x0 is its initial value. During the day, we model the
charging process by a diffusion process limited by absorbing
barriers at x = B1 (in the case of BESS) and x = B2 (in the
case of HESS), respectively; when the process comes to such
a barrier, it stays there; the equation (1) is supplemented by a
condition for the barrier at x = B

lim
x→B

f(x, t;x0) = 0. (2)

Diffusion processes with one absorbing barrier was studied, in
[35] and, if a process starts at x = 0 and ends at the barrier
at x = x0, (β > 0), the solution is given by Eq. (3)

f(x, t; 0) =
1√

2Παt

[
exp(− (x− βt)2

2αt
)

− exp(
2βx0
α
− (x− 2x0 − βt)2

2αt
)

]
. (3)

In case when the barrier is at x = B, and the initial condition
is given by a function ψ(ξ) defined on the interval ξ ∈ [0.B)
the solution for β > 0, corresponding to battery charging,
becomes

f(x, t;ψ(ξ)) =

∫ B

0

f(x− ξ, t; 0)ψ(ξ)dξ. (4)

The density of the first passage time of a diffusion process
that starts from the point x = 0 and ends at x = x0 is

γ0→x0
(t) = lim

x→x0

[
α

2

∂2f(x, t; 0)

∂x2
− β ∂f(x, t; 0)

∂x
] =

=
x0√

2Παt3
e−

(x0−βt)
2

2αt . (5)

Therefore, in our case, the density of the first passage time of
a diffusion process that starts from the point x = ξ given by a
density function ψ(ξ) and is absorbed at the barrier at x = B
is

γψ→B(t) =

∫ B

0

B − ξ√
2Παt3

e−
(B−ξ−βt)2

2αt ψ(ξ)dξ. (6)

Similarly, if a process starts at x = x0 and ends at the barrier
at x = 0, (with β < 0, corresponding to discharging), the
solution is given by Eq. (7)

f(x, t;x0) =
e
β
α (x−x0)− β

2

2α t

√
2παt

[
e−

(x−x0)2

2αt − e−
(x+x0)2

2αt

]
. (7)

In the case when the initial condition is given by a function
ψ(ξ) given on the interval ξ ∈ [0.B) the solution becomes

f(x, t;ψ(ξ)) =

∫ B

0

f(x, t; ξ)ψ(ξ)dξ. (8)

The density of the first passage time of a diffusion process
that starts from the point x = x0 and ends at x = 0 is

γx0→0(t) = lim
x→0

[
α

2

∂2f(x, t;x0)

∂x2
− β ∂f(x, t;x0)

∂x
] =

=
x0√

2Παt3
e−

(x0+βt)2

2αt . (9)

The density of the first passage time of a diffusion process
that starts from the point x = ξ (for ξ ∈ [0, B]) given by a
density function ψ(ξ) and is absorbed at the barrier at x = 0
is

γψ→0(t) =

∫ B

0

ξ√
2Παt3

e−
(ξ+βt)2

2αt ψ(ξ)dξ. (10)

The charging process is modelled by the diffusion process
in equations (3) and (4), while the discharging process is
modelled by the diffusion process in equations (7) and (8).
Equation (6) represents the probability density of the charging
times, and equation (10) represents the probability density of
the discharging times.

During the day, the PV Plant produces energy. We see this
process in a discrete way: the quanta (packets) of energy
are produced and the time to produce one is random with
mean 1/λ′, and variance σ

′2
A . That means that the number of

energy quanta produced during a unit of time has the normal
distribution with mean λ′ and variance λ

′3σ
′2
A .

The base station consumes a quantum of energy by the
time having a distribution with mean 1/µ and variance σ2

B .
We assume that during the day production is greater than
consumption, and the rest of the energy is transferred to
the battery BESS. The mean number of the energy packets
transferred to BESS in a time unit has normal distribution
is λ = λ′ − µ, and the variance of the number is given by
λ3σ2

A = λ
′3σ
′2
A + µ3σ2

B . We will also use squared variation
coefficients C2

A = σ2
Aλ

2, C2
B = σ2

Bµ
2.

BESS has the effective capacity B1; when it is fully charged,
the energy quanta are stored in HESS having effective capacity
B2. When both BESS and HESS are full, the rest of the energy
surplus is lost. At night, first the BESS feeds the base station
and when it is completely discharged, HESS takes its role.
When HESS becomes empty, the Base Station site is shut
down.

Let us represent the energy stored in BESS and HESS by
two diffusion process X1(t) on the interval [0, B1] and X2(t)
on [0, B2]. The intervals are limited by absorbing barriers; the
process ends when it touches a barrier.

The interactions between the processes are expressed by the
intensities with which they enter the barriers. During a day,
X2(t) starts its movement with the intensity with which X1(t)
enters the barrier at B1. At night, X2(t) starts with the same
intensity as X1(t) ends in the barrier at x = 0.

The process depends on its initial conditions. Except for
the first cycle, these conditions are determined by the state of
the processes at the end of the previous period. Therefore, we
consider the processes in consecutive cycles, each composed
of day and night, until their behaviour stabilises.



Let us introduce the following notation:
f
d(i+1)
1 (x, t; f

n(i)
1 (x, Tn)) is the density of X1(t) during day

at cycle (i + 1); similarily f
n(i+1)
1 (x, t; f

d(i)
1 (x, Td)), is its

density during night, and
f
d(i+1)
2 (x, t; f

d(i)
2 (x, Tn)), f

n(i+1)
2 (x, t; f

n(i)
2 (x, Td)) refere

to the process X2(t) during day and night.
During a day, both processes have parameters βd = λ− µ,

αd = λ3σ2
A + µ3σ2

B and during night βn = −µ, αn = µ3σ2
B .

Consider the day period number i+1. During it, first BESS
is filled. The density of the process is defined by Eqs. (3), (4):

f
d(i+1)
1 (x, t; f

n(i)
1 (x, Tn)) =

=

∫ B1

0

1√
2Παdt

[
exp(− (x− ξ − βdt)2

2αdt
)

− exp(
2βdB1

αd
− (x− ξ − 2B1 − βdt)2

2αdt
)

]
f
n(i)
1 (ξ, Tn)dξ. (11)

BESS is fully charged when the process attains the absorbing
barrier at x = B1. This time corresponds to the first passage
time from points given by the initial distribution fn(i)1 (x, Tn)
to B1; its density is

γ
d(i+1)

1,f
n(i)
1 (x,Tn)→B1

(t) =

∫ B1

0

γ
d(i+1)
1,ξ→B1

(t)f
n(i)
1 (ξ, Tn)dξ. (12)

The flow entering the barrier is accumulated there and repre-
sents the probability that BESS is full

p
d(i+1)
B1

(t) =

∫ t

0

γ
d(i+1)

1,f
n(i)
1 (x,Tn)→B1

(τ)dτ (13)

The process X2(t) is initiated with the intensity
γ
d(i+1)

1,f
n(i)
1 (x,Tn)→B1

(t) given by Eq. (12), therefore its density
at time t is composed of pdfs of all processes started at time
τ < t:

f
d(i+1)
2 (x, t; f

n(i)
2 (x, Tn)) = (14)

=

∫ t

0

f
d(i+1)
2 (x, t− τ ; f

n(i)
2 (x, Tn))γ

d(i+1)

1,f
n(i)
1 (x,Tn)→B1

(τ)dτ.

In a similar way, the density of the first passage time to B2

is obtained as

γ
d(i+1)

2,f
n(i)
2 (x,Tn)→B2

(t) =

=

∫ t

0

∫ B2

0

γ
d(i+1)
2,ξ→B2

(t− τ) f
n(i)
2 (ξ, Tn)dξγ

d(i+1)

1,f
n(i)
1 (x,Tn)→B1

(τ)dτ

(15)

At night, first BESS is being discharged. The initial condition
of the process is defined by the distribution fd(i+1)

1 (x, Td) at
the end of the day. We compute fn(i+1)

1 (x, t; f
d(i+1)
1 (x, Td))

in the similar way as at day period, using Eqs. (7), (8) and
taking into account the night diffusion parameters βn, αn (time
is set to zero)

f
n(i+1)
1 (x, t; f

d(i)
1 (x, Td)) =

=

∫ B1

0

e
β
α (x−ξ)− β

2

2α t

√
2παt

[
e−

(x−ξ)2
2αt − e−

(x+ξ)2

2αt

]
f
d(i)
1 (ξ, Td)dξ.

(16)

Then we determine the density of the distribution of the first
passage time to x = 0, after which BESS is completely
discharged

γ
n(i+1)

1,f
d(i+1)
1 (x,Td)→0

(t) =

∫ B1

0

γ
n(i+1)
1,ξ→0 (t)f

d(i+1)
1 (ξ, Td)dξ,

The same density is also the rate at which HESS is activated.
Similarly to the day period, the pdf of the energy of HESS
during the night is

f
n(i+1)
2 (x, t; f

d(i+1)
2 (x, Td)) = (17)

=

∫ t

0

f
n(i+1)
2 (x, t− τ ; f

d(i+1)
2 (x, Td)) γ

d(i+1)

1,f
n(i)
1 (x,Tn)→0

(τ)dτ.

Similarly, the density of the first passage time to B2 is obtained
as

γ
d(i+1)

2,f
d(i)
2 (x,Td)→B2

(t) =

∫ t

0

∫ B2

0

γ
d(i+1)
2,ξ→B2

(t− τ) f
d(i)
2 (ξ, Td)dξ

γ
d(i+1)

1,f
d(i)
1 (x,Td)→B1

(τ)dτ (18)

The probabilities p
n(i+1)
1,0 (t), p

n(i+1)
2,0 (t) denote the time-

dependent probabilities that BESS and HESS are empty at
night

p
n(i+1)
1,0 (t) =

∫ t

0

γ
n(i+1)

1,f
d(i+1)
1 (x,Td)→0

(τ)dτ, (19)

p
n(i+1)
2,0 (t) =

∫ t

0

γ
n(i+1)

2,f
d(i+1)
2 (x,Td)→0

(τ)dτ. (20)

We assume any initial conditions for the first cycle (i = 1)
and iterate to reach the point of convergence, where

f
n(i+1)
1 (x, t; f

d(i)
1 (x, Td)) ≈ fn(i)1 (x, t; f

d(i−1)
1 (x, Td).

Based on these fixed point distributions, we may compute the
time distribution after which BESS and HESS become empty
at night, complete at day, probabilities that they are empty or
full as a function of time, etc.

III. NUMERICAL EXAMPLES

We present numerical results that provide insights into the
energy performance of the base station site, specifically the
outage probability of the site, which is the probability that the
energy stored in both the battery energy storage system and
the hydrogen energy storage system is completely depleted.
We assume that B1 = 50 KWh and B2 = 50 KWh. The initial
conditions for the beginning of the first day are x0 = 25 KWh
for BESS and x0 = 0 for HESS.

Fig. 2 illustrates the probability density of the charging
process. It gives the distribution of the energy content of BESS
at the end of the day in each 24-hour cycle i. It can be seen
that after i = 7 day cycles, the probability density functions
converge. The pdf for the discharging process shown in Fig.
3 equally converges after i = 7 day cycles.

Figs. 4 and 5 show the probability density of the energy
content of BESS at the end of the day and the end of the
night for i = 20 day cycle. The density at the end of the
day is shifted to the right because, at the end of the day,
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Fig. 2. The convergence of the probability densities, fd(i)1 (x, Td, ψ) of the
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Fig. 3. The convergence of the probability densities, fn(i)
1 (x, Tn, ψ) of the

energy content of BESS at the end of each night cycle i = 1, . . . 7 for µ = 1
KW, λ = 2 KW, C2

A = C2
B = 1, Td = Tn = 12 hours.
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Fig. 4. The probability densities, fd(20)1 (x, Td, ψ), f
n(20)
1 (x, Tn, ψ) of the

energy content of BESS at the end of the day and night of i = 20 day cycle
for µ = 1 KW, λ = 2 KW, C2

A = C2
B = 1, Td = Tn = 12 hours.
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Fig. 5. The probability densities, fd(20)1 (x, Td, ψ), f
n(20)
1 (x, Tn, ψ) of the

energy content of BESS at the end of the day and night of i = 20 day cycle
for µ = 1 KW, λ = 2 KW, C2

A = C2
B = 1, Td = 8 hours and Tn = 16

hours.
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Fig. 6. The probability densities, fd(1)1 (x, Td, ψ), f
d(1)
2 (x, Td, ψ) of the

energy content of BESS and HESS at the end of the day for the i = 1 day
cycle for µ = 1 λ = 2 KW, C2

A = C2
B = 1, Td = 8 hours and Tn = 16

hours.

the probability that BESS is charged to its full capacity is
high. In contrast, the density of the energy content of BESS
at the end of the night is shifted to the left because, at night,
BESS is discharged to supply the base station site, reducing
its energy content. In Fig. 4, we consider that day and night
hours are equal, that is, Td = Tn = 12 hours. For the given
site parameter configuration, the probability that BESS will
be completely discharged is low. However, in Fig. 5, Td = 8
hours and Tn = 16 hours (we have shorter days and longer
nights like during winter), the probability of charging BESS
to its full capacity is low and the probability that BESS will
be completely discharged before the charging process begins
at the start of the next day increases. In this case, the energy
stored in HESS will be used as a backup if BESS is discharged
entirely.

Figs. 6–10 show the probability densities of the energy
content of BESS and HESS at the end of the day for the
i = 1 day cycle. Figs. 6, 7, and 10 show the influence of the
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2 (x, Td, ψ) of the

energy content of BESS and HESS at the end of the day for the i = 1 day
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Fig. 9. The probability densities fd(1)1 (x, Td, ψ), f
d(1)
2 (x, Td, ψ) of the

energy content of BESS and HESS at the end of the day for the i = 1 day
cycle for µ = 1 KW, λ = 4 KW, C2

A = 2, C2
B = 1, Td = Tn = 12 hours.
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Fig. 10. The probability densities, fd(1)1 (x, Td, ψ), f
d(1)
2 (x, Td, ψ) of the

energy content of BESS and HESS at the end of the day for the i = 1 day
cycle for µ = 1 λ = 2 KW, C2

A = C2
B = 1, Td = 16 hours and Tn = 8

hours.
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Fig. 11. The influence of mean charging rate, λ on the probability of charging
BESS during the day, pd(7)B1

(t) for, i = 7, µ = 1 KW, C2
A = C2

B = 1,
Td = Tn = 12 hours.

number of hours of day and night on the probability densities
of the energy content of BESS and HESS at the end of the day
for µ = 1 λ = 2 KW, C2

A = C2
B = 1. It can be seen that as

the number of hours of day increases, more energy is stored
in BESS. When BESS is full, additional energy generated is
stored in HESS (illustrated by the right shift of the densities
as Td increases). Figs 8 and 9 show the influence of the
mean rate at which energy is delivered to the energy storage
system (BESS and BESS), λ on the probability densities of
the energy content at BESS and HESS at the end of the day
for µ = 1 KW, C2

A = 2, C2
B = 1, Td = Tn = 12 hours. It

can be seen that the densities for λ = 4 (Fig. 9) are shifted
to the right (with a higher probability of charging BESS to its
full capacity and storing more energy in BESS to be used as
backup or during the season when solar energy generation is
poor) compared to the densities for λ = 3 KW (Fig. 8).

Figs. 11 and 12 show the influence of λ on the probability
of charging BESS to its full capacities during the day and of
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Fig. 12. The influence of mean charging rate λ on the probability of
discharging BESS during the night, pn(7)
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Fig. 13. The influence of mean discharging rate µ on the probability of
discharging BESS during the night, pn(7)

1,0 (t) for i = 7, λ = 2 KW, C2
A =

C2
B = 1, Td = Tn = 12 hours.

completely discharging it during the night, respectively, for
µ = 1 KW, C2

A = C2
B = 1, Td = Tn = 12 hours. As λ

increases, the probability of charging BESS to its full capacity
increases and the probability that it will be discharged entirely
during the night decreases.

Fig. 13 shows the influence of the energy demand of the
base station site, µ, on the probability of completely discharg-
ing BESS during the night. As µ increases, the probability that
BESS will be discharged entirely before the next charging
cycle begins increases. Therefore, if the energy demand of
the base station site increases (may be due to deploying
more microcells, picocells, or femtocells on the site or due to
increased demand for cooling), the energy generation capacity
should also be increased proportionately.

Fig. 14 shows the influence of mean charging rate λ on the
probability of discharging HESS during the night for µ = 1
KW, C2

A = C2
B = 1, Td = Tn = 12 hours. As λ increases,

the probability of discharging HESS decreases because with a
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Fig. 14. The influence of mean charging rate λ on the probability of
discharging HESS during the first night, pn(1)

2,0 (t) for, i = 1 µ = 1 KW,
C2

A = C2
B = 1, Td = Tn = 12 hours.
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Fig. 15. The influence of mean discharging rate µ on the probability of
discharging HESS during the first night, pn(1)

2,0 (t) for, i = 1 λ = 2 KW,
C2

A = C2
B = 1, Td = Tn = 12 hours.

higher energy delivery rate to BESS, it will quickly charge to
its full capacity, and more energy will be stored in HESS,
decreasing the probability of discharging HESS when the
energy source is absent. Fig. 15 shows the influence of mean
discharging rate µ on the probability of discharging HESS
during the night for, λ = 2 KW, C2

A = C2
B = 1, Td = Tn = 12

hours. As µ increases, the probability of discharging HESS
when the source is absent (at night) increases as more energy
is required to supply the base station site, quickly draining
BESS and drawing more energy from HESS.

The depletion probabilities are for the chosen parameters
high. In subsequent cycles, the energy stored in HESS will
be increased, playing the role of real backup for BESS. The
volume of HESS should also be increased.

IV. CONCLUSIONS

We have modelled the energy performance of an off-grid
sustainable green cellular base station which includes a solar



power plant, energy storage systems (BESS and HESS), for
various types of base stations, macrocells, microcells, pic-
ocells, or femtocells, with broadband optical or microwave
transmission systems, and other electrical and electronic sys-
tems (air conditioner, power converters, and controllers. A
diffusion process with absorbing barriers represents the energy
at each storage system. This approach enabled us to include the
means and variances of energy production and consumption
processes, leading to greater realsim than Markovian models.
The proposed coordination of diffusion processes responsible
for BESS and HESS with the diffusion first passage time
density may be extended to more complex systems of batteries,
and their charging and discharging patterns.

We modelled the charging and discharging processes of
the energy storage systems to obtain the distribution of their
energy content at every moment, particularly at the end of each
day and night, and the probability of charging the BESS and
HESS to their full capacities during the day and completely
discharging them at the end of each night. We also investigated
the impact of the design parameters’ impact, such as the mean
charging and discharging rates, on these probabilities. The
proposed models can be applied to size the energy generation,
storage, and consumption requirements for off-grid sustainable
green cellular base stations.
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