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a b s t r a c t

The most common type of liver cancer is hepatocellular carcinoma (HCC), which begins in

hepatocytes. The HCC, like most types of cancer, does not show symptoms in the early

stages and hence it is difficult to detect at this stage. The symptoms begin to appear in the

advanced stages of the disease due to the unlimited growth of cancer cells. So, early

detection can help to get timely treatment and reduce the mortality rate. In this paper,

we proposes a novel machine learning model using seven classifiers such as K-nearest

neighbor (KNN), random forest, Naïve Bayes, and other four classifiers combined to form

stacking learning (ensemble) method with genetic optimization helping to select the

features for each classifier to obtain highest HCC detection accuracy. In addition to preparing

the data and make it suitable for further processing, we performed the normalization

techniques. We have used KNN algorithm to fill in the missing values. We trained and

evaluated our developed algorithm using 165 HCC patients collected from Coimbra's Hospi-

tal and University Centre (CHUC) using stratified cross-validation techniques. There are total

of 49 clinically significant features in this dataset, which are divided into two groups such as

quantitative and qualitative groups. Our proposed algorithm has achieved the highest

accuracy and F1-score of 0.9030 and 0.8857, respectively. The developed model is ready
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to be tested with huge database and can be employed in cancer screening laboratories to aid

the clinicians to make an accurate diagnosis.

© 2020 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish

Academy of Sciences. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Hepatocellular carcinoma (HCC) is the most common type of
liver cancer. It happens in people with chronic liver diseases,
such as hepatitis C fibrosis caused by hepatitis B or C [1]. In
addition, few types of liver cancers are not detected early due
to the absence of symptoms in affected patients [2]. The early
detection of liver cancer may reduce the treatment costs and
help to save life [3].

Recently, artificial intelligence (AI) methods have helped to
reduce the possible errors in the medical field and assisted to
make accurate early detection of breast cancer [4,5], virus
diseases [6,7], Alzheimer's disease [8,9] and cardiovascular
diseases [10–17]. These AI-based techniques help to alleviate
the workload of clinicians and make an accurate fast
diagnosis. Hence, many researchers have proposed comput-
er-aided diagnosis (CAD) system to detect HCC accurately
[18–28].

However, the limitations of these CAD systems are as
follows:

� Used smaller datasets and obtained lower performances.
� Employed fewer number of features.
� Unable to deal with the inter-patient variability.
� Requires higher execution time.

In order to overcome the above-mentioned limitations, we
have introduced an ensemble learning method. Nowadays,
several studies have used ensemble learning techniques in
medical field to overcome the problems of conventional
machine learning methods [29–33]. However, to the best of
our knowledge, this is the first study to propose an ensemble
classifier combining with genetic optimization for the detec-
tion of HCC.

The main contributions of this work are given below:

� Design a new machine learning model using conventional
classifiers in combination as stacking learning (ensemble
method) with genetic optimization of parameters and select
the features in each classifier.

� K-nearest neighbor (KNN) algorithm is used to fill in the
missing data to obtain higher data quality.

� This model is more accurate in detecting HCC compared to
the previous models presented in the literature [18–24,45,46].
The results obtained shows that the proposed model is able
to detect HCC with highest accuracy.

The remainder of this paper is organized as follows: Section
2 outlines some of the related work. Section 3 describes the
proposed method with the data used in our method. Section 4
explains our experiments on the selected database. The results
are shown and discussed in Section 5. Conclusion and future
works are delineated briefly in Section 6.

2. Literature review

Many researchers have proposed various methods to detect
and diagnose the HCC using machine learning methods. We
have briefly explained them below.

� Ksiazek et al. [18], employed support vector machine (SVM)
combined with two-level genetic optimizer to predict the
HCC disease. The authors worked on 165 records from CHUC
database. Their method obtained an accuracy of 88.49% to
detect the HCC.

� Nayak et al. [19], performed a multi-phase analysis of
computed tomography (CT) images to extract twenty-four
features and used SVM for HCC detection. The authors
worked on 40 CT images from contrast-enhanced CT dataset
and reported an accuracy of 80% for detecting HCC.

� Brehar et al. [20], presented a method for HCC recognition by
employing textural features coupled with adaptive boosted
classifiers and reported an accuracy of 72% for HCC
recognition.

� Santos et al. [21], worked on the CHUC database consisting of
165 patients. They used neural networks (NN) and logistic
regression (LR) classifiers for classification and obtained an
accuracy of 75.2% and 73% for NN and LR, respectively.

� Sawhney et al. [22], developed a feature selection method for
cancer diagnosis using firefly algorithm (FFA) with random
forest classifier. They reported an accuracy of 83.5% using
same CHUC database.

� Aonpong et al. [24], employed least absolute shrinkage and
selection operator (LASSO) regression for features selection for
early recurrence prediction of HCC. They obtained 89.18%
classification accuracy using SVM and decision tree classifiers.

� Hammad et al. [45], presented two methods to classify HCC
data. The two methods are: supervised missing feature
completion method and weight-based feature reduction
method. They used 23 conventional and ensemble classifiers
for classification such as Logistic Regression, Discriminant
(Linear and Quadratic), SVM (Linear, Quadratic, Cubic, Fine
Gaussian, Medium Gaussian and Coarse Gaussian), KNN
(Fine, Medium, Coarse, Cosine, Cubic and Weighted) and
other 8 classifiers. They obtained the best accuracies using
NCA and relief of 92.12% and 83.03%, respectively.

� Zheng et al. [46], developed a machine learning based
method to diagnose HCC. They removed relative expression
orderings (REOs) using minimum redundancy maximum
relevance (mRMR). They obtained sensitivity, specificity, and
an AUC of 91.93%, 100%, and 95.97%, respectively.
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� Acharya et al. [58], presented a hybrid system using three
algorithms, such as linear discriminant analysis (LDA), SVM
and GA. They used LDA to reduce the number of features and
SVM for classification. They used GA to optimize the model
and obtained an accuracy of 90.30%, sensitivity of 82.25%
and specificity of 96.07%.

Table 10 summarizes the previous methods used for
automated detection of HCC using machine learning methods.

The previous methods have many limitations and we try to
overcome most of these limitations by proposing a novel and
robust method that combine the ensemble learning with
genetic algorithm (GA) for the detection of HCC. This two-
layered model built using different classifiers with the Nu-SVC
as meta classifier. Additionally, the use of the algorithm of the
k nearest neighbors made it possible to precise fill in the
missing values. The whole has been optimized using evolu-
tionary computations. This combination helped to obtain high
accuracy in detecting the HCC.

3. Materials and method

The material and the methodology used in our proposed work
are discussed in this section. In addition, we discussed the HCC
database used to implement our method.

3.1. HCC dataset

In this paper, we implemented our method using 165 HCC
patients collected from CHUC [21]. There are total of 49 clinical
features in this database, which are being used by the
clinicians to make an accurate diagnosis. These features are
divided into two groups: the first group with 23 features are
called the quantitative group and the second group with 26
features are called the qualitative group. This database is
described in detail in Table 1 10.2% of the whole data are
missing in the database. This table shows the type and scale of
each feature. The statistics of the feature is presented by the
mean and range of each feature. Eight patients from 165 total
patients have whole information in all fields. The dataset
divided into two classes-dead class (label as 0) with 63 patients
and alive class (label as 1) with 102 patients.

The Supplementary materials present histograms for the
following characteristics: age, gender, class.

3.2. Methodology

This section describes the different stages of the proposed
methodology as shown in Fig. 1 with missing value, pre-
processing, GA (GA features selection, GA parameter optimi-
zation) and classification steps. The main parts of each stage
are briefly explained below.

3.2.1. Missing values
In this step, the Python imputations library Impyute [34] is
used. It is designed to estimate missing values in the HCC
database.

We have used the K-nearest neighbor (KNN) algorithm [48]
to fill the missing values. KNN can keep the original input data
distribution by selecting suitable K (in our case, K = 5) value.
Table 2 shows the configuration of KNN parameters.

The nearest neighbor's algorithm makes it possible to
estimate missing data based on several closest samples. This
enables a more accurate estimate than conventional methods
to fill in missing values such as mode, median or average,
which are examples of global estimation [23]. Obtaining better
quality data leads to the preparation of an effective classifica-
tion model.

3.2.2. Preprocessing and normalization
After completing the missing values, the normalization
method is applied. During normalization, the data is reorga-
nized so that we can utilize the data for further analysis. The
main goal of normalization is to group the data together and
get rid of any duplicate data that might appear within the
database. The common normalization methods are min-max,
Z-score, etc. [35]. The optimal normalization method depends
on the data to be normalized. We found that used min-max
method is most suitable for HCC data. Therefore, we used min-
max scaler normalization and data is rescaled to the range [0,1]
in this step.

3.2.3. GA for feature selection and parameters optimization
GA is a method of optimization and research, which can be
classified as one of the methods of evolutionary algorithms
[36,55]. It is used to find exact or approximate solutions that
optimize, genetic algorithms classified as global research
heuristics, and it is known as an evolutionary computation
that uses technology inspired by evolutionary biology. Such as
heritability, mutation, selection, and crossover. In this paper,
two-layer GA is proposed for feature selection and parameter
optimization of all classifiers. In the first layer, GA [36] is used
with seven classic classifiers namely KNN [48], random forest
[49], Naïve Bayes [50], SVC [51], NuSVM [52], logistic regression
[53] and linear discriminant analysis (LDA) [54] are used to
optimize their parameters and select the features. In the
second layer, GA is used with meta-classifier (NuSVM [52]) to
optimize only its parameters and perform the classification.

For feature selection using GA, the most widely used binary
string encoding [37] yielded 1 when the feature is selected and
0 if it is not selected. Finally, we optimized the parameters of
each classifier using GA. Table 3 shows the details of GA
parameters used in our study. Table 4 shows the optimization
parameters in each classifier used using GA.

3.2.4. Ensemble learning (classification) and stacking learning
Ensemble learning uses more classifiers to obtain better
predictive performance than a single classifier. Stacking
learning is an ensemble method that combines multiple
classifiers via a meta-classifier [38]. In this work, we employed
stacking learning as a classifier to classify the meta-features to
obtain the final class.

Classifiers from the first layer (genetic optimization of
parameters + genetic selection of features) return the proba-
bility of belonging to a class (meta-features). In the second
layer, these meta-features are the input of the meta-classifier
(Nu -SVM with genetic optimization of parameters). Finally,
the output of the classifier can be 1 (in case of a patient
survives) or 0 (in case of a patient died).



Table 1 – Description of the clinical features of the HCC database.

Clinical features Features type Features scale Mean Range Missing values (%)

Gender Qualitative Dichotomous 1 0,1 0
Symptoms 1 10.9
Alcohol 1 0
HBsAg 0 10.3
HBeAg 0 23.6
HBcAb 0 14.6
HCVAb 0 5.5
Cirrhosis 1 0
Endemic countries 0 23.6
Smoking 1 24.9
Diabetes 0 1.8
Obesity 0 6.1
Hemochromatosis 0 13.9
AHT 0 1.8
CRI 0 1.2
HIV 0 8.5
NASH 0 13.3
Esophageal varices 1 31.5
Splenomegaly 1 9.1
Portal hypertension 1 6.7
Portal vein thrombosis 0 1.8
Liver metastasis 0 2.4
Radiological hallmark 1 1.2
Performance status Ordinal 0 0, 1, 2, 3, 4 0
Encefalopathy 1 1, 2, 3 0.6
Ascites 1 1, 2, 3 1.2
Age at diagnosis Quantitative Ratio 64.69 20–93 0
Grams/day 71.01 0–500 29.1
Packs/year 20.46 0–510 32.1
INR 1.42 0.84–4.82 2.4
AFP 19,299.95 1.2–1,810,346 4.9
Hemoglobin 12.88 5–18.7 1.8
MCV 95.12 69.5–119.6 1.8
Leukocytes 1473.96 2.2–13,000 1.8
Platelets 113,206.44 1.71–459,000 1.8
Albumin 3.45 1.9–4.9 3.6
Total Bil 3.09 0.3–40.5 3
ALT 67.09 11–420 2.4
AST 69.38 17–553 1.8
GGT 268.03 23–1575 1.8
ALP 212.21 1.28–980 1.8
TP 8.96 3.9–102 6.7
Creatinine 1.13 0.2–7.6 4.2
Number of nodules 2.74 0–5 1.2
Major dimension 6.85 1.5–22 12.1
Dir. bil 1.93 0.1–29.3 26.7
Iron (mcg/dL) 85.599 0�244 47.88
Sat 37.029 0�126 48.48
Ferritin 438.998 0�2230 48.48
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Our stacking classifier consists of 7 classifiers in the first
layer and a meta classifier in the second layer. The classifiers
from the first layer return the probabilities that go into the
meta classifier input. The first layer uses genetic optimization
of parameters and features. In the case of the meta-classifier,
only genetic optimization of parameters was used.

3.2.5. Cross validation
Stratified K-Folds cross-validation (k = 5) approach [39] is used
in this work to ensure that relative class frequencies are
approximately preserved in each training and validation fold.
In this approach, the testing and training sets are created by
randomly selecting HCC data separately for each class, while
maintaining the proportions between classes. Cross-valida-
tion is carried out on the entire available database.

3.2.6. Evaluation metrics
To evaluate the performance of our method, we used two basic
metrics: accuracy and F1-score [44].

Our metrics are computed based on the confusion matrix.
Table 5 presents a typical example of the confusion matrix.

Accuracy: It is given by Eq. (1).

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

(1)



Fig. 1 – Proposed model used for the automated detection of HCC.

Table 3 – Typical GA parameters used in our work.

Parameter Value

Selection algorithm Tournament selection – size of
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F1-score: It is obtained from recall and precision metrics. It
is given by Eq. (4).

Recall ¼ TP
TP þ FN

ð2Þ (2)

Precision ¼ TP
TP þ FP

ð3Þ (3)

F1 Score ¼ 2 � Recall � Precision
Recall þ Precision

(4)

4. Results

The machine learning model is developed using Python 3.7.
The following libraries are used:

a) Pandas [40] — loading data
b) Impyute [34] — estimating missing values
Table 2 – Configuration parameters of KNN used in this
study.

Parameter Value

k (number of neighbors) 5
p (metrics) 2 (Euclidean)
c) Sklearn [41] — use of based classifiers
d) StackingClassifier [42] — combining classifiers into ensem-

ble (stacking learning)
e) Deap [43] — parameter optimization and selection of

features using genetic algorithms.

Specification of the computer on which this work is
performed are as follows:

a) Processor: Intel Core i5-7300HQ 2.5 GHz
b) RAM: 16 GB
tournament: 3
Crossover method Two-point crossover
Mutation method One-point mutation (own

algorithm)
Probability of crossover 0.8
Probability of mutation 0.8
Size of population 100
Number of epoch 200
Elitist strategy 1%
Fitness function Accuracy or F1-score



Table 4 – Optimized parameters used in each classifier with GA.

Classifier Parameters Value

KNN K [1–10]
Metric ["euclidean","manhattan","chebyshev"]
Weight ["uniform","distance"]

Random Forest Features selection only –

Naïve Bayes Features selection only –

SVC Kernel ["linear","rbf", "poly","sigmoid"]
C [0.1�100]
Degree [1–5]
Gamma [0.001�5]

NuSVM Kernel ["linear","rbf", "poly","sigmoid"]
Nu [0.001�0.5]
Degree [1–5]
Gamma [0.001�5]

Logistic Regression C [1�100]
Max iter [1�2000]

LDA Features selection only –

Table 5 – Typical confusion matrix.

Actual Predicted

Positive Negative

Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Table 6 – Confusion matrix for first model.

Actual Predicted

Survive Dead

Survive 97 5
Dead 11 52
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4.1. First experiment — model with accuracy as fitness
function

In the first step of the experiment the model described in
Section 3.2.4. was used. The selection of features for each
classifier and optimization of its parameters has been made.
Fig. 2 – Variation of accuracy 
Accuracy was selected as a fitness function of genetic
algorithm. A formula is provided in Section 3.2.6. The model
was developed using 165 HCC patients. The database has been
described in detail in Section 3.1.

The best model achieved 90.30% accuracy rate on testing
set. Table 6 shows confusion matrix for this model.

It can be noted from Table 6 that, 11 dead records were
detected as survived. However, 5 survive records were
classified as dead samples.

Fig. 2 shows the variation of F1-score for various epochs of
the genetic algorithm.

Fig. 2 shows that with successive epochs of the genetic
algorithm the accuracy of the classifier increases. Over 200
epochs, the model performance has increased by about 15%.

Table 7 shows the parameters of the classifiers and selected
features for the best model.

Table 7 contains the details of all classifiers included in the
model. There were 7 classifiers returning the probability of class
(KNN, SVC, NuSVM, Logistic Regression, Random Forest, LDA,
Naïve Bayes) and the meta-classifier NuSVM. The Table contains
information about the parameters of individual classifiers.
Moreover, information about the selected features has been
for various epochs of GA.



Table 7 – Analysis of the best individual for accuracy.

Classifier Optimized values

KNN 3, 'chebyshev', 'uniform' (k, metric, weight)
SVC 'sigmoid', 26.42686497495269, 2.3015795072861573, 0.1106544214142905

(kernel, C, degree, gamma)
NuSVM 'linear', 0.4969215671722941, 4, 0.5410943558906997 (kernel, Nu, degree,

gamma)
Logistic Regression 88.9514224188211, 129 (C, max_iter)
Meta classifier NuSVM 'rbf', 0.313013089448576, 2, 3.006554536476033 (kernel, Nu, degree, gamma)
Features for KNN [0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0,

1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0]
Selected features:
Symptoms, Alcohol, HCVAb, Diabetes, Hemochromatosis, CRI, NASH,
Esophageal varices, Splenomegaly, Portal vein thrombosis, Performance
status, Encefalopathy, Packs/year, AFP, Hemoglobin, MCV, Leukocytes,
Albumin, ALT, GGT, Number of nodules, Dir. bil, Iron

Features for SVC [1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1,
1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0]
Selected features:
Gender, HBsAg, HBeAg, HCVAb, Hemochromatosis, AHT, CRI, HIV, Portal
vein thrombosis, Liver metastasis, Radiological hallmark, Grams/day, Packs/
year, AFP, Platelets, Albumin, ALT, Creatinine, Number of nodules, Sat

Features for NuSVM [1,0,0,0,1,1,0,0,1,1,1,0,1,1,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,1,0,0,0,0,1,1,1,
1,1,1,0,1,1,1,0,1,1,1]
Selected features:
Gender, HBeAg, HBcAb, Endemic countries, Smoking, Diabetes,
Hemochromatosis, AHT, HIV, NASH, Esophageal varices, Splenomegaly,
Portal hypertension, Portal vein thrombosis, Liver metastasis,
Radiological hallmark, Ascites, AFP, Albumin, Total Bil, ALT, AST, GGT, ALP,
Creatinine, Number of nodules, Major dimension, Iron (mcg/dL), Sat, Ferritin

Features for Random Forest [1,0,1,1,0,1,0,0,1,1,0,0,1,1,0,0,0,0,0,0,1,1,1,1,0,1,0,1,0,0,1,1,1,1,0,0,1,1,1,1,
1,0,0,0,0,0,0,0,1]
Selected features:
Gender, Alcohol, HBsAg, HBcAb, Endemic countries, Smoking,
Hemochromatosis, AHT, Portal vein thrombosis, Liver metastasis,
Radiological hallmark, Performance status, Ascites,Grams/day, AFP,
Hemoglobin, MCV, Leukocytes, Total Bil, ALT, AST, GGT, ALP, Ferritin

Features for Logistic Regression [1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1,
0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0]
Selected features:
Gender, Symptoms, Alcohol, HBeAg, HBcAb, Endemic countries, Smoking,
Obesity, AHT, CRI, Splenomegaly, Portal vein thrombosis, Performance
status, INR, AFP, Hemoglobin, Leukocytes, Platelets, AST, ALP, TP, Number of
nodules, Sat

Features for LDA [1,0,0,0,1,1,1,1,1,1,1,1,1,0,1,1,0,0,1,1,1,0,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0,0,
1,1,0,0,1,1,1]
Selected features:
Gender, HBeAg, HBcAb, HCVAb, Cirrhosis, Endemic countries, Smoking,
Diabetes, Obesity, Hemochromatosis, CRI, HIV, Splenomegaly, Portal
hypertension, Portal vein thrombosis, Radiological hallmark, Performance
status, Grams/day, Hemoglobin, MCV, Leukocytes, ALT, AST, Creatinine,
Number of nodules, Iron (mcg/dL), Sat, Ferritin

Features for Naïve Bayes [0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0,
1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0]
Selected features:
Symptoms, Alcohol, HCVAb, Diabetes, Hemochromatosis, NASH, Esophageal
varices, Splenomegaly, Portal vein thrombosis, Performance status,
Encefalopathy, Packs/year, AFP, Hemoglobin, MCV
Leukocytes, Albumin, ALT, GGT, Number of nodules, Dir. bil, Iron (mcg/dL)
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added also in this Table, where 1 refers to feature selected and 0
refers to feature rejected. The genetic algorithm chose 23
features for KNN, 21 for SVC, 30 for NuSVM, 24 for Random
Forest, 23 for Logistic Regresion, 29 for LDA, 23 for Naïve Bayes.
The random forest is tested with the following parameters:

a) criterion: entropy
b) n_estimators: 100



Fig. 3 – Comparison of various classifiers based on accuracy (%).
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LDA and Naïve Bayes used the default parameters (Naïve
Bayes: var_smoothing = 1e-09, LDA: solver = 'svd' and tol =
0.0001).

Fig. 3. shows accuracy of each classifier.
It can be noted from Fig. 3 that, the accuracy of individual

classifiers is not very high. In few cases, individual classifiers
obtained lower accuracies in the last epochs than in the
beginning. This may be because the genetic algorithm aims to
ensure that the meta classifier obtains the highest accuracy
and not individual classifiers.

Only the meta-classifier, learning from the probability
returned by a single classifier, achieved a high accuracy of
90.30%.

4.2. Second experiment – model with F1-score as fitness
function

In the second experiment, the model proposed in Section 3.2.4
was again used. However, modifications were made to the
fitness function optimized by the genetic algorithm. This time
the F1-score described in Section 3.2.6 as a formula 4 was used.
Parameters were again optimized, and features selected for all
classifiers were included in the model.

The best F1-score of 88.57% is achieved on testing set.
Table 8 shows the confusion matrix for these calculations.

According to Table 8, it can be seen that7 dead records were
detected as survived. However, 11 survive records were
classified as dead samples.

Fig. 4 shows the variation of F1-score obtained for various
epochs of the genetic algorithm.
Table 8 – Confusion matrix obtained using F1-score.

Actual Predicted

Survive Dead

Survive 91 11
Dead 7 56
It can be noted from Fig. 4 that. it can see the coincidence of
the genetic algorithm over time. The evolution process
improved the classifier score by 15% compared to the results
of the first epoch.

Table 9 shows the parameters of the classifiers and selected
features for model with F1-score as fitness function.

In Table 9, we can find the parameters of all classifiers, as
well as the features selected by individual classifiers (1 -
selected feature, 0 - rejected feature). Genetic algorithms have
enabled each classifier to select features to achieve the highest
results. The genetic algorithm chose 21 features for KNN, 23 for
SVC, 26 for NuSVM, 21 for Random Forest, 21 for Logistic
Regression, 24 for LDA, 21 for Naïve Bayes. Finally, the meta-
classifier makes the final classification based on the probabili-
ties returned by individual classifiers.

The random forest was tested with the following param-
eters:

c) criterion: entropy
d) n_estimators: 100

LDA and Naïve Bayes used the default parameters (Naïve
Bayes: var smoothing = 1e-09, LDA: solver = 'svd' and tol =
0.0001).

Fig. 5 shows the comparison of classification performance
of various classifiers obtained based on F1-score. In this
experiment also we can see that the genetic algorithm
maximizes the score obtained by the meta-classifier. The
results obtained by single models are not increased gradually
in the next epochs.

5. Discussion

Table 10 shows the comparison of state-of-art techniques
developed for the automated detection of HCC disease using
the same database (CHUC).

An important observation is that, we have achieved higher
accuracy and F1-score compared to the reported previous
works using the same database. To the best of our knowledge,



Fig. 4 – Variation of F1-score obtained for various number of epochs of GA.

Table 9 – Summary of parameters and selected features used for various classifiers.

Classifier Optimized values

KNN 3, 'chebyshev', 'uniform' (k, metric, weight)
SVC 'linear', 50.55387072804635, 1.7947967836849261, 4.735376436182018 (kernel,

C, degree, gamma)
NuSVM 'linear', 0.2640102766647352, 3, 1.530273475303261 (kernel, Nu, degree,

gamma)
Logistic Regression 65.03920362515971, 53 (C, max_iter)
Meta classifier NuSVM 'poly', 0.46878689623925784, 5, 4.819446218603088 (kernel, Nu, degree,

gamma)
Features for KNN [0,1,0,1,1,1,1,0,1,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,1,0,

0,1,0,1,1,0,0,0,1]
Selected features:
Symptoms, HBsAg, HBeAg, HBcAb, HCVAb, Endemic countries, Diabetes,
AHT, NASH, Ascites, Age at diagnosis, Grams/day, Packs/year, MCV,
Leukocytes, Platelets, AST, TP, Number of nodules, Major dimension, Ferritin

Features for SVC [1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0,
0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
Selected features:
Gender, Alcohol, HBsAg, HBeAg, HBcAb, Cirrhosis, Diabetes, Obesity,
Hemochromatosis, AHT, HIV, Esophageal varices, Portal vein thrombosis,
Radiological hallmark, Performance status, Encefalopathy, Age at diagnosis,
Packs/year, Hemoglobin, Leukocytes, Total Bil, ALT, Creatinine

Features for NuSVM [0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0,
0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0]
Selected features:
Symptoms, HBsAg, HCVAb, Smoking, Diabetes, AHT, CRI, HIV, Portal vein
thrombosis, Performance status, Ascites, Age at diagnosis, Grams/day,
Packs/year, INR, Hemoglobin, MCV, ALT, ALP, TP, Number of nodules, Major
dimension, Dir. Bil, Iron (mcg/dL), Sat

Features for Random Forest [1,0,0,0,0,0,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0,0,0,
1,0,1,0,1,0,0,0,0,1,1]
Selected features:
Gender, HCVAb, Cirrhosis, Obesity, Hemochromatosis, AHT, Splenomegaly,
Portal hypertension, Portal vein thrombosis, Liver metastasis, Performance,
Ascites, Grams/day, INR, AFP, MCV, AST, ALP, Creatinine, Sat, Ferritin

Features for Logistic Regression [0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0,
1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0]
Selected features:
Symptoms, Alcohol, HBcAb, Diabetes, AHT, NASH, Portal hypertension,
Portal vein thrombosis, Age at diagnosis, INR, AFP, Hemoglobin, MCV,
Leukocytes, Albumin, Total Bil, ALP, Major dimension, Dir. Bil, Iron (mcg/dL),
Sat

Features for LDA [1,1,0,1,1,1,1,0,1,1,0,0,0,1,0,0,0,0,1,0,1,0,0,0,1,0,0,0,0,1,0,1,0,1,0,0,1,1,1,
0,1,1,1,0,1,0,1,0,1]

b i o c y b e r n e t i c s a n d b i o m e d i c a l e n g i n e e r i n g 4 0 ( 2 0 2 0 ) 1 5 1 2 – 1 5 2 41520
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Classifier Optimized values

Selected features:
Gender, Symptoms, HBsAg, HBeAg, HBcAb, HCVAb, Endemic countries,
Smoking, AHT, Splenomegaly, Portal vein thrombosis, Encefalopathy, INR,
Hemoglobin, Leukocytes, Total Bil, ALT, AST, ALP, TP, Creatinine, Major
dimension, Iron (mcg/dL), Ferritin

Features for Naïve Bayes [0,1,0,1,1,1,1,0,1,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,1,0,0,1,0,
1,1,0,0,0,1]
Selected features:
Symptoms, HBsAg, HBeAg, HBcAb, HCVAb, Endemic countries, Diabetes,
AHT, NASH, Ascites, Age at diagnosis, Grams/day, Packs/year, MCV,
Leukocytes, Platelets, AST, TP, Number of nodules, Major dimension, Dir. Bil,
Ferritin

Fig. 5 – Comparison of classification performance of various classifiers obtained based on F1-score.

Table 10 – Comparison of state-of-art techniques developed for the automated detection of HCC disease using the same
database (CHUC).

Study Algorithm Accuracy F1-score

Ksiazek et al. [18] SVC + GA 0.8849 0.8762
Nayak et al. [19] SVM with RBF kernel 0.869 0.399
Brehar et al. [20] SVM + AdaBoost 0.720 N.A.
Santos et al. [21] NN + Augmented sets approach 0.7519 � 0.0105 0.6650 � 0.0182
Sawhney et al. [22] BFA + RF 0.835 N. A.
Aonpong et al. [24] LASSO + SVM-RFE 0.8918 N.A.
Tuncer and Ertam [46] reliefF + LDA 0.8303 0.8202

NCA + FGSVM 0. 9212 0.9161
Ali et al. [59] LDA–GA–SVM (with linear and RBF kernel) 0.9030 N.A.
This study StackingGA 0.9030 0.8857
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this is the first study to employ the ensemble learning
technique based on the combination of stacking learning
with genetic optimization for automatic detection of HCC.

The advantages of the proposed method are as follows:

a) Achieved highest accuracy and F1-score.
b) Used various types of classifiers to obtain stable results.
c) Employed evolutionary algorithm to select the best param-

eters and features to develop the stable optimum perform-
ing model.

d) Used KNN algorithm to fill the missing data to obtain high
quality data.
The disadvantages of the proposed method are given
below:

a) Requires long model training time.
b) Developed model is more complex.
c) Need to more data to develop a more stable and accurate

model. In the future, we plan to validate our system with
more databases.

As shown in Table 10, our proposed model achieved the
best results as compared to the state-of-art techniques. Our
innovative combination of genetic algorithms with ensemble
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learning – stacking has yielded the best performance in detecting
the HCC disease. This is the first work proposed using ensemble
learning to detect HCC. In [18–20,45], the authors obtained good
performance using more number of features. However, the
proposed method achieved the highest performance using fewer
features. In the algorithm proposed in [21], has obtained lower
performance and hence may not be suitable for real world
applications. Other works in Refs. [18–22,24,45] have obtained
need to be tested with more data. The method in Ref. [58]
obtained the same accuracy as our proposed method, however,
our proposed method is more robust and less complex.

The proposed model is presented in the Fig. 1 which consists
of 7 classifiers and a meta-classifier. The classifiers described in
the ensemble model is presented in detail in Table 4. Genetic
optimization of classifier parameters included in the first layer
and selection of their features, as well as optimization of the
meta-classifier parameters provided excellent results.

In Figs. 3 and 5 we can see the result of the individual
classifiers and the meta classifier. It can be seen that the result
of individual classifiers is much lower than the meta-classifier
(90.30% for accuracy and 88.57 for F1-score). We can see that
the individual classifier focuses not on its own results, but on
the end result of the meta classifier. Detailed results for the
meta classifiers are presented in the confusion matrices
(Tables 6 and 8).

Additionally, it is worth emphasizing the importance of
genetic algorithms. In Figs. 2 and 4, we can see the convergence
of methods and significant (several percentages) improvement
in the results. Appropriately selected parameters of the genetic
algorithm (including selection algorithm, crossover, number of
epochs, population size) have yielded significantly improved
performance as presented in Table 3.

Genetic algorithms help to select clinically significant
features for individual classifiers. It can be noted from Tables
7 and 9 that, data reduction has resulted in the reduction of
number of features within individual classifiers is about 50%.
As a result, the model is less complex than the classical
classifiers using all the features.

Our ensemble model obtained highest classification per-
formance, but the model is complex and takes long learning
time. This ensemble can still be developed by adding more
new classifiers or by modifying the existing ones. Perhaps
joining several neural networks may also improve the
classification performance. In addition, each classifier of
ensemble can perform different data preprocessing. This
approach can provide greater variety of classifiers, which is
the key aspect of ensemble learning.

We intend to use deep learning techniques in the future for
the detection of HCC to increase the diagnosis performance
using big data. We also plan to use other ensemble learning
methods namely voting classifier, deep stacking classifier or
boosting algorithm using our dataset [47]. Finally, we plan to
try the proposed method for detecting other types of diseases
such as liver diseases [56,57].

6. Conclusions

In this study, a novel algorithm based on the combination of
stacking learning with genetic optimization for automated
detection of HCC disease is proposed. We have used different
classifiers with and without feature selection on the HCC
dataset. This model enabled more accurate detection of HCC
than previous models presented in the literature. Our
proposed method obtained an overall accuracy of 0.9030 and
F1-score of 0.8857. Therefore, our system is an effective tool to
perform an accurate and consistent diagnosis of HCC.
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