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We examine the stationary–state equations for lattices with generalized Markovian dephasing and
relaxation. When the Hamiltonian is quadratic, the single–particle correlation matrix has a closed
system of equations even in the presence of these two processes. The resulting equations have a
vectorized form related to, but distinct from, Lyapunov’s equation. We present an efficient solution
that helps to achieve the scaling limit, e.g., of the current decay with lattice length. As an example,
we study the super–diffusive–to–diffusive transition in a lattice with long–range hopping and de-
phasing. The approach enables calculations with up to 104 sites, representing an increase of 10 to 40
times over prior studies. This enables a more precise extraction of the diffusion exponent, enhances
agreement with theoretical results, and supports the presence of a phase transition. There is a
wide range of problems that have Markovian relaxation, noise, and driving. They include quantum
networks for machine–learning–based classification and extended reservoir approaches (ERAs) for
transport. The results here will be useful for these classes of problems.

I. INTRODUCTION

Computational techniques for quantum transport are
currently experiencing a renaissance, thanks to advances
in many-body methods, such as tensor networks, and fun-
damental developments that numerically capture out–of–
equilibrium systems. In the case of transport through
junctions, the works of Subotnik, Hansen, Ratner, and
Nitzan [1] and, independently, Sánchez and collabora-
tors [2, 3] led the development of relaxation–based meth-
ods. The incorporation of relaxation in “extended,”
“mesoscopic,” or “auxiliary” reservoirs maintains a parti-
cle or temperature imbalance. This persistent imbalance
leads to the formation of a genuine stationary state, in
contrast to microcanonical approaches [4–24].

The pioneering works of Subotnik et al. [1] and Sánchez
et al. [2, 3] sparked numerous research threads, including
the driven Liouville–von Neumann approach for single–
particle dynamics [25–30] and a Meir–Wingreen approach
with Markovian relaxation for many–body systems that
limits to the exact, continuum result [31–39]. This is
among other formulations for electron transport [40–
47], thermal transport [48–51], quantum thermodynam-
ics [52], reaction coordinates [53], and relaxing [54–57],
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FIG. 1. Markovian network dynamics. A network of
modes undergo Markovian relaxation, represented with ar-

rows and weights γ
+(−)

mm′ (γ
+(−)
m for onsite), and dephasing,

represented by blurred bonds with strength σmm′ or blurred
sites with strength σm. These processes drive dynamics and
transport. Extended reservoirs are an example of such a net-
work where a subset of modes forms the left reservoir (L) and
another the right (R), each with relaxation that maintains a
potential or temperature drop. Another example is boundary
transport with injection and depletion only at terminal sites.

bosonic [58] systems, and pseudo–modes [59–63]. Marko-
vian processes are numerically efficient and compatible
with various computational techniques, leading to sev-
eral integration efforts. This includes density functional
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theory [30, 64, 65] and many–body methods. The lat-
ter encompass non–equilibrium impurity solvers [66–68],
including with tensor networks [69–71]. There are other
tensor network implementations [72, 73], including scal-
able mixed–basis tensor networks [74, 75]. These lever-
age matrix product operators to describe open quantum
systems [5, 76]. In addition to stationary states, Floquet
states are also being examined [77], including with many–
body interactions [78] and for time crystals [79, 80].

The challenges in this field are myriad. First and
foremost, even for non–interacting systems, Markovian
relaxation leads to unphysical behavior—most signifi-
cantly, a violation of the fluctuation–dissipation theorem
(FDT) [31, 33, 35]—and other anomalous behavior that
hinders convergence to the true continuum reservoir [31–
33, 35, 37–39, 45, 77]. Methods that employ Markovian
relaxation to mimic a continuum should employ a limit-
ing process: As the number of reservoir modes increases
and the relaxation strength decreases, the reservoir de-
scription converges to the continuum. The exact choice of
relaxation strength should ensure that the junction state,
including observables such as the current, are stable [77]
and away from anomalous regimes [38, 39]. Due to this
limit, the challenge will be to demonstrate the utility
of Markovian relaxation in capturing continuum reser-
voirs (or thermal baths) in many–body scenarios, such
as the Kondo problem, systems with phase transitions,
or otherwise ones with a small energy scale. Moreover,
the various threads should be woven together to identify
the most efficient and stable approaches, especially when
integrated with other techniques.

The resulting methods, though, are already help-
ful for studying dynamics and transport on networks,
see Fig. 1. Non–equilibrium stationary states under
boundary–driven transport—a specific case of Markovian
relaxation—and dephasing display a host of interesting
phenomena, from rectification to phase transitions [81].
In that vein, we will provide a formulation of gener-
alized Markovian dephasing and relaxation for systems
with quadratic fermionic Hamiltonians. A cost analy-
sis shows how to efficiently solve these equations. We
demonstrate that this approach helps achieve the scal-
ing limit, more accurately determine decay exponents,
and locate the critical point in a one–dimensional lattice
with onsite dephasing and long–range hopping [82–84].

II. EQUATION OF MOTION

We start from the equation of motion for the many–
body density matrix, ρ, in the Gorini–Kossakowski–
Sudarshan–Lindblad form [85–87]

ρ̇ = −ı[H, ρ] + DR[ρ]+DD[ρ]. (1)

Here, H is the Hamiltonian, and DR and DD are re-
laxation and dephasing superoperators, respectively. We

consider quadratic—non–interacting—Hamiltonians,

H =
∑
m,m′

H̄mm′c†mcm′ , (2)

that are particle–conserving, where H̄mm′ are the hop-

ping coefficients and c†m (cm′) are fermionic creation (an-
nihilation) operators for mode m. This class of Hamilto-
nians does not have electron–electron or electron–phonon
interactions. The Markovian relaxation is also quadratic,

DR[ρ] =
∑
mm′

γ+
mm′

(
c†mρcm′ −

1

2

{
cm′c

†
m, ρ

})
+

∑
mm′

γ−
mm′

(
cmρc†m′ −

1

2

{
c†m′cm, ρ

})
, (3)

where γ
+(−)
mm′ are generalized injection (depletion) rates

and {·, ·} gives the anticommutator. This form appears
in the auxiliary master equation approach [66, 67]. For

onsite relaxation of others [31, 73], we denote γ
+(−)
mm ≡

γ
+(−)
m . The Hermitian, positive semidefinite matrices,

γ+(−) =
∑
mm′

γ
+(−)
mm′ |m⟩⟨m′|, (4)

completely describe the injection and depletion of
fermions, and γ = γ+ +γ− is a matrix that gives the to-
tal dissipation strength. This form of relaxation, Eq. (3),
has a simple interpretation as the Markovian limit of
linear contact with non–interacting fermionic reservoirs.
This limit, though, requires multiple completely full and
empty infinite–bandwidth reservoirs, which is the source
of breaking the FDT [33].

Unlike relaxation, the dephasing is quartic,

DD[ρ] =
∑
mm′

σmm′

(
nmρnm′ − 1

2
{nm′nm, ρ}

)
, (5)

where nm = c†mcm is particle–number operator for mode
m. The superoperator in Eq. (5) is a generalized form of
dephasing that contains cross–terms between modes m
and m′. The coefficient matrix,

σ =
∑
mm′

σmm′ |m⟩⟨m′|, (6)

is a real, symmetric, positive semidefinite matrix. The
interpretation of this is straightforward: When an exter-
nal environment interacts with a total, or subtotal, of
particles—for instance, a capacitive coupling to the elec-
tron number on a quantum dot—one obtains such cross
terms. For local dephasing, i.e., σmm′ = σmδmm′ where
δmm′ is the Kronecker delta function, the operator deco-
heres each mode m independently.

We focus on observables quadratic in fermionic opera-
tors, such as populations and particle current. To do so,
we examine the correlation matrix,

Cmm′ = tr[c†m′cmρ]. (7)
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Dephasing, though, is not a Gaussian process, i.e., Wick’s
theorem is not obeyed. Yet, Eq. (1) gives a closed system
of equations for C under local dephasing [81]. This holds
also for generalized dephasing, Eq. (5), yielding

Ċ = −ı
[
H̄,C

]
+ D̄R[C] + D̄D[C], (8)

with the superoperator

D̄R[C] = γ+ − {γ,C} /2 (9)

for relaxation [33] and

D̄D[C] = σ ⊙ C − {diag(σ),C} /2 (10)

for dephasing. The ⊙ signifies the Hadamard product.
In the absence of dephasing, Eq. (8) is a Lyapunov

equation, which gives a numerically efficient approach—
scaling as N3 with N total modes in the network—to find
the dynamics and stationary states, as well as to exam-
ine stability. As noted in Ref. [81], common numerical
routines [88, 89] for the Lyapunov equation can reach
order 104 sites at N3 cost scaling. When dephasing is
present, the resulting equation of motion is no longer in
Lyapunov form. This comes with a penalty. A general
solution of Eq. (8) requires vectorization and diagonaliza-
tion of the associated Lindblad superoperator, at a cost
of N6. For special forms of dephasing, one expects better
scaling. We analyze the cost for generalized dephasing,
as well as both local dephasing and dephasing only in a
junction region. Local dephasing comes with a cost of
N4. Despite the additional power of N compared to the
Lyapunov equation—N4 compared to N3—we show that
one, surprisingly, can still reach N = 104 sites in reason-
able compute time (several hours) on a single machine.

III. STEADY–STATE SOLUTION

Defining the non–Hermitian Hamiltonian,

H = −ıH̄ − γ/2 − diag(σ)/2, (11)

and the particle source,

Z = γ+, (12)

the stationary state has the solution [83, 90]

C∞ =

∫ ∞

0

dτe−ıHτΣ<eıHτ , (13)

where Σ< = Z+σ⊙C∞ ≡ Σ<
γ +Σ<

σ . The appearance of
C∞ on the left– and right–hand sides makes the solution
self–consistent and is a consequence of many–body corre-
lations. While Σ< is just playing the role of a functional
of C∞, it is, as the symbol implies, the lesser self–energy
from non–equilibrium Green’s functions.

For the non–Hermitian Hamiltonian, Eq. (11), we de-
note W† as the matrix with left eigenvectors as rows,

V with right eigenvectors as columns, and normalization
W†V = I and eigenvalues λ. Equation (13) becomes

C∞ = −ı

∫
dω

2π
V 1

ω − λ
Σ̃< 1

ω − λ⋆
V†, (14)

where Σ̃< = W†Σ<W . This integration yields

C∞ = V
[
∆λ−1 ⊙ Σ̃<

]
V†, (15)

with ∆λ−1 having elements[
∆λ−1

]
pq

= 1/
(
λ⋆
q − λp

)
. (16)

Equation (15) is linear in the two terms, so we can write

C∞ = V
[
∆λ−1 ⊙W† (Σ<

γ + Σ<
σ

)
W

]
V†

≡ C∞
γ + C∞

σ ,
(17)

where the first term is independent of C∞ and the second,

C∞
σ = ıV

[
∆λ−1 ⊙

(
W† [σ ⊙ C∞]W

)]
V†, (18)

depends on C∞. The total solution thus requires solving,

C∞ = C∞
γ + D [C∞] , (19)

with the elements of the superoperator D,

Doo′,mm′ = ıσmm′
[
V
[
∆λ−1 ⊙W†|m⟩⟨m′|W

]
V†]

oo′
.

(20)
Both Eq. (19) and Eq. (20) can be costly operations.

IV. COMPUTATIONAL COST

The general solution of Eq. (19) has a computational
cost of N6 to solve the vectorized matrix equation,

C∞ = (1−D)−1
[
C∞
γ

]
, (21)

where 1 is the identity matrix. There is a cost scaling of
N5 to find all the elements of D. The lower power to com-
pute all the elements exploits that for each of the N2 pairs
mm′, the inner bracket in Eq. (20) requires N2 opera-
tions. Sequentially, the outer bracket can be computed
for all elements oo′ at once via matrix multiplication, for
a cost of N3. The total cost is thus N2

(
N2 + N3

)
. If one

were to compute the elements for each quadruple index
oo′mm′ one by one, then the cost would be N6.

Turkeshi and Schiró have a similar solution for a
nearest–neighbor hopping model with onsite dephasing
and boundary injection and depletion [90], and analogous
results appear in Refs. [91, 92]. The model they study ex-
hibits diffusive transport with resistivity that scales with
the length of the lattice. Although they note that not
all terms in the linear equations are necessary to find the
density and current, their example problem does not re-
quire one to reach very large sizes in order to identify
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criticality or a crossover, as no such transition occurs in
their model. Moreover, as we will see via a full cost analy-
sis, computing all elements of C∞ comes at no additional
cost in terms of scaling with network size.

Equations (1)–(5) provide a more general form of re-
laxation and dephasing, including cross terms for both,
as well as injection and depletion on an arbitrary num-
ber of sites (e.g., encompassing extended reservoir ap-
proaches). The solution, Eq. (19) and Eq. (20), should
be solved sequentially: The terms of C∞ that correspond
to non–zero elements of σ should be solved first, and
then the remaining elements of C∞ can be found from
the Lyapunov solution, Eq. (15). Below, we will provide
a complete cost analysis of this approach. This solution
enables simulations for system sizes that are 10 to 40
times larger than prior works [83, 90, 92], and on par
with sizes achievable when Lyapunov solvers are appli-
cable, despite the increase to N4 scaling. It allows us
to extract the critical point more precisely for a model
exhibiting a super–diffusive–to–diffusive transition [83].

Considering the dephasing matrix σ, let Nσ be the
number of non–zero elements, 0 ≤ Nσ ≤ N2. For each
non–zero element, one has to perform the matrix multi-
plications in Eq. (20) for the N modes of the network.
The computational cost to compute every element of D
is NσN

3. Yet, solving Eq. (19) sequentially, first for the
elements of C∞ for which σ is non–zero, then for the rest
of C∞, requires only the N2

σ elements of D that act on
the Nσ subspace. Denoting quantities restricted to this
subspace as lower case—c∞, d, c∞γ —the solution is

c∞ = (1− d)−1
[
c∞γ

]
. (22)

To obtain the whole C∞, one forms σ ⊙ C∞, which only
requires c∞ since σ is zero on other elements. With c∞

in hand, Eq. (15) has only a cost of N3 to obtain C∞.
The overall cost thus depends on the exact value of Nσ

relative to the number of total modes N . The cost is

Cost = max
[
min

(
N2

σN
2, N5

)
, N3

σ , N
3
]
. (23)

From left to right, these are the cost of computing the
N2

σ elements (cost, N2
σN

2) or all elements (cost, N5) of
D, the cost to invert (1− d) in Eq. (22), and the cost of
all standard matrix operations. The latter includes ap-
plying Eq. (15) when c∞ is already known, and also the
eigenvalue problem of the non–Hermitian Hamiltonian,
Eq. (11), itself. The N2

σN
2 cost for the N2

σ elements of
D computes them term by term. This limits to N6 for a
dense σ. The appearance of min

(
N2

σN
2, N5

)
in the cost

indicates that when Nσ is sufficiently large (i.e., when
N2

σ ≥ N3), it is more efficient to compute all elements
of D. The formal scaling still indicates that employing
Eq. (22) is more efficient than Eq. (21) for any allowed
Nσ, even though it is more efficient to compute all ele-
ments of D in the formation step.

One of the most common cases is the presence of lo-
cal dephasing at every site—i.e., σmm′ ∝ δmm′ . This

requires first solving for only the stationary state occu-
pations, nm = C∞

mm with dephasing and nγm = C∞
γ mm

with only relaxation. The resulting equation is

n = (1− d)−1 [nγ ] . (24)

The cost, Eq. (23), is thus

Cost → max
[
min

(
N4, N5

)
, N3, N3

]
= N4. (25)

Thus, it is the formation of d that sets the cost. We note
that this task is trivially parallelizable. The matrices V ,
W , ∆λ−1, and σ can be distributed across many com-
pute cores or nodes, where each calculates some subset of
elements. When formation of the superoperator elements
is the dominant cost, therefore, further gains in efficiency
can be obtained, which we do numerically exploit. Im-
portantly, there is no increase in memory requirements
in forming d for local dephasing, it remains at N2.

There are many other physically interesting cases, each
potentially having a different dominant cost. For in-
stance, transport across a junction region, S, driven by
bias or temperature drop across non–Markovian reser-
voirs L and R is one of the most important classes. This
setup requires taking the number of extended reservoir
modes Nr to infinity while taking the relaxation to zero.
The junction size, though, remains either fixed or much
smaller than Nr, i.e., NS ≪ Nr with NS the number of
sites in S. When there is local dephasing on just S, e.g.,
due to local inelastic scattering or electron–electron in-
teractions, then nearly all of the elements of Eq. (20) are
zero. In this case, Eq. (23) is

Cost → max
[
min

(
N2

SN
2, N5

)
, N3

S , N
3
]

= N3. (26)

Here, N = 2Nr + NS and, since Nr → NS at fixed NS ,
we assume N2

S ≤ N . That is, the cost scaling for this
setup is the same as without dephasing.

V. EXAMPLE

We now consider a one–dimensional lattice S of non–
interacting Fermions with long–range hopping,

HS =

NS−1∑
i=1

NS−i∑
r=1

vS
rα

(
c†i ci+r + c†i+rci

)
(27)

where vS is the hopping strength, α is the long–range
exponent, r is the inter–site distance (in units of the lat-
tice spacing), and NS is the number of sites in S, see
Fig. 2(a). The system S has uniform onsite dephasing,
i.e., σij = σ δij for i, j ∈ S. We apply an infinite bias via
Markovian injection from the left L with rate γ+, and
depletion to the right R with rate γ− at the boundaries.

This model has been previously studied, see, e.g.,
Ref. [83], and is part of a broader class of physi-
cal systems with long–range interactions and hopping.
This class includes natural and artificial light–harvesting
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FIG. 2. Boundary–drive with long–range hopping: (a)
A one–dimensional lattice is held at an infinite bias with the
left reservoir L completely filled and the right reservoir R
completely empty. Long–range hopping is given by a power–
law, vS/r

α. The injection and depletion rates are γ+ and
γ− from L and to R, respectively. Each site is subject to
Markovian dephasing σ indicated by the blurred sites. (b)
Stationary–state occupation, ni, versus i for various hopping
exponents α. The solid line (α = 1.51) shows a perfectly lin-
ear density drop, while smaller α (dashed and dotted curves)
develop pronounced curvature and boundary layers.

complexes [93–95], and models implementable with
controllable couplings in experimental platforms [96–
98]. Non–local couplings can qualitatively modify equi-
librium phases, ground state structure, and dynam-
ical response [99]. For instance, they can replace
the ordinary diffusion under short–range models with
anomalous transport, including superdiffusion and Lévy–
flight behavior, as established theoretically and ob-
served experimentally [82, 97, 100]. They also reshape
measurement–induced phase transitions (MIPT), pro-
ducing new universality classes or suppressing the tran-
sition entirely [101–103]. Rydberg atom and trapped
ion systems provide testbeds with tunable long–range
couplings, with the spin–spin interactions yielding free–
fermion long–range hopping as an appropriate limit [96].
Despite this progress, finite–size effects due to accessi-
ble system sizes hamper characterization: in free–fermion
long–range hopping, MIPT critical points remain obscure
even at N ≈ 400 [103] and studies of anomalous trans-
port are similarly constrained, impeding the definitive
determination of the super–diffusive to diffusive critical
points [82, 83]. These considerations motivate develop-
ing scalable methods and establishing benchmarks, such
as the model here, for validating new algorithms.

The model here exhibits anomalous transport, which

is a stark departure from the well–known ballistic trans-
port, where the stationary–state (SS) resistance RSS =
J−1
SS remains unchanged with increasing system size (the

number of lattice sites NS), as well as diffusive transport,
where the stationary–state resistance scales as RSS ∝
NS [82, 83]. The anomalous transport and transition is
reflected in the stationary–state density profile for differ-
ent values of the long–range exponent α, see Fig. 2(b).
As α decreases from the short–range regime (α ≳ 1.5)
to long–range (α < 1.5), the stationary–state equation
crosses from ordinary diffusion to fractional diffusion:

α ≳ 1.5 ⇒ D
d2n(x)

dx2
= 0

α < 1.5 ⇒ Dα (−∆)α/2n(x) = 0,

where D is the ordinary diffusion constant, Dα the
anomalous diffusion constant, (−∆)α/2 the non–local
fractional Laplacian, and x the position. The ordinary
regime yields a linear density drop, n(x) ≈ (1 − x/L),
which is approximate due to boundary effects for finite
lattices. This regime is equivalent to dephasing and
nearest–neighbor hopping, which follows a diffusion equa-
tion in the continuum limit [104], with a diffusion coef-
ficient, D = 2v2/σ with v the nearest–neighbor hopping
and σ the local dephasing strength. In the anomalous
regime, the lattice is “well mixed” by Lévy-flight–type
jumps [105, 106], flattening the bulk and concentrating
the drop into sharp boundary layers near the reservoirs—
hence the non–linear density profile for α < 1.5.

The defining feature of the anomalous regime is the
existence of super–diffusive transport characterized by
RSS ∝ Nν

S with ν < 1, and a super–diffusive–to–diffusive
crossover (arguably, a phase transition) at αc = 1.5 in
the thermodynamic limit (NS → ∞), where the diffu-
sive regime appears for α > αc [82, 83]. Therefore, while
the resistance diverges in both regimes, the resistivity
remains finite on the diffusive side and vanishes in the
thermodynamic limit on the super–diffusive side. The
analytical estimate αc = 1.5 for this change in scaling
in the thermodynamic limit follows the current operator
norm, i.e., the maximum possible coherent transport [83].

Numerical results on NS ≤ 1024 indicate that ν in-
creases with α, saturating well above α ≳ 1.6. Specifi-
cally, for 1 < α ≤ 1.6, the exponent scales as ν ≈ 1.6α−2
from analyzing NS ≤ 1024 [83]. However, analytical
calculations, both using the current–operator norm and
mapping the corresponding Lindblad equation to frac-
tional diffusion equation in the large dephasing limit
σ ≫ vS , predict ν = 2α− 2 in the thermodynamic limit
NS → ∞ [82, 83]. This deviation of the slope of α depen-
dence of ν originates from the limited accessibility of the
system size, as we shall show here. Notably, in a different
setup that replaces the onsite dephasing with number–
conserving Büttiker voltage probes, the scaling analy-
sis obtained from a larger system size 213 ≲ NS ≲ 214

achieved a similar estimate of αc [82].
Using our approach for the stationary–state solution

of Eq. (19), we extend the application to NS ≈ 104 for
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FIG. 3. Super–diffusive–to–diffusive transition: (a)
Phase diagram showing the transport exponent ν as a func-
tion of the long–range hopping exponent α. The stationary–
state resistance scales as RSS ∝ Nν

S , where NS is the system
size. For α ≤ αc = 1.5, the system exhibits super–diffusive
transport with an exponent ν = 2α− 2. For α > αc, a tran-
sition to diffusive transport occurs, where ν = 1. The crit-
ical value αc = 1.5 analytically marks the boundary where
the current operator norm bounds coherent transport. (b)
The exponent ν of the system size scaling for the resistance
RSS = J−1

SS in the stationary–state as a function of the long–
range exponent parameter α. Orange squares (with gray error
bars) and green circles (errors are smaller than the symbol)
correspond to the system sizes between 512 and 1024, and
between 7500 and 9000 sites, respectively. The orange and
green solid lines guide the eye, and the green dot–dashed and
orange dashed lines correspond to the linear fit below α = 1.5.
The black solid line corresponds to the analytical ν = 2α−2.
Results are with σ = 103 vS and vS sets the frequency scale.

Markovian dephasing opposed to Büttiker probes. We
compute RSS and find the scaling exponent ν. In Fig. 3,
we plot ν, calculated from the system sizes 512 ≤ NS ≤
1024 (orange squares) representing a small system Š and
7500 ≤ NS ≤ 9000 (green circles) representing a large

system Ŝ, as a function of the long–range exponent α.
We fit the data for α < 1.5—orange dashed line for Š
and green dots—dashed line for the larger Ŝ. The former

intercepts the ν = 1 line—scaling exponent of RSS with
NS for diffusive transport—at a critical value αc = 1.57
while the latter at αc = 1.538. This reduces the deviation
from the analytical prediction (αc = 1.5) by 43 %, from

0.07 in Š to 0.04 in Ŝ. Furthermore, the slope of the
linear fit, ν = κα− 2, increases to κ = 1.75 ± 0.01 for Ŝ
from κ = 1.58±0.07 for Š, improving the deviation from
the analytically obtained value of κ = 2 by about 40 %.

Moreover, the transition looks quite a bit sharper. For
Š, the curve very slowly decays to normal diffusion for
α > 1.5, only becoming roughly ν = 1 at α = 2. Yet,
for Ŝ, the exponent more rapidly saturates to one, ef-
fectively achieving this value at α = 1.7. These three
findings—better agreement of αc, better agreement of κ,
and increased sharpness—provide more confidence that
this is a phase transition, rather than a crossover.

The error bar quoted above reflects the intrinsic scatter
of the data about the fitted power–law form. Perform-
ing a least–squares fit of logRSS versus logNS , the root
mean square s =

√∑
i ϵ

2
i /(q − k) of the residuals ϵi is

taken as a single measure of vertical dispersion, where k is
the number of fitted parameters (here, k = 2). The value
of q corresponds to the number of data points between
7500 ≤ NS ≤ 9000, and the correction (q − k) ensures
that s2 corresponds to an unbiased estimator of the vari-
ance of the underlying noise. This residual characterizes
the typical deviation of the observations from the regres-
sion, serving as a goodness–of–fit indicator rather than
a confidence interval for the slope. These indicators im-
prove substantially for larger NS .

VI. CONCLUSIONS

We provided a generalized equation of motion, Eq. (1),
for dephasing and relaxation of fermionic networks with
cross–terms for each. This setup covers a wide variety of
physical scenarios, from extended reservoir approaches
to boundary models. For quadratic Hamiltonians, the
single–particle correlation matrix has a closed system of
equations, including in the presence of dephasing and re-
laxation. We demonstrated how to solve the resulting
equation efficiently. For an example lattice with local
dephasing, long–range hopping, and boundary driving,
we simulate up to 104 sites. This enhances the accu-
racy of locating the critical point in anomalous quantum
transport, generating better agreement with theory and
further confidence that there is a phase transition. This
approach will help improve benchmarking calculations—
i.e., quadratic limits or approximations (mean–field)—for
many–body simulations, such as tensor networks. It will
also help understand the usability of ERA, such as iden-
tifying anomalous behavior, where a scaling transition in
accuracy (1/

√
N to 1/N) has been observed around 103

modes [38]. In addition, the approach is directly applica-
ble to physical and computational networks of interest,
including anomalous transport in higher dimensions and
quantum networks for machine learning [107].
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Phys. Rev. E 71, 036102 (2005).

[10] K. A. Al-Hassanieh, A. E. Feiguin, J. A. Riera, C. A.
Büsser, and E. Dagotto, Phys. Rev. B 73, 195304
(2006).

[11] C.-L. Cheng, J. S. Evans, and T. Van Voorhis, Phys.
Rev. B 74, 155112 (2006).

[12] G. Schneider and P. Schmitteckert, arXiv:cond-
mat/0601389 (2006).

[13] P. Schmitteckert and G. Schneider, in High Performance
Computing in Science and Engineering, edited by W. E.
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[76] F. Verstraete, J. J. Garćıa-Ripoll, and J. I. Cirac, Phys.
Rev. Lett. 93, 207204 (2004).
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