
1

Adaptive Attack Mitigation for IoV Flood Attacks
Erol Gelenbe, Fellow, IEEE, and Mohammed Nasereddin

Abstract—Gateway Servers for the Internet of Vehicles (IoV)
must meet stringent Security and Quality of Service (QoS)
requirements, including cyberattack protection, low delays and
minimal packet loss, to offer secure real-time data exchange for
human and vehicle safety and efficient road traffic management.
Therefore, it is vital to protect these systems from cyberattacks
with adequate Attack Detection (AD) and Mitigation mecha-
nisms. Such attacks often include packet Floods that impair
the QoS of the networks and Gateways and even impede the
Gateways’ capability to carry out AD. Thus, this paper first
evaluates these effects using system measurements during Flood
attacks. It then demonstrates how a Smart Quasi-Deterministic
Policy Forwarder (SQF) at the entrance of the Gateway can
regulate the incoming traffic to ensure that the Gateway supports
the AD to operate promptly during an attack. Since Flood attacks
create substantial packet backlogs, we propose a novel Adaptive
Attack Mitigation (AAM) system that is activated after an attack
is detected to dynamically sample the incoming packet stream,
determine whether the attack is continuing, and also drop batches
of packets at the input to reduce the effects of the attack. The
AAM is designed to minimize a cost function that includes the
sampling overhead and the cost of lost benign packets. We show
experimentally that the Optimum AAM approach is effective
in mitigating attacks and present theoretical and experimental
results that validate the proposed approach.

Index Terms—Cyberattack Detection and Mitigation, Internet
of Vehicles, Flood Attacks, Quasi-Deterministic Transmission
Policy, Adaptive Attack Mitigation

I. INTRODUCTION

Smart vehicles rely on many onboard and road-side IoT
devices, and today’s 30 Billion or more IoT devices [1] are
already subjected to numerous cyberattacks [2], [3] which
disable systems with huge packet floods [4]. For instance, an
attack in 2017 took down 180, 000 servers with an overall
2.54 Terabits per second of traffic [5]. Thus, it is imperative
to develop the understanding and technology that can keep
both the IoV and the IoT as safe as possible.

Unlike the general IoT which mainly involves stationary,
low-power [6] or occasionally mobile devices, the IoV oper-
ates mostly with numerous continuously moving nodes, i.e.

Manuscript received XX, 2024; revised YY, 2024.
Copyright (c) 20xx IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org

This research was supported in part by the Horizon Europe Program DOSS
Project under Grant Agreement 101120270.

Prof. Erol Gelenbe is with the Institute of Theoretical & Applied Infor-
matics, Polish Academy of Science, 44-100 Gliwice, PL, and is also an
Honorary Researcher at CNRS I3S, Université Côte d’Azur, 06100 Nice, FR,
and a Visiting Professor in the Department of Engineering, King’s College
London, Strand WC2R 2LS, UK. ORCID: 0000-0001-9688-2201, email:
gelenbe.erol@gmail.com

Mohammed Nasereddin is with the Institute of Theoretical & Applied
Informatics, Polish Academy of Science, 44-100 Gliwice, PL. ORCID: 0000-
0002-3740-9518, email: mnasereddin@iitis.pl

vehicles, that generate, process, and transmit data in real-
time, together with road-side monitoring and relaying systems
whose complexity may cause the random misdirection and
loss of data [7]. The safety-critical nature of the IoV, which
directly impacts road safety and traffic efficiency, demands
stringent requirements on data timeliness, reliability, and very
low latency [8], [9], making it particularly vulnerable to Flood
attacks, which overloads the network’s gateway servers that
act as control hubs which manage the flow of data between
vehicles and the broader network infrastructure, and severely
compromise QoS.

Smart vehicles may number two billion by 2035 [10],
so supply chains and manufacturing networks will also rely
in the future on smart transport [11]. Since smart vehicles
depend on timely and accurate data collection and forwarding,
cyberattacks against smart vehicles can cause network delays,
data loss and inaccuracy, resulting in road traffic gridlock,
driver and passenger frustration, delayed delivery of goods
and services, and wrong vehicle traffic control decisions [12]
that can lead to road congestion and impair safety [13].

Therefore, the present paper proposes an Attack Mitiga-
tion approach that operates together with an Attack Detector
(AD), that acts at the input of an IoV or IoT Gateway to
detect attacks rapidly in real time to optimally mitigate their
effects. The AD is based on previous work on highly accurate
Machine Learning (ML) attack detection methods [14]–[16]
which determine whether the incoming traffic deviates from
the expected normal behaviour. The novel Adaptive Attack
Mitigation (AAM) scheme that we propose, rapidly drops
incoming attack packets when the AD produces an alarm and
actively samples the incoming packet stream in a manner that
minimizes the Gateway overhead and the cost of mistakingly
dropping benign packets.

A. Related Work on the Security of the IoV and IoT

The literature on cybersecurity for the IoV and the IoT,
encompasses a range of studies addressing attack and de-
fense methodologies, proposed solutions, and related chal-
lenges. Several security architectures, lightweight protocols,
and frameworks for autonomous vehicle communication are
discussed in [17], emphasizing the integration of advanced
security solutions. In [18], attack and defense studies are
categorized to shed light on methods and to identify security
challenges for future exploration. In the realm of autonomous
driving, the integration of artificial intelligence (AI) into
networks and network control algorithms, raises additional
cybersecurity concerns that must be considered [19], [20].

Cyberattack detection algorithms may be trained offline
with calibrated real or synthetic datasets, or online with real
data. Most studies then evaluate the accuracy of the resulting

2

TABLE I
PERFORMANCE COMPARISON OF ATTACK DETECTORS FOR IOV NETWORKS

CyberAttack Detection for
the IoV

Detection Method Evaluation Strategy Evaluation Metrics:
Accuracy || TPR || TNR

“Secure attack detection
framework for hierarchical
6G-enabled internet of
vehicles” [28]

Hybrid (Federated Learning (FL) +
Stackelberg Game)

Simulation using the
UNSW-NB15 dataset

96% || 95% || 97%

“A Transfer Learning and
Optimized CNN Based In-
trusion Detection System for
Internet of Vehicles” [29]

Deep Learning (Transfer Learning +
Optimized CNN)

Car-Hacking and
CICIDS2017 datasets

99.93% || 99.90% || 99.82%

“An Intrusion Detection Sys-
tem for Connected Vehicles
in Smart Cities” [30]

Hybrid (Deep Belief Network (DBN)+
Decision Tree (DT))

Simulation using ns-3 and
NSL-KDD datasets with
validation through MAT-
LAB simulations

99.43% || 99.04% || 98.47%

“Cybersecurity for
Autonomous Vehicles
Against Malware Attacks in
Smart Cities” [31]

Hybrid (Static + Dynamic Analysis
with ML)

Evaluated using a cus-
tom dataset of 1000 mal-
ware downloaded from
Virusshare.com and 1000
non-malware applications

96.3% || 95.8% || 97.2%

“Cybersecurity in Automo-
tive: An Intrusion Detection
System in Connected Vehi-
cles” [32]

Hybrid (Bayesian Networks + Spatial-
Temporal Analysis)

Evaluated using simulated
datasets generated through
the CARLA simulator for
various attack scenarios

98.2% || 97.8% || 98.5%

“MTH-IDS: A multitiered
hybrid intrusion detection
system for internet of vehi-
cles” [33]

Hybrid (Tree-based Ensemble Learning
+ Clustering)

Cross-validation on
CAN-intrusion and
CICIDS2017 datasets

99.99% (CAN) || 99.88% (CICIDS2017)
99.81% || 99.89%

“Detection and identification
of malicious cyber-attacks
in connected and automated
vehicles’ real-time sensors”
[34]

Hybrid (Discrete Wavelet Transform +
Bayesian DL)

Evaluated on simulated
data generated from the
Safety Pilot Model De-
ployment dataset

98.3% || 97.9% || 98.1%

Our System in this Paper Hybrid (Random Neural Network +
Adaptive Attack Mitigation)

Evaluated on a custom
testbed with flood at-
tacks implemented us-
ing the MHDDoS public
repository

99.71% || 99.73%|| 98.48%

trained ADs with real or synthetic datasets, using the following
performance scores that are obtained from the total number of
true positives (TP), true negatives (TN), false positives (FP) or
false alarms, and false negatives (FN), obtained during testing:

Accuracy =
TP + TN

TP + TN + FP + FN
,

True Positive Rate (TPR) =
TP

TP + FN
,

True Negative Rate (TNR) =
TN

TN + FP
.

In some cases, other metrics such as the F1 and F2 scores
are also used.

The research on ADs, their design [21] and accuracy [22],
[23], often use ML methods that are evaluated off-line [24]–
[27] with various datasets, rather than with on-line traffic
traces. Such evaluations typically neglect the overload created
by attacks on the victim devices or systems, which can
paralyze the targeted system with floods of packets, in addition
to compromising them with malware.

Some cyberattack test-beds [35] have been constructed for
experimentation [36]–[38] in critical applications such as wind
farms [39], and Supervisory Control and Data Acquisition
(SCADA) systems [40], [41]. Experiments with Flood attacks
were presented in [42], and real-time DNS attack data was

collected in [43]. Software Defined Networks used for smart
network routing, that adapt the packet flows to the needs of
smart vehicles, can also be subjected to Denial of Service
(DoS) attacks [44]. Attack emulation, without considering the
effect of the overload that attacks produce, was investigated
for autonomous vehicles in [45].

ML and Deep Learning (DL) take center stage in many AD
studies. For instance, a Unified Modeling Language (UML)
based framework [46] introduces Decision Tree and Naive
Bayes algorithms to classify vulnerabilities. In a bid to fortify
vehicle network security, an innovative AI-based solution [47]
employs Convolutional Neural Networks (CNN) and Hybrid
CNN Long and Short-Term Memory (CNN-LSTM) models for
the detection and classification of message attacks. Addition-
ally, the abnormal behavior within vehicle networks has been
studied with a classification that uses a generative adversarial
network (GAN) in [48].

Security concerns for the IoV have received further attention
in [49] with DL to reduce false positives and enhance the
resilience of the transportation ecosystem. In [50], [51], data-
centric misbehavior detection based on supervised ML and
transfer learning has also been proposed. A holistic approach
in [28] presents a detection framework tailored for 6G-enabled
IoV, with edge node processing, federated learning, and robust
security measures.

3

TABLE II
COMPARISON OF MITIGATION APPROACHES IN IOV NETWORKS

Reference Mitigation
Approach

Brief Description Evaluation Strategy Evaluation Results Limitations

“A Comprehensive
Detection and
Mitigation
Mechanism to Protect
SD-IoV Against
DDoS Attacks ” [57]

Hybrid (Entropy +
Flow Rate Analysis)

Utilizes entropy metrics to detect
anomalies by analyzing payload lengths
and mitigates attacks using adaptive
thresholds

Simulated using SUMO,
Mininet-WiFi, and Scapy on
a SD-IoV environment with
different scenarios

Reduced network load and band-
width congestion by blocking IPs
that send a number of packets
exceeding the identified threshold
for a specified period, before re-
evaluating them

May not scale for high-volume
traffic, as entropy and flow rate
analysis over sliding windows can
be computationally intensive, caus-
ing real-time delays |&| Adaptive
thresholds require careful tuning to
handle varying network conditions
to avoid false positives

“A Novel DDoS
Mitigation Strategy
in 5G-Based
Vehicular Networks
Using Chebyshev
Polynomials” [58]

Chebyshev
Polynomials-based

Leverages Chebyshev polynomials for
lightweight cryptographic authentica-
tion to reduce computational overhead
in 5G IoV networks during DDoS at-
tacks

Analytical evaluation focused
on cryptographic efficiency

Significantly reduced
computational cost while
enhancing system responsiveness
under high traffic loads

A larger message-signature tu-
ple increases communication over-
head, potentially causing latency
in dense networks |&| It has not
been evaluated in real-time vehicu-
lar scenarios

“Optimized Feature
Selection for DDoS
Attack Recognition
and Mitigation in
SD-VANETs” [59]

Hybrid (Statistical
Analysis + ML)

Uses optimized feature selection with
LSTM models for effective mitigation,
focusing on reducing false positives

Emulated on real datasets with
statistical feature analysis

Achieved 94% detection accuracy
with optimized mitigation strate-
gies

It requires high computational
resources, challenging for low-
powered vehicular devices

“DDoS Mitigation
Based on Space-Time
Flow Regularities in
IoV” [60]

Reinforcement Learn-
ing (RL)

Uses RL to adaptively adjust mitiga-
tion strategies based on space-time flow
patterns and disconnects malicious con-
nections through dynamic feature selec-
tion

Tested on the Shenzhen taxi-
cab dataset using the simula-
tion tools ’ddosflowgen’ and
’hping3

Yielded high detection accuracy,
but with increased time and mem-
ory consumption

It needs high computational de-
mand as it uses big training data,
limiting deployment in real-time
IoV environments

“RSU-Based Online
Intrusion Detection
and Mitigation for
VANET” [61]

Statistical Anomaly
Analysis

Uses roadside units (RSUs) to filter and
block malicious traffic in real-time and
focuses on stealthy DDoS mitigation
using statistical methods to identify ab-
normal data streams

Evaluated using real traffic
datasets in a simulation envi-
ronment

Effectively reduced the impact of
attacks on urban RSUs with low
false positive rates and delays

Less effective in areas with low
RSU density |&| relying on cen-
tralized infrastructure

Our System in this
Paper

Smart Quasi-
Deterministic
Forwarding policy
and Adaptive Attack
Mitigation

Implements a smart forwarding
mechanism to regulate incoming traf-
fic and uses adaptive packet dropping
to maintain network devices’ perfor-
mance during flood attacks

Evaluated on a custom
testbed with different
flood attack scenarios
implemented using the
MHDDoS public repository

Significantly minimized the cost
function that accounts for both
benign packet drops and the
overhead associated with testing
incoming packets

Dropping benign packets can be
a challenge during long-time at-
tacks |&| Highly sensitive to pa-
rameter tuning in complex IoV
environments

The IoT and IoV can also use different devices from differ-
ent vendors that may not wish to share their network datasets.
For instance, the healthcare IoT may use body sensors, hospital
security devices, and patient monitoring, while the IoV may
be used for distinct vehicles that convey patients. Thus recent
research has also investigated cyberattack detection methods
that use transfer learning between distinct IoT devices and
distinct vehicles that do not wish to share data, but which need
to take advantage of the cybersecurity experience of their peers
[52]. Transfer and ensemble learning using CNNs have also
been combined to achieve impressive attack detection rates that
exceed 99.25% [29]. In [53], where DL is deployed on Multi-
access Edge Computing (MEC) servers, demonstrating great
efficacy in classifying potential cyberattacks and enhancing
real-time security for IoV networks. Expanding the focus to
connected vehicles in smart cities, an AD system utilizing spa-
tial and temporal analysis and Bayesian networks is proposed
in [30], while a hybrid approach combining static and dynamic
analyses is discussed in [31]. In [32], [33], embedded AD sys-
tems for the automotive sector are presented. Another example
combining Bayesian DL and Discrete Wavelet Transform for
proactive detection can also be found in [34].

Since many types of attacks may target the Authentication,
Availability, Secrecy, Routing, and Data Authenticity in auto-
mobile networks [54], [55], the dynamic nature of the IoV and
the presence of varied cyberattacks have also been addressed
with transfer learning using cloud-assisted updates [56].

In addition to the previous references, seven state-of-the-
art attack detection methods for IoV attacks are discussed in
detail and compared with the method that we use in this paper
in Table I. Furthermore, five recent mitigation techniques for
IoV attacks are also discussed and compared with the method

that we have developed in this paper in Table II.

B. Organization of this Paper

The previous Section I-A has reviewed the literature on AD
and Mitigation for the IoT and the IoV, and Tables I and II
compare recent state-of-the-art results with the work in the
present paper.

Our previous work [62] presents experiments that show the
impact of Flood Attacks that often accompany cyberattacks on
IoV Servers or Gateways, such as C-ITS Road Side Infrastruc-
ture Installations for city traffic control and dispatch [13], and
IoT Gateways for smart homes, buildings and factories [63].

In Section II, experimental results are shown concerning the
system presented in Figure 1, which is comprised of a Gateway
Server that supports an AD system and a set of connected
devices that may forward benign or attack traffic to the Server.
In our experiments, a compromised Sensor sends UDP Flood
attacks against the Server which receives network traffic from
several Sensors. The measurements that are exhibited in this
section, and which are not included in our earlier work [62],
demonstrate the impact of the attack on the IoT Server, which
creates congestion and disrupts the Server’s operations by
impeding it from carrying out its important role of supporting
the AD system that detects the attacks.

We then review the use of a Smart “Quasi-Deterministic
Forwarding Transmission Policy (QDTP)” Forwarder (SQF)
[64] in Section III. In particular, we evaluate the performance
of the architecture shown in Figure 6 that includes the SQF,
whose role is to shape the incoming traffic before it enters
the Server. Our analysis and experimental results show that
by choosing the SQF parameters judiciously, the undesirable
effects of the Flood Attack on the Server are eliminated.

4

However, the length of the input queue to the SQF increases
significantly during the attack, and therefore a mitigation
algorithm under the control of the AD system is needed.

Therefore, in Section IV, a novel attack mitigation algorithm
using optimum AD and packet drop functions named “Opti-
mum AAM” is proposed and its parameters are optimized.
Optimum AAM is also extensively validated with experimen-
tal results and measurements. Its scalability is discussed in
Section IV-C.

Finally, Section V presents our conclusions and suggestions
for future work.

II. THE EXPERIMENTAL TEST-BED AND ITS BEHAVIOUR
UNDER A FLOOD ATTACK

The test-bed of Figure 1 includes sensors emulated by
Raspberry Pi 4 Model B Rev 1.2 (RPi1 and RPi2) computers.
Each RPi is equipped with a 1.5GHz ARM Cortex-A72
quad-core processor, 2GB LPDDR4 − 3200 SDRAM, and
runs on Raspbian GNU/Linux 11 (Bullseye), a Debian-based
operating system. One RPi is programmed to send attack
traffic packets randomly or in a predetermined manner, while
the (uncompromised) RPi sends legitimate UDP packets that
contain real data about the machines’ temperature periodically
to the Server. The RPis have a network buffer size of 176
kilobytes (KB) for both incoming and outgoing data.

The Server is an Intel 8−Corei7−8705G processor running
at 3.1GHz, with 16GB of RAM, a 500GB hard drive, and
the Linux 5.15.0−60−66−UbuntuSMP operating system.
It communicates with low-cost Raspberry Pi processors that
emulate sensors through a shared Switch via Ethernet. Figure
2 shows that the Server receives packets through the LAN
using the UDP protocol and processes them using the Simple
Network Management Protocol (SNMP) version 6.2.0 − 31-
generic. The Server’s network interface card (NIC) supports
a maximum speed of 1000Mb/s in full duplex mode, with a
network buffer size of 208KB for incoming and outgoing
data. Since UDP does not create connections and avoids
ACKs, its lightweight nature is useful for communications
with simple sensors and actuators [65].

The maximum size of the transmission unit (MTU) for both
the Server and the RPi devices is set to 1.5KB/Packet,
which optimizes packet size for efficient transmission. During
a test with 1000 successive packets, the measured latency
ranged from 0.082ms to 0.514ms, with an average latency
of 0.437ms, that indicates low latency across the network.

The Server also has an attack detection (AD) system de-
tailed in [15]. It is based on the Random Neural Network
[66] extended with triggered movement of neuronal action
potentials [67], trained with DL [68]. The dataset that is used
is MHDDoS [69], including up-to-date real-world DoS attacks
and 56 different attack emulators.

As an example, Figure 3 shows measurements from a Flood
Attack that lasts for 60 seconds (sec) and overwhelms the
capabilities of the 8-Core Server via an incoming flow of
400, 000 packets. The server becomes paralyzed to the point
where it is unable to operate the AD system. As a result, a
huge packet queue forms at the Server’s input, and it can only

Fig. 1. This figure shows the experimental test bed with several Raspberry
Pi machines that emulate various devices, and are connected via Ethernet to
the Server. The Raspberry Pis can send both normal and attack traffic to the
Server that acts as a Gateway for the IoV

Fig. 2. The software at the Gateway Server includes the manager for the
SNMP network, the attack detection system (AD) [15], as well as the software
for processing the contents of incoming packets.

be progressively removed after a very long 300 minute (min)
delay. This also impairs the Server’s other normal activities,
such as processing benign packets and removing the packets
that are part of the attack.

A. The Server’s Behaviour during Attack Detection

Detailed measurements of the Server’s AD processing times
per packet both under normal conditions and during a UDP
flood attack, are reported in Figure 4 and Figure 5.

Figure 4 (above), indicates that the average AD processing
time per packet when there are no attacks is 2.98 milliseconds
(ms), while (below) we see that when the Server is under a
Flood Attack, the average processing time of the AD algorithm
rises significantly to 4.82 ms. When the Server is under attack,
the AD processing time has very large outliers, as shown
both in the histogram of Figure 4 (below), and in Figure 5.
These outliers appear to be occasionally 103 times larger than
the average. As a result, we conclude that the Flood Attack
can significantly paralyze and slow down the Server’s AD
processing rate, as also illustrated in Figure 3.

5

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Time (sec) 10
3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Q
u
e
u
e
 L

e
n
g
th

10
5

Duration of Attack = 60 sec

Fig. 3. The queue length shown along the y-axis (number of packets) at the
Server input prior to the AD, shown as it varies over time (x-axis in seconds) at
the Server input, prior to processing by the AD module, for a 60− seconds
UDP Flood Attack that was launched by a Raspberry Pi in Figure 1. The
queue length rises rapidly to 400, 000, and the Server congestion then lasts
far longer than the attack itself, i.e. up to several hours, because of Server
paralysis which delays AD processing, as seen in the AD processing times
of Figure 5.

Thus, the AD algorithm itself is paralyzed during a UDP
Flood Attack, since the Server is overwhelmed by the SNMP
protocol which processes the incoming packets.

B. Lindley’s Equation when the SQF is not Used

Let us now place ourselves in the context where the SQF
module is not being used (see Figure 1):

• Let 0 = a0 ≤ a1 ≤ a2, ... , be the successive packet
arrival instants at the Server through the Ethernet LAN
from any of the Sensors connected to the LAN. We also
define the interarrival time An+1 = an+1 − an.

• Let Tn denote the Server’s AD processing time for the n−
th packet, and assume that the Server processes packets
in First Come First Served (FCFS) order.

Then the total waiting time Ln+1 of the n + 1-th incoming
packet, between the instant an and the start of the AD
processing time of the Server, is given by the well-known
Lindley’s equation:

Ln+1 = max(0, Ln + Tn −An+1), n ≥ 0, L0 = 0 . (1)

Note that L0 = 0 because the first incoming packet encounters
an empty queue in front of the AD. Note also that whenever
we have Tn > An+1 then Ln+1 > Ln, i.e. the waiting time
increases.

During a Flood Attack, the values of An and Tn will be
modified, as we see from Figure 3, indicating that packet
arrival rates have considerably increased so that the values
of An are much smaller, while Figure 4 (below) shows that
the values of Tn are also larger. However, the form of (1) does
not change.

III. EFFECT OF THE SMART QDTP FORWARDER (SQF)

In Figure 6, we present our proposed modified architecture
where the Server, whose role is to process incoming IoV

(sec)

(sec)

Fig. 4. In the figure that is above, one can observe the histogram of
AD processing time per packet, as measured without an attack. It shows
the average processing time of 2.98 ms (milliseconds), with a variance of
0.0055 ms2. In the figure given below, an attack occurs and the AD packet
processing time increases to the average value of 4.82 ms with 0.51 ms2.

0 100 200 300 400 500 600 700 800 900 1000

Packet Number

0

0.01

0.02

0.03

0.04

0.05

0.06

P
ro

c
e
s
s
in

g
 T

im
e
 (

s
e
c
) Outlier Value

Duration of Attack = 10 sec

Fig. 5. During a UDP Flood Attack, we show successive measurements for
the AD packet processing time per packet when the QDTP Forwarder SQF
is not used. The large outliers in processing time that are observed in Figure
4 (below) also confirm the measurements that are shown in this figure.

packets – including operating the AD module in order to
detect attacks – is “protected” by a Smart QDTP Forwarder
(SQF) placed between the Ethernet output and the Server’s

6

Fig. 6. The figure shows the modified system architecture where a Smart
QDTP Forwarder (SQF) is placed before the Server, and acts as a traffic
shaping interface between the Ethernet LAN and the Server. The effect of the
SQF is to eliminate the paralyzing effect of the packet flood at the Server,
buffering packets within the SQF, and forwarding the packets, so that AD
processing and other work are conducted in a timely fashion.

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Time (sec) 10
3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Q
u
e
u
e
 L

e
n
g
th

10
5

Without QDTP

With QDTP

Duration of Attack = 60 Seconds

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Time (sec) 10
3

10
0

10
2

10
4

10
6

Q
u
e
u
e
 L

e
n
g
th

Without QDTP

With QDTP

Duration of Attack = 60 sec

Fig. 7. The Server queue length shown in the figure above, when a 60-second
UDP Flood Attack occurs, peaks at 400, 000 packets when the SQF is not
used, and drops very slowly during some 15, 000 secs. In the figure that is
below, we observe the queue length in logarithmic scale when the SQF is
used with D = 3 ms, versus the case shown in Red when the SQF is not
used when the Flood Attack lasts 60 secs. Since D is close to the average of
Tn (which is ≈ 2.98 ms when an attack does not occur, see Figure 4), small
fluctuations of Tn can cause the queue to build up moderately (in Blue).

0.0 0.2 0.4 0.6 0.8 1.0

Time (sec) 10
3

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Q
u
e
u
e
 L

e
n
g
th

Without QDTP

With QDTP
Duration of Attack = 10 sec

Fig. 8. The Server queue length is measured, and represented logarithmically,
for a UDP Flood Attack that targets the Server and lasts 30 sec (above) or 10
sec (below). In Red, we show the queue lengths when the SQF is not used.
The effect of using the SQF is shown in the Blue curves, demonstrating the
effect of the SQF in reducing queue length during 30 and 10 sec attacks, with
D = 3 ms.

input port. The SQF shapes the incoming traffic to the Server
with a Quasi-Deterministic Transmission Policy (QDTP) [64]
that delays some of the packets it receives, by forwarding them
to the Server at time tn ≥ an, where an is the n-th packet’s
arrival instant to the SQF.

We assume that the physical transmission time from the
SQF to the Server, and the network protocol service time
inside the Server, are negligible with respect to the Server’s
AD processing duration Tn. This is consistent with our mea-
surements with 1000 packets, that revealed a latency between
0.082ms and 0.514ms, with an average value of 0.437ms,
which is less than 15% of the value of Tn (which is around
3 ms).

Thus, when the n− th packet is transmitted by the SQF, it
is assumed that it instantly arrives at the queue at the Server’s
input and forwarded for AD processing. Therefore, the instant
tn when SQF forwards the n-th packet to the Server is initiated
as t0 = a0. For a constant parameter D that needs to be
selected, it is given by the following recursive expression:

tn+1 = max(tn +D, an+1), n ≥ 0, (2)
hence : tn+1 − tn ≥ D . (3)

7

(sec)

(sec)

Fig. 9. The AD Processing Time per packet is shown at the Server when
the SQF is used, and D = 2.7 ms. The average AD packet processing time
is 2.97 ms and its variance is 0.0041 sec2 when the attack occurs (above).
The consequence of the Flood Attack (below) is to increase the AD average
processing time of the AD per packet by just 10% to 3.28 ms, and a variance
of 0.0023 sec2. This again demonstrates the effectiveness of the SQF.

The total delay Qn experienced by the n-th packet due to the
SQF, elapsing from the arrival of the n-th packet to the SQF
at an, until its arrival to the AD at the Server at tn, is then:

Q0 = t0 − a0 = 0, (4)
Qn+1 = tn+1 − an+1,

= max(tn +D, an+1)− an+1,

= 0, if tn +D ≤ an+1, and

= tn +D − an+1, otherwise. (5)

Since tn = Qn + an, we obtain the recursive expression:

Qn+1 = max(0, tn +D − an+1),

= max(0, Qn +D −An+1), n ≥ 0, (6)

which is also an instance of Lindley’s equation (1).
On the other hand, the Server’s AD module also acts as

an FCFS queue and we can exploit Lindley’s equation again
to compute Wn, n ≥ 0 the waiting time of the n-th packet
that arrives at the Server to be processed for attack detection,

(sec)

(sec)

Fig. 10. AD Processing Time at the Server with the SQF and D = 3.20 ms,
resulting in an average AD processing time Tn of 3.00 ms with a variance of
0.0036 sec2 when there is no attack (above). Under a Flood Attack (below),
the average AD processing time remains nearly the same at 2.99 ms with
a variance of 0.0067 sec2. This again shows that SQF is very effective in
avoiding Server slowdown during an attack.

0.0 0.5 1.0 1.5 2.0 2.5

Time (sec) 10
3

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Q
u

e
u

e
 L

e
n

g
th

10
5

Duration of Attack = 60 sec

Fig. 11. SQF queue length (y-axis in the number of packets) against time (x-
axis in seconds) when a UDP Flood Attack lasts 60 seconds, with D = 3 ms,
and without any mitigation action.

which is:

Wn+1 = max(0,Wn + Tn − (tn+1 − tn)), W0 = 0,

≤ Wn + Tn − (tn − tn+1), (7)

8

since the n-th packet’s AD service time is Tn and the n+1-th
interarrival interval to the Server’s AD queue is tn+1 − tn.
Therefore, from (3) and (7) we have:

Wn+1 ≤Wn + Tn −D, (8)

and we obtain the following key result which tells us how to
choose D:

Result 1. If D in the SQF is chosen to satisfy the inequality
D > Tn for any n ≥ 0, then Wn, the packet waiting time at
the Server, will be Wn = 0, ∀ n ≥ 0.

A. Experiments that Illustrate the Value of Result 1

Since the data in Figure 4 (above) shows the histogram of
the AD processing time per packet Tn with average value 2.98
ms when there is no attack, we set D = 3 ms, just above that
average as indicated by Result 1.

The experimental results in Figure 7 illustrate the case
without SQF (above) and with SQF (below) during a 60 sec
UDP Flood Attack. Note that the figure above represents the
Server queue length varying over time, without the SQF. The
figure below shows the Server queue length with a logarithmic
scale, and compares the cases without SQF (in red) and with
SQF (in blue) for the Server queue length that varies over
time. Since D = 3 ms is very close to the average of Tn, the
fluctuations in the values of Tn cause the buildup of a short
queue of a few packets, as seen in the blue plot shown below.

Figure 8 shows the results of four experiments where we
measure the queue length at the Server when a UDP Flood
Attack lasts 30 (above) and 10 (below) seconds, without (red)
and with (blue) the SQF. Without the SQF, the Server’s AD
processing time increases significantly. In the 30 sec attack,
approximately 470, 000 packets are received at the Server and
without the SQF it takes 44.45 minutes for the Server to
return to normal process them, while in the 10 sec attack
153, 667 packets are received, and it takes the Server roughly
15 minutes to process them. Note that in these curves, it
takes some 99 seconds for the compromised RPi to launch
the attack.

Figure 9 shows that when we use the SQF based system
with D = 2.7 ms, which is smaller than the value recom-
mended by Result 1, when there is no attack, this choice of
D has very little effect. However, when a UDP Flood Attack
occurs, the Server’s AD processing is somewhat slowed down,
and the average value of Tn increases by roughly 10%.

On the other hand, Figure 10 confirms Result 1 since it
shows that if we take D = 3.2 ms, which guarantees that
D > Tn most of the time, then the measured average value
of Tn remains at around 3 ms showing that it has not been
slowed down by the attack’s overload effect. Of course, the
same is seen when no attack occurs.

1) SQF Queue Buildup and Attack Mitigation: During a
Flood Attack, packets accumulate in the SQF input queue.
The QDTP algorithm forwards them to the Server with D =
3 ms, and we observe that the Server does not experience any
significant slowdown with regard to AD, as shown in Figure
11. We note the sudden queue length increase to over 600, 000
packets, followed by a very slow queue length decrease during

more than 2, 000 secs, for a Flood Attack that only lasts 60
secs.

This motivates us to develop the novel, and hitherto un-
published, Adaptive Attack Mitigation (AAM) method that is
discussed in Section IV.

IV. ADAPTIVE ATTACK MITIGATION (AAM)

In the previous Section, we observed that the SQF allows
the AD to operate effectively during an attack by limiting the
input packet rate. However, the SQF does not stop the huge
build-up of attack packets at the input of the SQF, where the
queue length increases to a very high value, as seen in Figure
11. Without an effective mitigation scheme, these packets will
have to be processed long after the attack itself may have
stopped, even though they are largely attack packets that are
of no use to the system. Thus, in this Section, we propose a
novel Adaptive Attack Mitigation (AAM) scheme, which will:

• Reduce the amount of AD testing that is carried out
during an attack, and hence reduce the computational
overhead at the Server,

• Drop attack packets and reduce the effect of traffic
congestion and overload both during and after an attack,

• Stop the DROP process in a timely fashion when the
attack ends, to avoid the excessive loss of benign packets.

A. Attack Detection AD

Recall (again) that the AAM uses an AD based on the Auto-
Associative Deep Learning Random Neural Network described
in [14]. It was evaluated with the well-known Kitsune attack
dataset [70], [71], yielding the highly accurate results shown
in Figure 12.

The AD reaches a decision based on a Window of W > 0
successive packets that are tested sequentially. If the AD
system detects that a majority of the W packets are of
“ATTACK” type, then it concludes that an attack is occurring.
Otherwise, it will return a NO-ATTACK decision. If a NO-
ATTACK is detected, then the AD system will proceed to test
the subsequent W packets in the same way. Note that W is
chosen empirically to be the smallest value of the window that
provides high accuracy, and is typically set in the range of 8
to 10 packets.

When the AD detects an ATTACK, since the AD is
substantially slowed down by the large packet backlog that
accumulates during the attack, the novel AAM technique that
we propose, drops the preceding m + W packets, and then
skips ahead m > 0 packets in the incoming packet stream,
reaching a subsequent Testing Window of W packets. Thus,
the packet backlog is reduced, and the processing slowdown
for AD is also reduced, since each individual packet is only
tested by the AD when the system is not under attack.

Thus, AAM has the advantage of early attack detection,
rapid dropping of blocks of attacking packets, and reducing
the AD processing time during an attack by carrying out AD
in successive m-packet intervals using a W -packet window.
The AAM algorithm is detailed below:

1) Initialize i← 1 and j ← 1.
2) Test the W packets i, i+ 1, ... , i+W − 1 for AD.

9

Fig. 12. Accuracy of the AADRNN attack detector, that was evaluated on
the test-bed of Figure 1.

3) If the output of the AD is ATTACK then:
- DROP the PACKETS j, j + 1, ... , i+W − 1,
- Update j ← i+W and i← i+W − 1 +m

4) If the output of the AD is NO-ATTACK then:
- FORWARD Packets j, j + 1, ... , i+W − 1 to the
SERVER,
- Update j ← i+W and i← i+W ,

5) Go To 2)
The summarized pseudocode and the detailed pseudocode for
the AAM are given below as Algorithm 1 and Algorithm 2.

Algorithm 1 Summarized Pseudocode for the AAM
1: Initialize i← 1, j ← 1
2: Let X be the total number of packets received during the

attack
3: Let f be the fraction of attack packets
4: Let α and β be weighting factors for the cost function
5: Compute the initial optimal value of m:

m∗ ←
√

2
β

α
·W (E[X]−W)−W

6: while there are incoming packets to process do
7: Test the W (window) packets: i, i+1, . . . , i+W − 1

for Attack Detection
8: if Attack Detection output is ATTACK then
9: Drop the packets j, j + 1, . . . , i+W − 1

10: Update j ← i+W and i← i+W − 1 +m∗

11: Update the total number of dropped packets.
12: Calculate the expected value of the dropped benign

packets cost.
13: Update the total average cost of AAM.
14: else ▷ If Attack Detection output is NO-ATTACK
15: Forward the packets j, j+1, . . . , i+W − 1 to the

server
16: Update j ← i+W and i← i+W
17: Update the total average cost of AAM.
18: end if
19: Recalculate m∗ periodically as needed.
20: end while

Algorithm 2 Detailed Pseudocode for the AAM
1: Initialize i← 1, j ← 1
2: Let X be the total number of packets received during the

attack
3: Let f be the fraction of attack packets
4: Let α and β be weighting factors for the cost function
5: Compute the initial optimal value of m:

m∗ ←
√
2 · β

α
W (E[X]−W)−W

6: while there are incoming packets to process do
7: Test the W (window) packets: i, i+1, . . . , i+W − 1

for Attack Detection
8: if Attack Detection output is ATTACK then
9: Drop the packets j, j + 1, . . . , i+W − 1

10: Update j ← i+W and i← i+W − 1 +m∗

11: Update the total number of dropped packets:

δ ← N(m+W)

12: Calculate the expected value of the reprocessing
cost dropped benign packets:

E[K] ≈W · τ ·
[
(1− f)E[X]

W
− 1

2
+

m

2W

]
13: Update the total average cost of AAM:

C(AAM) = α · E[K] + β · E[Ω]

where
E[Ω] ≈ τ ·W ·

[
E[X]−W

m∗ +W
+

1

2

]
14: else ▷ If Attack Detection output is NO-ATTACK
15: Forward the packets j, j+1, . . . , i+W − 1 to the

server
16: Update j ← i+W and i← i+W
17: Update the total average cost of AAM.
18: end if
19: Recalculate m∗ periodically as needed.
20: end while

B. Analysis and Optimization of AAM

During a Flood Attack, a large fraction, say 0 < f ≤ 1,
of the incoming traffic will be part of the attack, and the
complementary fraction (1− f) will be benign traffic coming
from various sources that also send traffic to the IoV Gateway.
Thus, the AAM may drop useful benign packets, as well as
attack packets.

In addition, even though the AAM reduces the number of
packets that are actually tested for AD during an attack, the
proposed AAM still creates computational overhead during
an attack, because it tests W packets after each m packet
interval. Interestingly, the proportion of benign packets which
are dropped will increase as m increases, but at the same
time the overhead also decreases as m increases. Thus, we
will now compute the optimum value of m. In the next
subsection, we will validate these analytical results through
some experiments.

10

Let X denote the total number of packets received at the
Gateway during an attack, including a fraction f of attack
packets. Since X cannot be known in advance, we treat it here
as a random variable. Note that we will denote the expected
value of the random variable Y by E[Y].

During the attack, there will be a first inevitable W -packet
AD window when the attack is first detected. This first testing
window where the AD says “ATTACK” will contain a majority
of attack packets among the W packets. Since W is very small
compared to X , we can assume that the attack begins at the
beginning of the first testing window where the AD reports an
attack.

The end of the attack is signaled to the AAM by the AD
during the first detection window in which a majority of
the W packets are not attack packets, which indicates that
the current attack has ended. Thus, in addition to the first
attack detection window, the total number of additional attack
detection windows that are used during an attack is given by:

N = ⌈X −W

m+W
⌉, and

E[N] ≈ E[X]−W

m+W
+

1

2
, (9)

where the expression (9) is actually a mathematically proven
[72] first-order approximation. In particular, it applies to all
probability density functions for the random variable X which
are a convex sum of Erlang densities, commonly used to
approximate discrete histograms.

If the AAM is used in conjunction with the SQF that
includes the QDTP traffic shaping policy, then Figure 10
shows that the AD average processing time per packet remains
constant at roughly 3 msec which we will call τ , which
varies with the speed of the processor at the Server. For each
detection window of W packets, the Server overhead is then
NτW , so that the resulting overhead for attack detection when
an attack occurs is:

Ω = NτW, with E[Ω] ≈ τW [
E[X]−W

m+W
+

1

2
]. (10)

On the other hand, the total number of dropped packets due
to the attack is:

δ = W +N ×m+ (N − 1)×W = N(m+W),

E[δ] ≈ E[X] +
1

2
(m−W), (11)

since the packets in the first window that says ”ATTACK”, as
well as the following m packets are dropped. This is repeated a
total of N times, while those in the packets in the last window
that say “NO-ATTACK” are not dropped.

However, the part X of δ includes attack and benign pack-
ets. Let the fraction of benign packets in X be (1− f). Since
we know that the last part δ −X is only composed of benign
packets, the reprocessing time K of the benign packets which
the AAM drops may create additional overhead, since it is
likely that they will be sent again to the Server after some

length of time, and the Server will have to process them again
using the AD. Hence:

K = τW ⌈ (1− f)X + δ −X

W
⌉, and

E[K] ≈ τW [
(1− f)E[X]

W
− 1 +

m+W

2W
] ,

≈ τW [
(1− f)E[X]

W
− 1

2
+

m

2W
] , (12)

and the total average cost of AAM written as C(AAM),
assuming a weighting of α, β > 0 for the two average cost
terms E[K] and E[Ω], respectively, becomes:

C(AAM) = αE[K] + βE[Ω]

≈Wτ
[
α[

(1− f)E[X]

W
− 1

2
+

1

2

m

W
]

+β[
E[X]−W

m+W
+

1

2
]
]
. (13)

Thus, taking the derivative of the right-hand-side of (13) with
respect to m, and setting it to zero, we can see that the
total average cost C(AAM) is approximately minimized
by setting m to the value m∗:

m∗ ≈
√

2
β

α
W [E[X]−W] −W, (14)

where β
α is the relative importance of the two terms in the cost

function; β << α when the benign packets that were dropped
during an attack arrive (for the second time) at the Server
while it is busy processing other incoming benign packets.

Interestingly, we see that m∗ does not depend on f and τ .
Furthermore, as the average number of packets E[X] received
by the Server during the attack increases, the optimum value
m∗ also increases in proportion to the square root of E[X].

C. Scalability

We now discuss the scalability of the Optimum AAM
Algorithm. The scalability will be discussed in the context of a
Gateway Server with multiple network ports, since the AD and
the Optimum AAM are designed to protect a single Gateway
Server. Let us first recall that the choice of the parameter W is
discussed in Section IV-A, and that it is chosen empirically as
the smallest value that provides sufficiently high accuracy for
the AD algorithm, typically around W ≈ 8 to 10 consecutive
packets.

For a single Gateway Server with P network ports, we can
use the Optimum AAM in several ways: (a) we may have one
AD and one AAM for each port, or (b) one common AD and
then one AAM per port, or (c) one AD for each port and a
single common AAM, or (d) one AD and one single AAM
for all the ports. In all these cases the value of W will be the
same.

Notice that the total processing time of all the ADs is
proportional to the total number of packets that they process;
thus the AD processing time is not affected by the config-
urations (a)-(d), but simply by the total traffic entering the
Gateway from all ports; if all ports carry an equal amount
of traffic, then the total AD overhead processing time will
increase linearly with P . However, in the cases (b) and (d)

11

where there is a single AD for all ports,in order to determine
which port is being attacked, the AD will have to group
incoming packets into W-windows of packets with the same
incoming port number, which requires additional computation.
Therefore, with regard to the AD processing time, the solutions
(a) and (c) are more efficient than (b) and (d).

Similarly, the AAM is only activated when an attack is
detected, so that the total number of AAM activations which
cause processing overhead is the same in all cases and depends
on the total number of attacks that aim the Gateway Server,
rather than on the number of ports. However, one may argue
that more ports will attract more attacks. On the other hand,
having a single Optimum AAM unit, as in cases (c) and
(d), has two shortcomings: (i) when multiple attacks occur
within short intervals, a backlog of processing requests may
accumulate in front of the single AAM software unit, leading
to delays in the mitigation process, and (ii) the single AAM
will have to deal with multiple distinct values of m∗, leading
to sub-optimal decisions. Thus we recommend the use of (a)
for the best performance and responsiveness to attacks.

D. Optimization Measurements of the AAM Scheme

In this subsection, we present the measurements of the
proposed AAM scheme. Figure 13 illustrates the theoretically
computed average total cost C(AAM), across various param-
eter values when W = 20, α = 20β, and we vary the value
of E[X]. We have run experiments where we first generate
the value of X , i.e. the number of packets in an attack against
the Gateway Server, at random. These experiments are run
thirty times for each fixed value of the average number of
packets E[X] received during a Flood Attack. The experiments
are also run for several different values of E[X]. In each
experiment, we compute the corresponding value of the cost
function C(AAM) that results from the attack and compute its
average value by taking the average of the cost values obtained
from the distinct measurements for a given E[X].

These experimental results are summarized in Figure 14.
They provide an empirical demonstration of the accuracy and
validity of the theoretical formula (14) which predicts the value
of m∗.

E. The Effect of the AAM on the Gateway’s Time-Line Be-
haviour during Attacks

We now measure the time dependent queue length of
packets at the entrance of the SQF during two successive Flood
Attacks. The first attack involves over 10, 000 packets, and the
second one is comprised of some 40, 000 packets. The AD
system processes the incoming packet stream and provides an
ATTACK alert, which is sent to the AAM. The AAM then
measures the SQF input queue length, and uses the formula
(14), to choose m∗, which is 127 for the first attack, and 248
for the second one.

The effectiveness of the AAM is demonstrated in Figure 15,
by the speed with which the AAM drops packets after each
of the two successive attacks, and reacts to the second attack
in a timely fashion despite the first attack.

10
1

10
2

10
3

10
4

Fixed Value of m for each of the Attacks that were Tested

10
1

10
2

10
3

10
4

10
5

10
6

A
v
e
ra

g
e
 T

o
ta

l
C

o
s
t
C

(A
A

M
)

(s
e
c
)

m*=100

m*=1000

m*=10000

X = 50200220 Packets

X = 520220 Packets

X = 7220 Packets

Fig. 13. Theoretical graph of the Average Total Cost plotted against the
parameter m when both the x and y axes are logarithmic for β

α
= 0.05.

We show how the Average Cost C(AAM) depends on m and exhibit the
theoretical minimum Average Total Cost at the value m∗, which is obtained
analytically.

100 200 300 400 500 600 700 800 900 1000

Fixed Value of m for each of the Attacks that were Tested

0

10

20

30

40

50

60

70

80

A
v
e
ra

g
e
 T

o
ta

l
C

o
s
t
C

(A
A

M
)

(s
e
c
)

Avg.(X) = 10825 packets

Avg.(X) = 15685 packets

Avg.(X) = 23133 packets

Avg.(X) = 35932 packets

Fig. 14. Experimental graph (when both the x and y coordinates are linear, i.e.
not logarithmic) of the Average Total Cost C(AAM) over thirty independent
experiments for β

α
= 0.05, plotted against the parameter m. We see that the

average cost depends on m, and confirms that the theoretically predicted m∗

provides a useful value of cost minimization.

For the two attacks that were shown in Figure 15, the
time dependent packet queue length at the entrance of the
AD system is shown in Figure 16. This latter figure also
demonstrates that the joint use of the SQF and the AMM,
is able to effectively limit the AD input queue to a very small
number of 20, very rapidly after the attack begins; thus, the
AD system is able to operate continuously and effectively,
contributing to the correct decisions that are being made by
the AAM.

V. CONCLUSIONS

In this research, we have first studied the impact of UDP
Flood Attacks on an IoV Gateway Server that supports an AD
system. We demonstrate that even short-duration attacks can
cause significant overload for the Sever. the Gateway Server.
As a result, The Server’s normal operations, including AD, are
substantially slowed down. Indeed, we observe that an attack

12

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Time (sec) 10
2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
Q

F
 Q

u
e

u
e

 L
e

n
g

th

10
4

Duration of Attack = 16 sec

X = 35932 Packets

m = 248

Duration of Attack = 5 sec

X = 10825 Packets

m = 127

Fig. 15. Time-line of queue length measurements at the entrance of the SQF
for two successive attacks. The first attack involves around 10, 000 packets,
while the second one is more severe and involves close to 40, 000 packets.
The AD processes the incoming traffic from the SNMP in batches of W
packets, and provides an attack alert when an attack is detected. AAM then
goes into action, observes the packet lengths, and uses the formula (14) to
select the optimum value m∗, which is 127 in the first case, and 248 in the
second case. We observe the effectiveness of the AAM in rapidly dropping
attack packets, and also reacting to the second attack in a timely fashion after
the first attack is cleared.

0.0

5.0

10.0

15.0

20.0

25.0

ID
S

 Q
u
e
u
e
 L

e
n
g
th

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Time (sec) 10
2

Duration of Attack = 5 sec

Duration of Attack = 16 sec

Fig. 16. Time-line of queue length measurements at the entrance of the AD
system, when the two successive attacks shown in Figure 15 occur. Despite
the fact that the two successive attacks involve 10, 000 and 40, 000 packets,
the conjunction of the use of the SQF and the AAM, limits the AD input
queue to around 20 packets for a very short period, without overwhelming
the AD and allowing it to operate smoothly and continuously.

that lasts 60 seconds may create a backlog of packets at the
Server that requires several hours to clear out.

Thus, we propose that the Gateway Server’s input should
be “protected” by a special SQF front end that operates the
QDTP policy, to allow the timely operation of the Server even
when an attack occurs. This approach requires installing an
inexpensive lightweight hardware addition, such as an RPi,
between the local area network that supports the Sensors, and
the IoV Gateway Server.

Several experiments are then used to illustrate the effec-
tiveness of the proposed approach, and we note that the SQF
front end requires that a key timing parameter D be chosen.

We provide a theoretical analysis of how D should be selected,
and show that it must be comparable but larger than the AD
processing time per packet under non-attack conditions. We
validate this theoretical observation with several experiments
and show that the SQF effectively preserves the Gateway
Server from congestion and overload, allowing it to operate
normally, even in the presence of severe Flood Attacks.

However, we note that the congestion that is eliminated at
the Server may now accumulate at the SQF input, creating
excessive packet processing work for the Gateway. Therefore,
we propose the novel mitigation action AAM which is acti-
vated when the AD detects an attack. The AAM is able to
drop incoming attack packets in a relatively short time, and
is designed to minimize a cost function that combines the
number of dropped benign packets and the overhead of testing
the incoming packet stream for AD to identify the end of the
attack. The AAM is tested experimentally and shown to be
very effective during significant Flood Attacks.

While this paper has focused on an architecture with
multiple sources of IoV traffic and a single Gateway, future
work will consider Edge Systems with multiple devices and
Gateways. We plan to study dynamic policies for AD for
complex IoV networks having both static and mobile nodes,
with mitigation techniques that include traffic routing and
packet drops at the Edge.

The energy consumption of such systems is another impor-
tant issue that we plan to address, so that dynamic management
policies may minimize energy consumption, optimize system
Quality of Service, and offer Cybersecurity.

REFERENCES

[1] Cisco, Cisco Annual Internet Report (2018–2023), Mar. 2020.
[Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/
executive-perspectives/annual-internet-report/white-paper-c11-741490.
html

[2] J. Liu, L. Song et al., “A novel congestion reduction scheme for massive
machine-to-machine communication,” IEEE Access, vol. 5, pp. 18 765–
18 777, 2017.

[3] L. Tello-Oquendo, I. Leyva-Mayorga, V. Pla, J. Martinez-Bauset, J.-
R. Vidal, V. Casares-Giner, and L. Guijarro, “Performance analysis and
optimal access class barring parameter configuration in LTE-A networks
with massive M2M traffic,” IEEE Transactions on Vehicular Technology,
vol. 67, no. 4, pp. 3505–3520, 2018.

[4] E. Johns and M. Ell, “Cyber security breaches survey
2023,” April 2023. [Online]. Available: https://www.
gov.uk/government/statistics/cyber-security-breaches-survey-2023/
cyber-security-breaches-survey-2023

[5] Cloudflare, ‘Famous DDoS attacks: The largest DDoS attacks of all
time,” 3 Jan. 2025 [Online]. Available: https://www.cloudflare.com/
learning/ddos/famous-ddos-attacks/

[6] E. Gelenbe and Y. M. Kadioglu, “Performance of an autonomous energy
harvesting wireless sensor,” in Information Sciences and Systems 2015,
London, September 22-24, 2015, O. H. Abdelrahman, E. Gelenbe,
G. Gorbil, and R. Lent, Eds. Cham: Springer International Publishing,
2016, pp. 35–43.

[7] E. Gelenbe, “A diffusion model for packet travel time in a random
multihop medium,” ACM Transactions on Sensor Networks (TOSN),
vol. 3, no. 2, pp. 1-10, 2007.

[8] S. R. Pokhrel and J. Choi, “Federated learning with blockchain for au-
tonomous vehicles: Analysis and design challenges,” EEE Transactions
on Communications, vol. 68, no. 8, p. 4734–4746, 2020.

[9] S. Savazzi, M. Nicoli, and V. Rampa, “Federated learning with cooper-
ating devices: A consensus approach for massive iot networks,” IEEE
Internet of Things Journal, no. 5, p. 4641–4654, 2020.

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2023/cyber-security-breaches-survey-2023
https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2023/cyber-security-breaches-survey-2023
https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2023/cyber-security-breaches-survey-2023
https://www.cloudflare.com/learning/ddos/famous-ddos-attacks/
https://www.cloudflare.com/learning/ddos/famous-ddos-attacks/

13

[10] J. Voelcker, “1.2 billion vehicles on world’s roads now,
2 billion by 2035,” Green Car News, July 2014.
[Online]. Available: https://www.greencarreports.com/news/1093560
1-2-billion-vehicles-on-worlds-roads-now-2-billion-by-2035-report

[11] N. M. Gökhan, “Development of a simultaneous design for supply chain
process for the optimization of the product design and supply chain
configuration problem,” Engineering Management Journal, vol. 2, no. 4,
p. 20–30, 2010.

[12] Z. Xu, F. Yu, J. Xiong, and X. Chen, “Helios: Heterogeneity-aware fed-
erated learning with dynamically balanced collaboration,” in 2021 58th
ACM/IEEE Design Automation Conference (DAC), 2021, p. 997–1002.

[13] A. Frötscher, et al., “Improve cybersecurity of C-ITS Road Side Infras-
tructure Installations: the SerIoT - secure and safe IoT approach,” in
2019 IEEE International Conference on Connected Vehicles and Expo
(ICCVE), 2019, pp. 1–5.

[14] O. Brun, Y. Yin, and E. Gelenbe, “Deep learning with dense random
neural network for detecting attacks against iot-connected home envi-
ronments,” Procedia Computer Science, vol. 134, pp. 458–463, 2018.

[15] E. Gelenbe and M. Nakıp, “Traffic based sequential learning during
botnet attacks to identify compromised IoT devices,” IEEE Access,
vol. 10, pp. 126 536–126 549, 2022.

[16] M. Nakip and E. Gelenbe, “Online self-supervised deep learning for in-
trusion detection systems,” IEEE Transactions on Information Forensics
and Security, vol. 19, pp. 5668–5683, 2024.

[17] K. Kim, J. S. Kim, S. Jeong, J.-H. Park, and H. K. Kim, “Cybersecurity
for autonomous vehicles: Review of attacks and defense,” Computers &
Security, vol. 103, p. 102150, 2021.

[18] S. T. Banafshehvaragh and A. M. Rahmani, “Intrusion, anomaly, and
attack detection in smart vehicles,” Microprocessors and Microsystems,
vol. 96, p. 104726, 2023.

[19] M. Girdhar, J. Hong, and J. Moore, “Cybersecurity of autonomous
vehicles: A systematic literature review of adversarial attacks and
defense models,” IEEE Open Journal of Vehicular Technology, 2023.

[20] D. Man, F. Zeng, J. Lv, S. Xuan, W. Yang, and M. Guizani, “Ai-based
intrusion detection for intelligence internet of vehicles,” IEEE Consumer
Electronics Magazine, vol. 12, no. 1, pp. 109–116, 2021.

[21] C. Douligeris and A. Mitrokotsa, “DDoS attacks and defense mecha-
nisms: classification and state-of-the-art,” Computer networks, vol. 44,
no. 5, pp. 643–666, 2004.

[22] G. Oke, G. Loukas, and E. Gelenbe, “Detecting denial of service attacks
with bayesian classifiers and the random neural network,” in 2007 IEEE
International Fuzzy Systems Conference, 2007, pp. 1–6.

[23] H. Ahmetoglu and R. Das, “A comprehensive review on detection of
cyber-attacks: Data sets, methods, challenges, and future research direc-
tions,” Internet of Things, vol. 20, p. 100615, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S254266052200097X

[24] M. Banerjee and S. Samantaray, “Network traffic analysis based iot
botnet detection using honeynet data applying classification techniques,”
International Journal of Computer Science and Information Security
(IJCSIS), vol. 17, no. 8, 2019.

[25] T. A. Tuan, H. V. Long, R. Kumar, I. Priyadarshini, N. T. K. Son et al.,
“Performance evaluation of Botnet DDoS attack detection using machine
learning,” Evolutionary Intelligence, pp. 1–12, 2019.

[26] A. I. Al-issa, M. Al-Akhras, M. S. ALsahli, and M. Alawairdhi, “Using
machine learning to detect DoS attacks in wireless sensor networks,”
in 2019 IEEE Jordan International Joint Conference on Electrical
Engineering and Information Technology (JEEIT), 2019, pp. 107–112.

[27] E. Y. Güven and Z. Gürkaş-Aydın, “Mirai botnet attack detection in low-
scale network traffic,” Intelligent Automation & Soft Computing, vol. 37,
no. 1, pp. 419–437, 2023.

[28] H. Sedjelmaci, N. Kaaniche, A. Boudguiga, and N. Ansari, “Secure
attack detection framework for hierarchical 6g-enabled internet of vehi-
cles,” IEEE Transactions on Vehicular Technology, 2023.

[29] L. Yang and A. Shami, “A transfer learning and optimized cnn based
intrusion detection system for internet of vehicles,” in ICC 2022-IEEE
International Conference on Communications. IEEE, 2022, pp. 2774–
2779.

[30] M. Aloqaily, S. Otoum, I. Al Ridhawi, and Y. Jararweh, “An intrusion
detection system for connected vehicles in smart cities,” Ad Hoc
Networks, vol. 90, p. 101842, 2019.

[31] S. Aurangzeb, M. Aleem, M. T. Khan, H. Anwar, and M. S. Siddique,
“Cybersecurity for autonomous vehicles against malware attacks in
smart-cities,” Cluster Computing, pp. 1–16, 2023.

[32] F. Pascale, E. A. Adinolfi, S. Coppola, and E. Santonicola, “Cybersecu-
rity in automotive: An intrusion detection system in connected vehicles,”
Electronics, vol. 10, no. 15, p. 1765, 2021.

[33] L. Yang, A. Moubayed, and A. Shami, “Mth-ids: A multitiered hybrid
intrusion detection system for internet of vehicles,” IEEE Internet of
Things Journal, vol. 9, no. 1, pp. 616–632, 2021.

[34] E. Eziama, F. Awin, S. Ahmed, L. Marina Santos-Jaimes, A. Pelumi,
and D. Corral-De-Witt, “Detection and identification of malicious cyber-
attacks in connected and automated vehicles’ real-time sensors,” Applied
Sciences, vol. 10, no. 21, p. 7833, 2020.

[35] J. Mirkovic, S. Fahmy, P. Reiher, and R. K. Thomas, “How to test dos
defenses,” in 2009 cybersecurity applications & technology conference
for homeland security. IEEE, 2009, pp. 103–117.

[36] M. Kaouk, F.-X. Morgand, and J.-M. Flaus, “A testbed for
cybersecurity assessment of industrial and IoT-based control systems,”
in Lambda Mu 2018 - 21è Congrè de Maı̂trise des Risques et Sûreté
de Fonctionnement, Oct 2018, Reims, France. [Online]. Available:
https://hal.science/hal-02074654v1/document

[37] M. Annor-Asante and B. Pranggono, “Development of smart grid testbed
with low-cost hardware and software for cybersecurity research and
education,” Wireless Personal Communications, vol. 101, pp. 1357–
1377, 2018.

[38] O. A. Waraga, M. Bettayeb, Q. Nasir, and M. A. Talib, “Design
and implementation of automated iot security testbed,” Computers &
security, vol. 88, p. 101648, 2020.

[39] V. K. Singh, R. Sharma, and M. Govindarasu, “Testbed-based perfor-
mance evaluation of attack resilient control for wind farm scada system,”
in 2020 IEEE Power & Energy Society General Meeting (PESGM).
IEEE, 2020, pp. 1–5.

[40] A. Ghaleb, S. Zhioua, and A. Almulhem, “Scada-sst: a scada security
testbed,” in 2016 World Congress on Industrial Control Systems Security
(WCICSS). IEEE, 2016, pp. 1–6.

[41] A. Tesfahun and D. L. Bhaskari, “A scada testbed for investigating cyber
security vulnerabilities in critical infrastructures,” Automatic Control and
Computer Sciences, vol. 50, pp. 54–62, 2016.

[42] S.-U. Park and S.-M. Hwang, “Test bed construction for apt attack
detection,” International Journal of Control and Automation, vol. 11,
no. 4, pp. 175–186, 2018.

[43] R. Arthi and S. Krishnaveni, “Design and development of iot testbed
with ddos attack for cyber security research,” in 2021 3rd International
Conference on Signal Processing and Communication (ICPSC). IEEE,
2021, pp. 586–590.

[44] A. P. Wright and N. Ghani, “A testbed for the evaluation of denial of
service attacks in software-defined networks,” in 2019 SoutheastCon.
IEEE, 2019, pp. 1–6.

[45] P. V. Sontakke and N. B. Chopade, “Impact and analysis of denial-of-
service attack on an autonomous vehicle test bed setup,” in Proceedings
of Third International Conference on Intelligent Computing, Information
and Control Systems: ICICCS 2021. Springer, 2022, pp. 221–236.

[46] Q. He, X. Meng, R. Qu, and R. Xi, “Machine learning-based detection
for cyber security attacks on connected and autonomous vehicles,”
Mathematics, vol. 8, no. 8, p. 1311, 2020.

[47] T. H. Aldhyani and H. Alkahtani, “Attacks to automatous vehicles: A
deep learning algorithm for cybersecurity,” Sensors, vol. 22, no. 1, p.
360, 2022.

[48] A. Kavousi-Fard, M. Dabbaghjamanesh, T. Jin, W. Su, and M. Roustaei,
“An evolutionary deep learning-based anomaly detection model for
securing vehicles,” IEEE Transactions on Intelligent Transportation
Systems, vol. 22, no. 7, pp. 4478–4486, 2020.

[49] I. Ahmed, G. Jeon, and A. Ahmad, “Deep learning-based intrusion
detection system for internet of vehicles,” IEEE Consumer Electronics
Magazine, vol. 12, no. 1, pp. 117–123, 2021.

[50] P. Sharma and H. Liu, “A machine-learning-based data-centric misbe-
havior detection model for internet of vehicles,” IEEE Internet of Things
Journal, vol. 8, no. 6, pp. 4991–4999, 2020.

[51] T. Alladi, V. Kohli, V. Chamola, and F. R. Yu, “Securing the internet
of vehicles: A deep learning-based classification framework,” IEEE
networking letters, vol. 3, no. 2, pp. 94–97, 2021.

[52] E. Gelenbe, B. C. Gul, and M. Nakip, “Disfida: Distributed self-
supervised federated intrusion detection algorithm with online learning
for health internet of things and internet of vehicles,” Internet of Things,
vol. 28, no. https://doi.org/10.1016/j.iot.2024.10134, p. 101340, 2024.

[53] T. Alladi, V. Kohli, V. Chamola, F. R. Yu, and M. Guizani, “Artificial
intelligence (ai)-empowered intrusion detection architecture for the in-
ternet of vehicles,” IEEE Wireless Communications, vol. 28, no. 3, pp.
144–149, 2021.

[54] Y. Sun, L. Wu, S. Wu, S. Li, T. Zhang, L. Zhang, J. Xu, Y. Xiong,
and X. Cui, “Attacks and countermeasures in the internet of vehicles,”
Annals of Telecommunications, vol. 72, pp. 283–295, 2017.

https://www.greencarreports.com/news/1093560_1-2-billion-vehicles-on-worlds-roads-now-2-billion-by-2035-report
https://www.greencarreports.com/news/1093560_1-2-billion-vehicles-on-worlds-roads-now-2-billion-by-2035-report
https://www.sciencedirect.com/science/article/pii/S254266052200097X
https://hal.science/hal-02074654v1/document

14

[55] L. Yang, A. Moubayed, I. Hamieh, and A. Shami, “Tree-based intelligent
intrusion detection system in internet of vehicles,” in 2019 IEEE global
communications conference (GLOBECOM). IEEE, 2019, pp. 1–6.

[56] X. Li, Z. Hu, M. Xu, Y. Wang, and J. Ma, “Transfer learning based in-
trusion detection scheme for internet of vehicles,” Information Sciences,
vol. 547, pp. 119–135, 2021.

[57] B. T. Alemu, A. J. Muhammed, H. M. Belachew, and M. Y. Beyene, “A
comprehensive detection and mitigation mechanism to protect sd-iov
systems against controller-targeted ddos attacks,” Cluster Computing,
vol. 27, no. 10, pp. 14 295–14 313, 2024.

[58] A. A. Almazroi, M. H. Alkinani, M. A. Al-Shareeda, and S. Manickam,
“A novel ddos mitigation strategy in 5g-based vehicular networks using
chebyshev polynomials,” Arabian Journal for Science and Engineering,
vol. 49, no. 9, pp. 11 991–12 004, 2024.

[59] U. Tariq, “Optimized feature selection for ddos attack recognition and
mitigation in sd-vanets.” World Electric Vehicle Journal, vol. 15, no. 9,
2024.

[60] Z. Li, Y. Kong, C. Wang, and C. Jiang, “Ddos mitigation based on space-
time flow regularities in iov: A feature adaption reinforcement learning
approach,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 3, pp. 2262–2278, 2021.

[61] A. Haydari and Y. Yilmaz, “Rsu-based online intrusion detection and
mitigation for vanet,” Sensors, vol. 22, no. 19, p. 7612, 2022.

[62] E. Gelenbe and M. Nasereddin, “Protecting IoT servers against
flood attacks with the quasi deterministic transmission policy,
(Best Paper Award, IEEE Trustcom 2023),” in 22nd IEEE In-
ternational Conference on Trust, Security and Privacy Computing
and Communications, November 2023, Exeter, UK, vol. 2023, no.
https://arxiv.org/pdf/2306.11007.pdf, 2024, pp. 1–8.

[63] J. Augusto-Gonzalez, et al., “From internet of threats to internet of
things: A cyber security architecture for smart homes,” in 2019 IEEE
24th International Workshop on Computer Aided Modeling and Design
of Communication Links and Networks (CAMAD). IEEE, 2019, pp.
1–6.

[64] E. Gelenbe and K. Sigman, “Iot traffic shaping and the mas-
sive access problem,” in ICC 2022, IEEE International Confer-
ence on Communications, 16–20 May 2022, Seoul, South Korea, no.
https://zenodo.org/record/5918301. https://zenodo.org/record/5918301,
2022, pp. 1–6.

[65] M. Masirap, M. H. Amaran, Y. M. Yussoff, R. Ab Rahman, and
H. Hashim, “Evaluation of reliable udp-based transport protocols for
internet of things (iot),” in 2016 IEEE Symposium on Computer Appli-
cations & Industrial Electronics (ISCAIE). IEEE, 2016, pp. 200–205.

[66] E. Gelenbe, “Random neural networks with negative and positive signals
and product form solution,” Neural computation, vol. 1, no. 4, pp. 502–
510, 1989.

[67] ——, “G-networks with instantaneous customer movement,” Journal of
Applied Probability, vol. 30, no. 3, pp. 742–748, 1993.

[68] E. Gelenbe and Y. Yin, “Deep learning with dense random neural
networks,” in International Conference on Man–Machine Interactions,
no. DOI:10.1007/978-3-319-67792-. Springer, Cham, 2017, pp. 3–18.

[69] “MHDDoS - DDoS Attack Script With 56 Methods,” Online, May
2022, accessed: 2023-02-22. [Online]. Available: https://github.com/
MatrixTM/MHDDoS

[70] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An
ensemble of autoencoders for online network intrusion detection,” in
The Network and Distributed System Security Symposium (NDSS) 2018,
2018.

[71] “Kitsune Network Attack Dataset,” August 2020. [Online]. Available:
https://www.kaggle.com/ymirsky/network-attack-dataset-kitsune

[72] E. Gelenbe, J. C. A. Boekhorst, and J. L. W. Kessels, “Minimizing
wasted space in partitioned segmentation,” Commun. ACM, vol. 16,
no. 6, p. 343–349, jun 1973. [Online]. Available: https://doi.org/10.
1145/362248.362253

https://github.com/MatrixTM/MHDDoS
https://github.com/MatrixTM/MHDDoS
https://www.kaggle.com/ymirsky/network-attack-dataset-kitsune
https://doi.org/10.1145/362248.362253
https://doi.org/10.1145/362248.362253

	Introduction
	Related Work on the Security of the IoV and IoT
	Organization of this Paper

	The Experimental Test-Bed and its Behaviour Under a Flood Attack
	The Server's Behaviour during Attack Detection
	Lindley's Equation when the SQF is not Used

	Effect of the Smart QDTP Forwarder (SQF)
	Experiments that Illustrate the Value of Result 1
	SQF Queue Buildup and Attack Mitigation

	Adaptive Attack Mitigation (AAM)
	Attack Detection AD
	Analysis and Optimization of AAM
	Scalability
	Optimization Measurements of the AAM Scheme
	The Effect of the AAM on the Gateway's Time-Line Behaviour during Attacks

	Conclusions
	References

