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Abstract: Abnormal heart rhythms are one of the significant health concerns worldwide. The current
state-of-the-art to recognize and classify abnormal heartbeats is manually performed by visual
inspection by an expert practitioner. This is not just a tedious task; it is also error prone and,
because it is performed, post-recordings may add unnecessary delay to the care. The real key
to the fight to cardiac diseases is real-time detection that triggers prompt action. The biggest
hurdle to real-time detection is represented by the rare occurrences of abnormal heartbeats and
even more are some rare typologies that are not fully represented in signal datasets; the latter is what
makes it difficult for doctors and algorithms to recognize them. This work presents an automated
heartbeat classification based on nonlinear morphological features and a voting scheme suitable for
rare heartbeat morphologies. Although the algorithm is designed and tested on a computer, it is
intended ultimately to run on a portable i.e., field-programmable gate array (FPGA) devices. Our
algorithm tested on Massachusetts Institute of Technology- Beth Israel Hospital(MIT-BIH) database
as per Association for the Advancement of Medical Instrumentation(AAMI) recommendations. The
simulation results show the superiority of the proposed method, especially in predicting minority
groups: the fusion and unknown classes with 90.4% and 100%.

Keywords: electrocardiogram signal; nonlinear features; improved complete ensemble empirical
mode decomposition; inter-patient scheme; voting; classification; FPGA

1. Introduction

1.1. Aim of the Work

Nowadays, mortality rates are increasing due to noncommunicable diseases (NCDs) over
infectious diseases. Annually about 70% of deaths are because of the NCDs worldwide. As per
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the World Health Organization (WHO) report, cardiovascular diseases (CVDs) are the primary cause
of death among other NCDs [1]. The effect of CVDs is more in low and middle-income countries.
The report demonstrates that this impact will continue further. This alarming scenario influences not
only the health perspective, but also the socio-economic advancement of the country. Therefore, the
need for adequate diagnosis and treatment for NCDs, especially for CVDs, is highly essential. This
situation demands advancements in healthcare technology.

Cardiac arrhythmias are one of the significant sources of CVDs. All arrhythmias may not be fatal,
but some need immediate treatment for the patient to survive. Arrhythmias may occur owing to erratic
electrical impulse conduction or formation in the heart. Electrocardiograms (ECGs) are an essential
tool to study the electrical activity of the heart. ECG discloses any variations in the heartbeat pattern.
Clinicians have to explore the longer duration ECG records in the diagnosis process. However, this
manual examination is tiresome because of low amplitude and subtle variations in the ECG [2]. Hence,
computer-aided diagnosis (CAD) helps clinicians remarkably. CAD-based heartbeat classification is a
significant task before the arrhythmia recognition.

1.2. State-of-the-Art

If we look at the literature on heartbeat classification, it can be observed that the Massachusetts
Institute of Technology-Beth Israel hospital (MIT-BIH) arrhythmia database [3] is the majority choice.
The essential literature of heartbeat classification using this database can be categorized into two types
based on the assessment process, viz., class-oriented and subject-oriented. The majority among them
are class-oriented based works [4–22].

In the class-oriented approach, from the 16 types of beats including the normal ones in the MIT
database, a part or an entire collection of beats are preferred for classification. In [4], 17 types of
heartbeats including normal and pacemaker are classified using the features based on various power
spectrum density methods. Later, a novel genetic algorithm is used to identify the optimum features
to enhance the classification process. Finally, these selected features are fed to the various standard
machine learning algorithms. In [19], 13 types of heartbeats are classified using the combination of
higher-order statistics (HOS) of the ECG and Hermite basis representation features using a support
vector machine (SVM) classifier. In [18], six types of heartbeats are classified by using a local fractal
dimension based nearest neighbor classifier. In [21], seven types of heartbeats are classified using
gray relational analysis. In [20], Ye et al. designed a heartbeat classification algorithm using dynamic
and morphological ECG features. For the morphological feature extraction process, the combination
of wavelet transform and the dimensionality reduction technique, namely independent component
analysis (ICA), is implemented on the heartbeats. R–R intervals are used as dynamic features. These
features are then fed to SVM for classifying 16 types of heartbeats. In [8], a novel genetic ensemble
of classifiers machine learning method is proposed. A new genetic training coupled with genetic
optimization is used to classify 17 types of heartbeats. In [17], statistical and nonlinear features are
derived from the modes obtained from the empirical mode decomposition (EMD) algorithm. Later,
these features are provided to one-against-one SVM for classifying five types of heartbeats. In [22],
ventricular extra systole or ectopic beats are recognized with the help of morphology matching, R–R
intervals, and clustering algorithms. In [6], 17 types of EG beats are classified using hexadecimal local
patterns claculated from wavelet sub-bands. In [7], five primary types of heartbeats are classified using
ensemble empirical mode decomposition (EEMD) based features subjected to sequential minimal
optimization-SVM (SMO-SVM). Besides, Neural networks plays a crucial role in biological signal
analysis [23]. Recently, deep learning-based class-oriented schemes come into the picture. Deep
learning techniques are a part of machine learning techniques implemented based on more hidden
neural networks. In [9,10] these works, 17 types of heartbeats are classified using 1D-CNN and a novel
3-layer deep genetic ensemble of classifiers.

In the subject-oriented approach, the entire MIT-BIH database is subdivided into five groups
of heartbeats according to the American National Standards Institute/Advancement of Medical
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Instrumentation (ANSI/AAMI) EC57:1998 standard. The list of these groups is non-ectopic (N),
supraventricular ectopic (S), ventricular ectopic (V), fusion (F), and unknown (Q). Again, two
strategies are observed for classifying these distinct groups: intra-patient and inter-patient schemes.
The fundamental disagreement between these two strategies is the separation of training and testing
datasets. Intra-patient scheme based methods are widely explored in the literature [24–30]. However,
these approaches have less impact in real-time scenarios. Because, in real-time applications, an
unknown subject that usually undergoes the testing will be foreign to the constructed model. Thus, the
model has to be adequate to capture the inter-individual variations among the ECG. While designing
the intra-patient based model, there might be a chance of having common subject information in
both training and testing. To mitigate such an issue, De Chazal et al. [31] introduced an inter-patient
scheme based heartbeat classification. Here, the overall MIT-BIH database is separated into two groups.
One group is assigned to training, and the other one is for testing by ensuring that there is no similar
subject data in both groups.

The advantage of the aforementioned computer-aided expert systems can be exploited only after
developing real-time systems. In literature, in recent years, some of the field-programmable gate
array (FPGA) based ECG signal analysis systems are implemented. In [32], an FPGA based heartbeat
classification system is developed using the least-squares linear-phase finite impulse response filter
and feed-forward neural network. In [33], three types of common arrhythmia beats, namely, premature
ventricular contraction, ventricular fibrillation, and heart block beat along with normal beats, are
classified using a real-time FPGA implementation. In [34], an intra-patient scheme based on arrhythmia
classification is implemented in the FPGA system. However, most of the successful FPGA implemented
systems are followed by an intra-patient scheme. Very few methods are developed in real-time systems
based on inter-patient schemes [35]. However, still, these systems failed in detecting rare abnormal
beats accurately. Hence, there is a need for developing a new expert system that can succeed in
identifying rare heartbeats.

1.3. Contribution

In this paper, we presented an efficient inter-patient heartbeat classification algorithm. For any
pattern recognition process, identifying an appropriate set of features and classifier is highly significant.
From [36], it is noticeable that ECG is a non-stationary, non-Gaussian signal derived from nonlinear
systems. Hence, we employed a decomposition method, namely improved complete ensemble
empirical mode decomposition (ICEEMD) to obtain features from the ECG beats. This technique is
capable of disclosing the implicit information lying in the ECG. Later, different nonlinear measures like
entropies and HOS are determined from the modes obtained after ICEEMD. These measures will serve
as features for proper discrimination of the heartbeat groups. The fundamental difficulty in processing
these groups is the class imbalance. Here, a significant fraction of the heartbeats is non-ectopic. Hence,
the results may be biased toward the majority group, which is undesirable. Therefore, to alleviate
such an issue, we followed an algorithmic level approach. To achieve this, we employed a majority
voting scheme based classification. It is a type of ensemble classification. The advantage of ensemble
classification is that it can reduce both variance and bias. In this work, we used different combinations
of classifiers, namely, naïve Bayes, linear, and quadratic discriminant functions, J48, and consolidated
J48 classifiers for majority voting.

The rest of the paper is ordered as follows: the ECG data set, training, and testing data division of
AAMI labeling, experimental details and theoretical background of the methodology are presented
in Section 2. Section 3 presents the simulation results of the proposed method. The comparison with
existing works, limitations, and future directions are presented in Section 4. The conclusions of the
work are presented in Section 5.
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2. Methods

The block diagram of the proposed method is illustrated in Figure 1. The methodology consists
of three stages including pre-processing, feature extraction on training and testing data, and a
classification model for evaluation. In this section, the database used and the theoretical background
of the used techniques are discussed.
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Figure 1. Block diagram of the proposed methodology.

2.1. Database

The proposed method is examined using the MIT-BIH arrhythmia database. MIT-BIH is a standard
database widely explored for arrhythmia classification. It comprises of Holter monitoring records from
several male and female patients. Each record duration is 30 minutes, sampled at 360 Hz. The records
consist of both normal and abnormal beats of 15 types.

The annotation files available in the database are obtained from the chart recordings recognized
by the experts. This file describes the ‘R’ peak locations and the labeling of normal and abnormal
beats. Based on the recommendations of AAMI, class-labeling was assigned for discriminating various
heartbeat groups.

AAMI Class Labeling Recommendations

According to the ANSI/AAMI EC57:1998 standard, within the annotation files, beat labels are
divided into five groups, namely, N, S, V, F, and Q based on the physiological origin of the beats. Here,
the mainly N group consists of normal and bundle branch block beats. S and V groups consist of
ectopic beats, originated above and below Atrio Ventricular (A–V) junction of the heart, respectively.
The F group consists of the combination of ventricular and normal beats. Unclassifiable beats are
placed in the Q group. According to [31], the total number of available heartbeats are divided into
training for modeling and testing for evaluation. Details of the number of heartbeats utilized for this
work are presented in Table 1.
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Table 1. Details of the number of beats selected from each group of AAMI classes.

AAMI Classes MIT-BIH Heartbeats Total Data Training (DS1) Testing (DS2)

N Normal, left and right bundle branch block 83,761 41,746 42,015
atrial and nodal escape beats

S atrial premature contraction, Aberrated atrial, 2614 777 1837
supra ventricular and junctional premature beats

V premature ventricular contraction, ventricular flutter 6893 3787 3106
and escape beats

F fusion of ventricular and normal 526 266 260
beats

Q paced, unclassifiable, 12 6 6
fusion of paced and normal beats
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2.2. Pre-Processing

Pre-processing is an initial step in any data processing systems. Raw ECG signals will inherently
have some artifacts. These may occur due to instrumental noise (power line interference), a
physiological signal disturbance (muscular movements), or the environment where the experiment
takes place. These artifacts are undesirable and diminish significant features in the ECG. Therefore, to
attenuate the effect of this noise, we perform denoising as one of the pre-processing steps. For this,
we used a filtering routine proposed by [37] with minimal modification. This operation comprises
the following:

1. Mean separation from the noisy ECG,
2. Moving average filter of order five,
3. High-pass filter with cut-off frequency 1 Hz (for baseline wander suppression),
4. Low pass Butter worth filter with cut-off frequency 45 Hz (To suppress any left out

high-frequency noise).

We need individual heartbeats from the long-term ECG recording for heartbeat classification.
We perform a segmentation process after denoising. In the segmentation process, the annotation chart
records with ‘R’ peak locations are utilized. From the annotation file, it is observed that there are a lot
of variations among R-peak positions time-to-time. The difference between the R-peak positions is
dynamic. Hence, we applied a window of length 300 samples on ECG signal to obtain an ECG segment
that covers the QRS complex which is an important epoch in the ECG. Our segmentation process retains
other important epochs like P and T waves, unlike centered R-peak distribution segmentation methods.

2.3. Feature Extraction

Feature extraction has a critical role in heartbeat classification. A feature provides crucial
information about a signal and facilitates better discrimination of classes. From [36], it is evident that
ECG is a non-stationary signal stemming from a nonlinear system. Hence, exploration of ECG with
nonlinear methods can improve the performance of a model since they extract subtle information lying
in ECG. Therefore, in the feature extraction stage, initially, we perform ICEEMD on ECG segments to
get intrinsic mode functions (IMFs). Later, entropy and higher-order cumulants are extracted from
the selected modes. In this section, the techniques employed and their support in the methodology
development are briefly discussed.

2.3.1. ICEEMD

The EMD decomposes a given signal in a full data-dependent approach by exploiting the local
characteristics. However, EMD is limited by “mode-mixing” problem while analyzing the real data [38].
Therefore, some noise-assisted data analysis methods can provide a solution. Here, noise is added in a
controlled manner for developing new extrema. Thus, the local mean is limited to that of the original
version where extrema are generated. A few among these noise assisted methods are EEMD [39] and
CEEMD [40]. Among these methods, CEEMD provides a better solution to the mode-mixing problem.
However, CEEMD has some limitations:

(i) Some residual can be present in the modes.
(ii) During the initial decomposition stages, information may appear “late” with undesired modes,

when it is compared to EEMD.

To address these issues, Colominas et al. [41] introduced a new noise aided adaptive data analysis
method called ICEEMD. The mathematical details of the ICEEMD are given below [41].

Notation used in algorithm: El(.) = lth EMD mode, M(.) = local mean of the signal, < . >=

averaging operator, w(j) = realization of white Gaussian noise with zero mean and unit variance and
x = input signal.
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The algorithm steps:

1. Compute the local means of J realizations x(j) = x+ β0E1(w(j)), j = 1, 2, ..., J using EMD, to obtain
first residue r1 =< M(x(j)) >.

2. At the first stage (l = 1), compute the first IMF:

C1 = x− r1. (1)

3. For l = 2, ..., L, calculate rl as

rl =< M(rl−1 + βl−1El(w(j)) > . (2)

4. Calculate the lth mode as
Cl = rl−1 − rl . (3)

5. Go to step 3 for next l

Here, βl = ε0σ(rl)
is used to obtain the desired SNR at each stage. We choose ε0 = 0.2.

The resultant IMFs provide significant underlying features of the ECG signal. The ICEEMD is a
beneficial tool used for analyzing non-stationary signals originating from nonlinear systems such as
bio-signals. The main advantage of ICEEMD is: avoiding the spurious modes and reducing the amount
of noise in the mode patterns. Thus, the decomposed IMFs capture the morphology of the signal. Later,
entropy and statistical measures are calculated from the first six modes of each ECG segment.

2.3.2. Entropy Measures

Entropy measures the uncertainty in a given data. It is often used in signal processing and pattern
recognition applications [42]. A high value of entropy maps to higher uncertainty (or) unpredictability.
Entropy yields useful information for analyzing non-stationary signals [43]. In this work, we calculated
Shannon [44], log energy, and norm entropies [45]. The entropy E must be an additive cost function
such that E(0) = 0 and

E(s) = ∑
i

E(si),

where s is the probability of the given signal and i represents one of the discrete states. Various
entropies are defined below:

• Shannon Entropy:
EShannon(s) = ∑

i
s2

i log(s2
i ), (4)

• log Energy Entropy:
Elog energy(s) = ∑

i
log(s2

i ), (5)

with the convention log(0) = 0.
• norm Entropy: The lp norm entropy with 1 ≤ p is defined as

Enorm(s) = ∑
i
|(sp

i )| = ||s||
p
p. (6)

2.3.3. HOS

HOS provides a meaningful measure for analyzing non-stationary signals originating from
nonlinear systems [46,47]. HOS represents the deviation from Gaussianity and can provide useful
information from the non-Gaussian nature of ECG signals. In our work, we utilized second, third, and
fourth-order cumulants as HOS. The mathematical details of the HOS can be found in [48].
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We construct a feature vector of size 36× 1 for each heartbeat (6 features × 6 modes = 36). Later,
the training feature set is fed to a classifier for building a model, and that model is evaluated using a
testing set.

2.4. Voting Scheme

The final goal of machine learning is to get better-generalized performance. We come across
a question “which learning algorithm or classifier is preferred over the other ?”. According to a
“No free launch theorem” [49], there is no precise answer to this. One algorithm fits or performs
well for a set of training and testing data and may fail for another. The learning algorithm overall
performance depends on the prior information, distribution of data, amount of training data, and some
cost functions. The performance generalization depends on the bias and variance errors. Always, there
will be a trade-off between bias and variance. Ensemble classifiers form a better choice, to improve the
performance generalization by reducing bias and variance. Combining several classifiers for the final
decision is called an ensemble classification or mixture-of-experts model or modular classification.

The primary motivation behind the classifier ensemble is improving the classification performance
using the complementary information offered by various classifiers. Kittler et al. [50] developed
a scheme for combining classifiers using voting based on a set of rules: min-rule, max-rule,
product-rule, sum-rule, and median-rule. From our experiments, we preferred product rule which
outperforms others.

Mathematical Framework: Consider a pattern recognition model where a pattern y is to be
assigned with one of the m possible classes (ω1, ω2, ......, ωm). Say there are R number of classifiers used
for combining. Let us assume that each classifier possesses a different representation of measurement
vector xi, i = 1, 2, ..., R.

The density function for each class ωk in the measurement space is p(xi|ωk) and the prior
probability is P(ωk). We assume that the models are mutually exclusive.

From the Bayesian framework, y is assigned to the class ωj having a maximum posterior
probability out of ωk classes:

assign y→ ωj if P(ωj|x1, x2, ....., xR) = max
k

P(ωk|x1, x2, ....., xR). (7)

Rewriting the posterior probability P(ωk|x1, x2, ....., xR) using the Bayes theorem:

P(ωk/x1, x2, ....., xR) =
p(x1, x2, ....., xR|ωk)P(ωk)

P(x1, x2, ....., xR)
. (8)

Here, P(x1, x2, ....., xR) can be expressed in terms of conditional measurement distribution as

p(x1, x2, ....., xR) =
m

∑
j=1

p(x1, x2, ....., xR|ωj)P(ωj). (9)

Product Rule: p(x1, x2, ....., xR|ωj) represents the joint probability distribution of the measurements
computed by the classifiers. Assuming that these representations are statistically independent, we can
rewrite the joint probability distribution as

p(x1, x2, ....., xR|ωk) =
R

∏
i=1

p(xi|ωk). (10)

Based on p(xi|ωk), the measurement process model for ith representation is developed.
Substituting Equation (10) and Equation (9) into Equation (8)

P(ωk|x1, x2, ....., xR) =
P(ωk)∏R

i=1 p(xi|ωk)

∑m
j=1 p(ωj)∏R

i=1 p(xi|ωj)
(11)
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and using Equation (11) in Equation (7), we obtain the decision rule

assign y→ ωj if P(ωj)
R

∏
i=1

p(xi|ωj) =
n

max
k=1

P(ωk)
R

∏
i=1

p(xi|ωk). (12)

Rewriting in terms of the posterior probabilities obtained from the respective learning algorithms,

assign y→ ωj if
1

P(R−1)(ωj)

R

∏
i=1

p(ωj|xi) =
n

max
k=1

1
P(R−1)(ωk)

R

∏
i=1

p(ωk|xi). (13)

Equation (13) represents the likelihood decision rule obtained after combining the posterior
probabilities generated by different classifiers using the product rule.

In this work, we used five different classifiers for ensembling using a voting scheme to enhance
the performance of the system: naïve Bayes [51], linear and quadratic discriminant functions [52],
J48 [53], and J48 consolidated classifiers [54]. A brief description of these classifiers is given below.

Naïve Bayes Classifier: It is a probability-based learning algorithm developed on the Bayesian
framework. According to Bayes theorem, an unknown y is categorized into the one among the R
classes, with high posteriori probability:

y→ ωk if arg max
ωk∈ω

P(ω|y)P(y), (14)

where ω = {ω1, ω2, ...., ωR} is a vector of R classes.
Naïve Bayes is a modified version of Bayes classifier, based on the assumption that the features in

an unknown example vector are independent. Therefore, posteriori probability can be written as

P(ω|y) = P(y|ω)P(ω) = P(y1, y2, ..., ym|ω) = P(y1|ω)P(y2|ω)......P(ym|ω)P(ω). (15)

Hence, Equation (14) can be modified as

y← arg max
ωk

P(ω = ωk)∏
i

P(yi|ω = ωk). (16)

With this final rule, the naïve Bayes classifier operates. The parameters used for the Naïve Bayes
Classifier is given in Table 2.

Table 2. Naïve Bayes Classifier parameters used in this work.

Parameters Naïve Bayes

Use Kernel Estimator False
Use supervise Discretization True

In general, the naïve Bayes classifier assumes that the given features follow the normal distribution.
In Table 2, use the Kernel Estimator parameter set to false to follow this assumption. Supervised
discretization converts a specific range of attribute values to binary values. Here, the term supervised is
coined because the class information of the training instances is used for discretization. However, this
process is possible only when the class labels are nominal. The advantage of supervised discretization
in naïve Bayes classifier is present in [55].

Linear and Quadratic Discriminant Analysis Based Classifiers: The approach of discriminant
analysis is to derive a decision boundary or a discriminant function based on the linear combinations
of features that best separate the given classes. The assumption made is: examples from different
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categories follow Gaussian distribution. For instance, the discrimination function for two-class
problems based on Bayes theory can be written as

(y− µ1)
TΣ−1

1 (y− µ1) + ln |Σ1| − (y− µ2)
TΣ−1

2 (y− µ2) > T, (17)

where µ1, µ2 are the mean vectors of class1 and class 2, Σ1, Σ2 are the covariance matrices of class 1
and class 2 and T is the threshold value.

The above function without further assumptions represents the quadratic discriminate function.
If the covariance matrices Σ1 = Σ2 = Σ, then the discriminant function simplifies to a dot product.

x.y > constant, (18)

where x = Σ−1(µ1 − µ2), constant = 1
2 (T − µT

1 Σµ1 − µ2ΣµT
2 ). This decision rule represents the

classification based on linear discriminant.
The parameters used for linear discriminant analysis (LDA) and quadrature discriminant analysis

(QDA) classifiers are given below in Table 3.

Table 3. LDA and QDA classifier parameters used in this work.

Parameters LDA QDA

Ridge 1.0× 10−6 1.0× 10−6

Ridge parameters in the discriminant analysis classifiers reduce the overfitting problem by
penalizing the large quantity coefficients. In our work, we use the default values as given in Table 3.

J48 Classifier: Recently, decision tree-based algorithms have become popular in machine learning
strategies. In practice, J48 is an execution of popular C 4.5 algorithms proposed by Quinlan [53].
According to this algorithm, the decision process involves the construction of a tree based on the
feature splitting. The superiority of matching y to a class label ωk ∈ ω depends on the choice of feature
splitting based on the value of information gain.

Information gain is measured with the help of difference entropy as the difference between the
entropy of the central node to the sum of entropies of the leaf nodes. It measures how well a given
feature splits the training data under its class label. A feature node having high information gain
is preferred.

J48 Consolidated (J48-C) Classifier: It is a consolidated version of C 4.5 classifier. “J48
consolidated” is an implementation of a consolidated tree’s construction algorithm, proposed by
Arbelaiz et al. [54] in WEKA. The basic idea is building a single tree using several subsamples. In each
iteration, we will find a better feature using information gain content similar to J48. After finding the
best feature split, all the subsamples are divided using the same features. More details can be found
in [54].The parameters used for J48 and J48-C classifiers are given in below Table 4.

Table 4. J48 and J48-C classifier parameters used in this work.

Parameters J48 J48-C

Minimum Objects 1000 1000
Use MDL correction True True

Number of folds 3 3
Sub-tree raising True True

Details of the parameters can be find in WEKA 3.9 version [56].

J48 and J48-C classifiers are decision tree classifiers in which tree splitting criteria play a significant
role. The above-mentioned parameters determine the growth and direction of the tree structures that
influence the final model accuracy. Sub-tree raising considers raising of a sub-tree when pruning is
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enabled. The minimum number of objects determines the number of instances per leaf. Minimum
description length (MDL) correction is a statistical measure like information gain to identify the best
split tree. The number of folds determines the data used for error reduce pruning; here, one fold is for
pruning and the other folds for building the tree.

All the parameters are fixed based on the final results. All the details of the parameters can be
found in WEKA 3.9 version [56].

3. Results

In this work, we are classifying the five classes: N, V, S, F, Q. The training set is constructed with
the array of records as DS1 = [101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124,201, 203, 205, 207,
208, 209, 215, 220, 223, 230], and DS2 = [100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 212, 213,
214, 219, 221, 222, 228, 231, 232, 233, 234]. Here, the numerical values represent the patient record
number. Four records (102, 104, 107 and 217) having paced beats are exempted from both DS1 and DS2
data sets.

We start with scatter plots for justifying the choice of features in discriminating against the
heartbeats. Individual performance of five classifiers naïve Bayes, LDA, QDA, J48, and J48 consolidated
is presented, and analysis using a voting scheme with various combinations of these classifiers is
considered. The performance is illustrated for each combination. We used the WEKA 3.9 version
(University of Waikato, New Zealand) [56] for implementing the classification algorithms and scatter
plots. Data pre-processing and feature extraction is implemented using MATLAB 2018a (Mathworks,
MA, USA). All the experiments are carried out in Windows 8, 8 GB RAM, and 64-bit operating system.

The Performance Measures

An algorithm’s efficiency can be validated with appropriate performance measures. In this work,
Sensitivity (SEN), False Positive Rate (FPR), Positive Predictive Value (PPV), and Overall Accuracy (OA)
are used as performance measures to compare with the state-of-the-art methods, following the AAMI
recommendations. The confusion matrix required for calculating these measures is given in Table 5.
For V and S classes, the measures are calculated as per [31]. For remaining classes, we followed [57].

Table 5. Confusion matrix.

Predicted Labels

Actua Labels N V S F Q Sum
N Nn Nv Ns N f Nq RN
V Vn Vv Vs Vf Vq RV
S Sn Sv Ss S f Sq RS
F Fn Fv Fs Ff Fq RF
Q Qn Qv Qs Q f Qq RQ

Sum CN CV CS CF CQ R/C

Performance measure from Table 5 can be calculated as follows:
The sum measures of row-wise and column-wise calculations are:

RN = Nn + Nv + Ns + N f + Nq; CN = Nn + Vn + Sn + Fn + Qn;

RV = Vn + Vv + Vs + Vf + Vq; CV = Nv + Vv + Sv + Fv + Qv;

RS = Sn + Sv + Ss + S f + Sq; CS = Ns + Vs + Ss + Fs + Qs;

RF = Fn + Fv + Fs + Ff + Fq; CF = N f + Vf + S f + Ff + Q f ;

RQ = Qn + Qv + Qs + Q f + Qq; CQ = Nq + Vq + Sq + Fq + Qq;

R = RN + RV + RS + RF + RQ; C = CN + CV + CS + CF + CQ;

R = C.

(19)
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The false-positive and false negative values for each class are defined as below:

FNN = RN − Nn; FPN = CN − Nn;

FNV = RV −Vv; FPV = CV − (Vv + Fv + Qv);

FNS = RS − Ss; FPS = CS − (Ss + Qs);

FNF = RF − Ff ; FPF = CN − Ff ;

FNQ = RQ −Qq; FPQ = CN −Qq.

(20)

The other useful measures, true positives, and negatives can be calculated for Classes N,V,S,F,Q:

TPN = Nn; TNN = R− (RN + CN − Nn);

TPN = Vv; TNV = R− (RV + CV −Vv);

TPS = Ss; TNS = R− (RS + CS − Ss);

TPF = Ff ; TNF = R− (RF + CF − Ff );

TPQ = Qq; TNQ = R− (RQ + CQ −Qq).

(21)

The performance measures are given by

SEN =
TP

TP + FN
; FPR =

FP
TN + FP

; PPV =
TP

TP + FP
; OA =

TPN + TPV + TPS + TPF + TPQ

R
,

where TP = True Positive, TN = True Negative, FP = False Positive, andFN = False Negative.
We present the scatter plots with marginal histograms on the testing data set DS2, for features

in the two-dimensional feature space. These scatter plots reveal how different features spread in
feature space, thereby revealing the relationship between different heartbeat classes. Figure 2 shows
the two-dimensional scatter plot between cumulant 2 of IMF1 to norm entropy value of IMF2. In this
plot, we can observe that N and V beats are dominantly spread across space. In addition, the histogram
plots also reveal the good discrimination between N, V, and Q classes out of the five classes. The next
plot from Figure 3 gives the relation between the log energy entropy of IMF1 to cumulant 2 of IMF1.
In this figure, we can see the spreading of N, V, S, and F classes in the space. In particular, this space
provides good discrimination between N, V, and S classes. From Figures 4–6, we can observe that log
energy entropy values extracted from different IMFs provide a good perception of N, V, and S classes.

In the same way, Figures 7–8 give better discrimination of Q beats, which are very rare indeed.
In these figures, the characteristic feature is the norm entropy. In addition, different combinations
of features with norm entropy reveal different class spreads and discrimination capabilities. As a
whole, we can say that the combinations of selected features from different IMFs can predict the
required hypothesis.

After dividing the training and testing feature sets, we need to learn a model for classification.
In this work, we used an ensemble learner for classification. Ensemble classifiers use multiple learning
algorithms and combine all the decisions. It can be more accurate than the individual classifiers.
The main advantage of the ensemble classifiers is that we can achieve low bias error and low variance
error. Ensembles using multiple trained (high variance/ low bias) models can average out of the
variance, leaving just the bias. In addition, ensemble classifiers are preferred for imbalanced datasets.
Our DS1 and DS2 datasets are highly imbalanced with majority N group class and minor F and Q
classes. Therefore, in this work, we used a voting scheme based on product rule to ensemble the
classifiers. The individual classifier performance on DS2 (testing data) is presented in Tables 6 and 7.
Confusion matrices calculated for LDA, QDA, naïve Bayes, J48 and J48-C classifiers are shown in
Table 6. The performance measures for the corresponding matrices based on Table 5 are presented
in Table 7.
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Figure 2. Scatter plot with marginal histogram for CUM2 (IMF1) vs. norm entropy (IMF1).
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Figure 3. Scatter plot with marginal histogram for log entropy (IMF1) vs. CUM2 (IMF1).
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Figure 4. Scatter plot with marginal histogram for log entropy (IMF1) vs. log entropy (IMF2).
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Figure 5. Scatter plot with marginal histogram for log entropy (IMF1) vs. log entropy (IMF3).
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Figure 6. Scatter plot with marginal histogram for log entropy (IMF1) vs. log entropy (IMF4).
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Figure 7. Scatter plot with marginal histogram for norm entropy (IMF1) vs. CUM2 (IMF1).
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Figure 8. Scatter plot with marginal histogram for norm entropy (IMF1) vs. log entropy (IMF1).

From this table, we can see that each classifier yields different prediction. LDA and J48 give
better classification for the N and V classes. It is an understandable phenomenon because of the
dominating number of examples in N and V. LDA and J48-C provides better discrimination to Q
group. The other classifiers J48-C and naïve Bayes are providing better SEN results for F group. Finally,
S class is predicted accurately by J48-C and QDA classifiers. The other important point is, although
all classifiers yield better results for the specific group of categories, the OA is dominated by the N
class discrimination. Therefore, it is noticeable that OA is no longer a useful performance measure for
imbalanced data classification.

In Table 8, the confusion matrix after combining J48, LDA, and naïve Bayes classifiers using the
voting scheme is presented. The corresponding performance measures are demonstrated in Table 9.
From the results, it is evident that this combination yields better results for N, V, F, and Q classes and
average result for S class. The critical point is N, and S classes have more morphological similarities.
Therefore, individual classifiers are giving complementary results for N and S. However, this ensemble
selection enhances the prediction generalization for both classes.
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Table 6. Confusion matrices for LDA, QDA, naïve Bayes, J48, and J48-C classifiers.

LDA QDA

N V S F Q N V S F Q

N 40,842 33 47 1093 0 2777 266 36,394 2578 0
V 319 2787 0 0 0 5 3101 0 0 0
S 1831 1 2 3 0 95 56 1675 11 0
F 171 0 0 89 0 91 64 20 85 0
Q 0 0 0 0 6 0 6 0 0 0

naïve Bayes J48

N V S F Q N V S F Q

N 36,222 745 997 3289 762 41,801 214 0 0 0
V 930 1874 52 231 19 363 2743 0 0 0
S 1321 3 133 27 353 1819 18 0 0 0
F 8 0 2 245 5 259 1 0 0 0
Q 1 0 0 4 1 5 1 0 0 0

J48-C

N V S F Q

N 0 6941 28,966 5290 818
V 0 2205 894 6 1
S 0 24 1785 19 9
F 0 30 23 191 16
Q 0 0 0 0 6

Table 7. Performance measures for LDA, QDA, naïve Bayes, J48 and J48-C classifiers.

LDA QDA

OA = 92.60 SEN% FPR% PPV% OA = 16.20 SEN% FPR% PPV%

N 97.2 44.6 94.6 6.6 3.7 93.6
V 89.7 0.1 98.8 99.8 0.9 88.8
S 0.1 0.1 4.1 91.2 80.2 4.4
F 34.2 2.3 7.5 32.7 5.5 3.2
Q 100 0 100 0 0 0

naïve Bayes J48

OA = 81.47 SEN% FPR% PPV% OA = 94.32 SEN% FPR% PPV%

N 86.2 43.4 94.1 99.5 47 94.5
V 60.3 1.7 71.5 88.3 0.5 92.1
S 7.2 2.3 11.2 0 0 0
F 94.2 7.6 6.5 0 0 0
Q 16.7 2.4 0.1 0 0 0

J48-C

OA = 8.86 SEN% FPR% PPV%

N 0 0 0
V 71.0 15.9 24.0
S 97.2 65.8 5.6
F 73.5 11.3 3.5
Q 100 1.8 0.7

Table 8. Confusion matrix for combining J48, LDA, and naïve Bayes classifiers using a Voting scheme.

Voting (J48, LDA, naïve Bayes)

N V S F Q

N 39,542 53 489 1931 0
V 395 2708 3 0 0
S 1473 1 353 10 0
F 22 5 1 232 0
Q 0 0 0 0 6
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Table 9. Performance measures for combining J48, LDA, and naïve Bayes classifiers using a
Voting scheme.

Voting (J48, LDA, naïve Bayes)

OA = 90.71 SEN% FPR% PPV%

N 94.1 36.3 95.4
V 87.2 0.1 97.9
S 19.2 1.1 41.7
F 89.2 4.1 10.7
Q 100 0 100

Similarly, we performed ensemble voting for different combinations and the results are presented
in Tables 10–15. Each combination provides various enhanced results in some aspects.

Table 10. Confusion matrix for combining J48, naïve Bayes, and QDA classifiers using a voting scheme.

Voting ( J48, naïve Bayes, QDA)

N V S F Q

N 35,629 253 3836 2297 0
V 11 3095 0 0 0
S 1188 11 624 14 0
F 28 61 11 160 0
Q 0 6 0 0 0

Table 11. Performance measures for combining J48, naïve Bayes, and QDA classifiers using a
Voting scheme.

Voting ( J48, naïve Bayes, QDA)

OA = 83.6 SEN% FPR% PPV%

N 84.8 23.6 96.7
V 99.6 0.8 90.3
S 34 8.5 14
F 61.5 4.9 6.5
Q 0 0 0

Table 12. Confusion matrix for combining J48-C, naïve Bayes, and QDA classifiers using a
Voting scheme.

Voting (J48-C, naïve Bayes, QDA)

N V S F Q

N 29,730 255 9089 2491 0
V 8 3098 0 0 0
S 1031 8 779 19 0
F 21 61 12 166 0
Q 0 6 0 0 0

As mentioned earlier, the dataset is dominated by N, V, and S classes, respectively. The F and Q
classes are sporadic. Therefore, in some works, only N, V, and S classes are considered for classification.
We provide the results for such schemes in Tables 16–25. Here, first results are also presented for
individual classifiers; later, the ensemble voting scheme is performed on different combinations of
classifiers. Each one gives better classifications than individual classifiers.
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Table 13. Performance measures for combining J48-C, naïve Bayes, and QDA classifiers using a
Voting scheme.

Voting (J48-C,naïve Bayes, QDA)

OA = 71.51 SEN% FPR% PPV%

N 70.8 20.3 96.6
V 99.7 0.7 90.4
S 42.4 20.1 7.9
F 63.8 6.3 5.3
Q 0 0 0

Table 14. Confusion matrix for combining J48-C, naïve Bayes, and LDA classifiers using a
Voting scheme.

Voting (J48-C, naïve Bayes, LDA)

N V S F Q

N 38,329 66 942 2678 0
V 553 2532 20 1 0
S 1405 2 416 14 0
F 20 4 1 235 0
Q 0 0 0 0 6

Table 15. Performance measures for combining J48-C, naïve Bayes, and LDA classifiers using a
Voting scheme.

Voting (J48-C,naïve Bayes, LDA)

OA = 87.91 SEN% FPR% PPV%

N 91.2 38 95.1
V 81.5 0.2 97.2
S 22.6 2.1 30.2
F 90.4 5.7 8
Q 100 0 100

Table 16. Confusion matrices for various classifiers (N, V, and S classes).

LDA QDA

N V S N V S

N 41,875 27 113 4569 480 36,966
V 280 2826 0 5 3101 0
S 1835 0 2 105 56 1676

naïve Bayes J48

N V S N V S

N 37,385 2968 1662 41,998 17 0
V 922 2120 64 1095 2011 0
S 1336 18 483 1837 0 0

J48-C

N V S

N 34,999 7016 0
V 651 2455 0
S 1585 252 0
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Table 17. Performance measures for various classifiers (N,V, S classes).

LDA QDA

OA = 95.19 SEN% FPR% PPV% OA = 19.90 SEN% FPR% PPV%

N 99.7 42.8 95.2 10.9 2.2 97.6
V 91.0 0.1 99.1 99.8 1.2 85.3
S 0.1 0.3 1.7 91.2 81.9 4.3

naïve Bayes J48

OA = 85.15 SEN% FPR% PPV% OA = 93.71 SEN% FPR% PPV%

N 89 45.7 94.3 100 59.3 93.5
V 68.3 6.8 41.5 64.7 0 99.2
S 26.3 3.8 21.9 0 0 0

J48-C

OA = 79.76 SEN% FPR% PPV%

N 83.3 45.2 94
V 79 16.6 25.2
S 0 0 0

Table 18. Confusion matrix for combining J48, LDA, and naïve Bayes classifiers using a Voting scheme
(N,S,V).

Voting ( J48, LDA, naïve Bayes)

N V S

N 40,918 361 736
V 205 2897 4
S 1469 3 365

Table 19. Performance measures for combining J48, LDA, and naïve Bayes classifiers using Voting
scheme (N,S,V).

Voting ( J48, LDA, naïve Bayes)

OA = 94.08 SEN% FPR% PPV%

N 97.4 33.9 96.1
V 93.3 0.8 88.8
S 19.9 1.6 33

Table 20. Confusion matrix for combining J48, naïve Bayes, and QDA classifiers using Voting scheme
(N,S,V).

Voting ( J48, naïve Bayes, QDA)

N V S

N 37,421 574 4020
V 12 3094 0
S 1203 8 626
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Table 21. Performance measures for combining J48, naïve Bayes, and QDA classifiers using Voting
scheme (N,S,V).

Voting ( J48, naïve Bayes, QDA)

OA = 87.61 SEN% FPR% PPV%

N 89.1 24.6 96.9
V 99.6 1.3 84.2
S 34.1 8.9 13.5

Table 22. Confusion matrix for combining J48-C, naïve Bayes, and QDA classifiers using Voting scheme
(N,S,V).

Voting ( J48-C, naïve Bayes, QDA)

N V S

N 32011 598 9406
V 7 3099 0
S 1062 8 767

Table 23. Performance measures for combining J48-C, naïve Bayes, and QDA classifiers using Voting
scheme (N,S,V).

Voting ( J48-C, naïve Bayes, QDA)

OA = 76.40 SEN% FPR% PPV%

N 76.2 21.6 96.8
V 99.8 1.4 83.6
S 41.8 20.8 7.5

Table 24. Confusion matrix for combining J48-C, naïve Bayes, and LDA classifiers using Voting scheme
(N,S,V).

Voting ( J48-C, naïve Bayes, LDA)

N V S

N 40,248 688 1079
V 359 2735 12
S 1407 2 428

Table 25. Performance measures for combining J48-C, naïve Bayes, LDA classifiers using Voting scheme
(N,S,V).

Voting ( J48-C, naïve Bayes, LDA)

OA = 92.44 SEN% FPR% PPV%

N 95.8 35.7 95.8
V 88.1 1.6 79.9
S 23.3 2.4 28.2

4. Discussion

This section contains a discussion on simulating the proposed methodology illustrated in Figure 1.
In this work, we employ an adaptive non-stationary and nonlinear decomposition method, namely
ICEEMD, to analyze the ECG heartbeats. ICEEMD produces a local and entirely data-driven separation
of a signal in the form of fast and slow oscillations called IMFs. The main advantage of ICEEMD is
that it successfully avoids the spurious nodes and reduces the amount of noise in the modes.
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Later, six nonlinear morphological features: higher-order cumulants, log, Shannon energy, and
norm entropies are extracted from the first six IMFs of each heartbeat, to generate a 36× 1 feature
vector. Then, these feature vectors are divided based on training and testing sets DS1 and DS2 as
specified above. Statistics (median and interquartile range) of these features for each class are presented
in Table 26. Variation of attributes corresponding to different heartbeats can be observed from this
table.

In Table 6, we presented the individual performance of various classifiers on the given problem.
Here, all classifier models offer separate results for all the classes. Each model performs well for a
specific class or classes. However, it fails in providing the overall better performance. For example, the
S class contains 1837 beats, the J48, LDA, and naïve Bayes are predicting 51, 2, 1516 beats, respectively.
Whenever we combine these three models using the voting scheme as shown in Table 12, this combined
model identified 779 beats correctly. The voting scheme uses the product of probabilities rule. In this
scheme, it is assumed that each model representation for a given class is statistically independent. It is
because of the different representation capabilities of each model. From this, a final decision rule is
formed as described in Section 2.4. This decision rule quantifies the probability of class choice from
combined hypothesis models and the same type of results we can observe for other classes. In this work,
we implemented four voting schemes with different classifier combinations. Each combination again
provides different but better results than individual classifier models. The proposed combinations of
classifier details are given in Table 27.
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Table 26. Median ± interquartile range of features extracted on DS1.

Feature Number Features N S V F Q

1 CUM2(IMF1) 1.0 × 10−6 ± 4.0 × 10−6 8.0 × 10−6 ± 4.03 × 10−5 7.50 × 10−5 ± 0.00045775 0.000162 ± 0.000326 0.0001405 ± 0.009121
2 CUM3(IMF1) 0 ± 0 0 ± 0 0 ± 2.0 × 10−6 0 ± 5.0 × 10−6 0 ± 0.000313
3 CUM4(IMF1) 0 ± 0 0 ± 0 1.0 × 10−6 ± 2.58 × 10−5 2.50 × 10−6 ± 1.1 × 10−5 4.5 × 10−6 ± 0.006113
4 Shan(IMF1) 0.004769 ± 0.009686 0.017643 ± 0.06530625 0.112159 ± 0.4199265 0.216149 ± 0.330006 0.153638 ± 1.47632
5 log(IMF1) −4792.4962 ± 379.828 −4735.1172 ± 286.978 −4532.44 ± 467.507 −4358.371 ± 271.824 −4604.445 ± 1783.20
6 norm(IMF1) 0.1004 ± 0.0726 0.1538 ± 0.1719 0.0815 ± 0.05794 0.5541 ± 0.5434 18.1790 ± 20.55612
7 CUM2(IMF2) 0.001 ± 0.00347 0.00109 ± 0.0035 0.00028 ± 0.00137 0.00107 ± 0.00143 0.00411 ± 0.0134
8 CUM3(IMF2) 8.0 × 10−6 ± 5.20 × 10−5 4.0 × 10−6 ± 5.10 × 10−5 0 ± 6.0 × 10−6 5.0 × 10−6 ± 2.10 × 10−5 0 ± 0.000387
9 CUM4(IMF2) 1.50 × 10−5 ± 0.000185 2.10 × 10−5 ± 0.000128 2.0 × 10−6 ± 4.20 × 10−5 1.60 × 10−5 ± 5.20 × 10−5 0.00046 ± 0.002581
10 Shan(IMF2) 1.3074 ± 2.9180 1.3675 ± 3.4250 0.431 ± 1.429 1.4044 ± 1.44285 2.90440 ± 6.76104
11 log(IMF2) −4055.72 ± 403.632 −4045.57 ± 565.833 −4064.90 ± 479.11 −3788.21 ± 266.57 −4023.39 ± 1366.58
12 norm(IMF2) 2.41 ± 3.81 2.57 ± 4.95 2.744 ± 1.768 2.69 ± 2.04 18.17 ± 20.556
13 CUM2(IMF3) 0.0069 ± 0.0097 0.00534 ± 0.009013 0.00443 ± 0.00936 0.011997 ± 0.00909 0.004148 ± 0.008015
14 CUM3(IMF3) −7.80 × 10−5 ± 0.000322 −8.60 × 10−5 ± 0.0003605 −3.10 × 10−5 ± 0.000246 −0.00019 ± 0.00062 8.95 × 10−5 ± 0.000266
15 CUM4(IMF3) 0.000235 ± 0.000863 0.000104 ± 0.0006515 0.000117 ± 0.000747 0.0005255 ± 0.000767 0.0001945 ± 0.000396
16 Shan(IMF3) 6.3075515 ± 6.075866 5.532014 ± 6.254886 4.570122 ± 5.93904725 10.002892 ± 5.49255 3.8205085 ± 6.888019
17 log(IMF3) −3114.4106 ± 443.70730 −3071.71175 ± 705.504 −3178.659 ± 531.3571 −2731.2660 ± 467.4692 −3341.5431 ± 891.0573
18 norm(IMF3) 9.3564 ± 7.6444 8.69133 ± 8.37546 7.585 ± 4.1465 14.85 ± 7.440 18.179 ± 20.55
19 CUM2(IMF4) 0.013817 ± 0.0210 0.01233 ± 0.01653 0.0215 ± 0.03611 0.0370 ± 0.0297 0.0069 ± 0.0102
20 CUM3(IMF4) −0.00012 ± 0.00081 −6.80 × 10−5 ± 0.000469 −0.00014 ± 0.001305 −0.001542 ± 0.00207 0 ± 0.00039
21 CUM4(IMF4) 0.000147 ± 0.000734 4.60 × 10−5 ± 0.0003225 0.000404 ± 0.00189 0.00027 ± 0.00124 0.000138 ± 0.00018
22 Shan(IMF4) 13.05585 ± 12.76457 12.2365 ± 11.295 16.104 ± 15.135 25.934 ± 15.110 7.113 ± 10.471
23 log(IMF4) −2150.494 ± 533.542 −2143.567 ± 611.308 −2206.943 ± 794.75 −1614.17 ± 480.99 −2593.22 ± 1271.81
24 norm(IMF4) 19.367 ± 15.509 18.686 ± 14.240 16.26 ± 9.166 35.59 ± 20.941 18.179 ± 20.556
25 CUM2(IMF5) 0.0084 ± 0.018 0.0066 ± 0.0156 0.033 ± 0.0648 0.056 ± 0.058 0.0075 ± 0.0149
26 CUM3(IMF5) 1.0 × 10−6 ± 0.00017 0 ± 0.000103 −1.0 × 10−6 ± 0.00146 1.40 × 10−5 ± 0.0022 0 ± 0.000405
27 CUM4(IMF5) −7.00 × 10−6 ± 0.00012 −6.0 × 10−6 ± 0.000127 −3.0 × 10−5 ± 0.00193 −0.00236 ± 0.00621 −5.50 × 10−6 ± 0.000287
28 Shan(IMF5) 10.358 ± 15.6374 8.68112 ± 14.823 25.882 ± 29.195 39.2240 ± 25.737 8.992 ± 16.965
29 log(IMF5) −1917.009 ± 593.83 −1992.177 ± 872.920 −1567.422 ± 918.993 −1216.140± 489.3834 −2179.500 ± 1495.143
30 norm(IMF5) 17.118 ± 19.0735 14.983 ± 19.2726 19.495 ± 14.659 52.96 ± 32.190 18.179 ± 20.556
31 CUM2(IMF6) 0.0040 ± 0.0092 0.0028 ± 0.00723 0.0184 ± 0.04606 0.0571 ± 0.0827 0.0073 ± 0.01072
32 CUM3(IMF6) 1.0 × 10−6 ± 0.00010 0 ± 6.80 × 10−5 2.0 × 10−6 ± 0.0011117 8.0 × 10−6 ± 0.00527 0 ± 0.0002
33 CUM4(IMF6) −1.50 × 10−5 ± 0.00011 -8.0 × 10−5 6± 6.25 × 10−5 −0.00024 ± 0.00205 −0.00389± 0.01428 −4.40 × 10−5 ± 0.00017
34 Shan(IMF6) 6.50405 ± 11.11697 5.26119 ± 9.9055 20.0112 ± 31.26347 44.49 ± 39.5131 10.284 ± 13.481
35 log(IMF6) −1903.169 ± 637.510 −1983.32 ± 713.457 −1470.196 ± 744.176 −1062.5 ± 546.13 −1682.363 ± 1296.591
36 norm(IMF6) 13.0914 ± 15.1495 11.4410 ± 14.268 10.566 ± 12.262 57.357 ± 46.317 18.179 ± 20.556

Note: CUM2-second order cumulnat, CUM3-third order cumulant, CUM4-Fourth order cumulant, Shan-Shannon entropy, log-Log entropy, norm- norm entropy.
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4.1. Comparative Analysis

To assess the performance of our proposed methodology, we compared our results with the
existing methods in the literature. Comparisons are presented in Tables 28 and 29. The features and
classification schemes employed by various researchers listed in Tables 28 and 29 are given in Table 27.
In Table 28, we compare our four sets of voting schemes with the works which followed AAMI
recommendations based on [31] division scheme. In addition, Table 29 shows the performance measure
comparison with the literature on only N, V, and S classification. In Table 28, our proposed methods
yield almost similar performance compared to the state-of-the-art for N, S, and V classes; however, in
case of F and Q classes, our proposed work one and four outperforms the other compared methods.
From Table 29, it is evident that our proposed methods one and three are efficiently distinguished the
classes N, S, and V. The best results of our method are highlighted in bold. Overall, the measures of
our work are appreciable compared with other approaches.

Table 27. Methodology description of recent state-of-the-art compared in our work.

Literature Feature Extraction Classification

[58]
method-1 R–R intervals Optimum Path Forest (OPF)
method-2 Wavelet based features OPF
method-3 Mean, standard deviation and average power of wavelet sub-band OPF
method-4 Auto correlation and energy ratio of wavelet bands OPF
method-5 Fast-ICA OPF
method-6 (Wavelet+ICA+RR interval) OPF

[59] (ECG+VCG) complex network based features SVM

[42] Wavelet packet decomposition based entropy features Random Forest

[60]
method-1 Wavelet based features Hierarchical Classification (tree approach)
method-2 Mean, standard deviation and average power of wavelet sub-band Hierarchical Classification (tree approach)
method-3 Auto correlation and energy ratio of wavelet bands Hierarchical Classification (tree approach)
method-4 Fast-ICA Hierarchical Classification (tree approach)
method-5 (Wavelet+ICA+RR interval) Hierarchical Classification (tree approach)

[61] Temporal Vectrcardiogram(TCG) based features SVM

[62] A combination of projected features
(features derived from the projected matrix and DCT) and RR intervals SVM

[63] TCG feature selection by PSO SVM
proposed work
method-1 Entropy and statistical features calculated on ICEEMD modes Voting ( J48, LDA, naïve Bayes)
method-2 Entropy and statistical features calculated on ICEEMD modes Voting ( J48, QDA, naïve Bayes)
method-3 Entropy and statistical features calculated on ICEEMD modes Voting ( J48-C, QDA, naïve Bayes)
method-4 Entropy and statistical features calculated on ICEEMD modes Voting ( J48-C, LDA, naïve Bayes)

Table 28. Performance comparison with recent literature (N, S, V, F, and Q classes).

Literature N S V F Q
SEN/FPR/PPV SEN/FPR/PPV SEN/FPR/PPV SEN/FPR/PPV SEN/FPR/PPV

[58]
method-1 84.5/-/- 1.0/-/- 77.7/-/- 38.4/-/- 0/-/-
method-2 86.4/-/- 2.3/-/- 40.8/-/- 0.5/-/- 0/-/-
method-3 84.8/-/- 18.3/-/- 77.8/-/- 7.5/-/- 0/-/-
method-4 92.5/-/- 3.0/-/- 61.8/-/- 16.8/-/- 0/-/-
method-5 95.7/-/- 17.7/-/- 74.7/-/- 3.9/-/- 0/-/-
method-6 93.2/-/- 12.1/-/- 85.5/-/- 18.3/-/- 0/-/-

[59] 89.3/25.2/96.6 38.6/6.7/18 81.2/4.9/53.6 0/0/0 0/0/0

[42] 94.67/3.92/99.73 20/3.69/0.16 94.20/0.71/89.78 50/0.78/0.52 0/0/0

[60]
method-1 92.3/22.2/97.1 28.5/2.6/29.6 83.5/5.51/51.2 19.1/1.07/12.3 0/0/-
method-2 93.6/57.1/93.0 0.49/0.47/3.81 67.9/3.99/54.2 0/1.63/0 0/0/0
method-3 98.2/41.2/95.1 4.72/0.71/20.3 81.7/1.25/82.0 2.58/0.40/4.88 0/0/0
method-4 98.6/39.8/95.3 9.15/0.56/38.6 83.2/1.21/82.7 0.26/0.38/0.53 0/0/-
method-5 94.7/31.2/96.1 37.4/6.19/18.8 43.9/1.48/67.4 0.52/0.72/0.56 0/0/-

proposed work
method-1 94.1/36.3/95.4 19.2/1.1/41.7 87.2/0.1/97.9 89.2/4.1/10.7 100/0/100
method-2 84.8/23.6/96.7 34/8.5/14 99.6/0.8/90.3 61.5/4.9/6.5 0/0/0
method-3 70.8/20.3/96.6 42.4/20.1/7.9 99.7/0.7/90.4 63.8/6.3/5.3 0/0/0
method-4 91.2/38/95.1 22.6/2.1/30.2 81.5/0.2/97.2 90.4/5.7/8 100/0/100
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Table 29. Performance comparison with recent literature (N, S, and V classes).

Literature N S V
SEN/FPR/PPV SEN/FPR/PPV SEN/FPR/PPV

[61] 95/27.9/96.5 29.6/3.1/26.4 85.1/3.01/66.3

[62] 98.4/-/95.4 29.5/-/38.4 70.8/-/85.1

[63]
method on VCG 79.1/27.0/96.3 31.2/8.4/13.0 89.5/7.2/46.1

proposed work
method-1 97.4/33.9/96.1 19.9/1.6/33 93.3/0.8/88.8
method-2 89.1/24.6/96.9 34.1/8.9/13.5 99.6/1.3/84.2
method-3 76.2/21.6/96.8 41.8/20.8/7.5 99.8/1.4/83.6
method-4 95.8/35.7/95.8 23.3/2.4/28.2 88.1/1.6/79.9

4.2. Limitation and Future Scope

Despite the proposed method giving significant results, the performance of the S class is still
limited when compared to other classes. Similar behavior is observed in other state-of-the-art methods.
Hence, there is a need to explore a new set of attributes and learning algorithms to improve this. In
addition, incorporating other physiological signals such as blood pressure, plethysmographic signals
along with ECG may improve the description of “heart functioning.”

5. Conclusions

In this work, we implemented a computer-aided inter-patient heartbeat classification algorithm.
We employed a nonlinear decomposition method called ICEEMED, to extract some important
information lying in ECG. Later, HOS and entropy measures are calculated on the modes obtained after
ICEEMD and used as features. Class imbalance is one of the critical challenges in medical diagnosis.
We addressed this issue by utilizing the voting scheme as the learning model. The extracted features
are then fed to this model for classification. To design this model, naïve Bayes, linear and quadratic
discriminating functions, J48 and J48 consolidated classifiers are explored. The proposed method
showed promising results compared to state-of-the-art techniques. Our method opens new frontiers to
the successful identification of rare heartbeat groups enabling a real-time heart monitoring system.
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