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ABSTRACT The rapid growth of mobile internet and social media usage in Sub-Saharan Africa has
amplified the need for accurate Quality of Experience (QoE) assessment in resource-constrained network
environments. This paper introduces a novel hybrid Machine Learning (ML) framework for predicting user
QoE in Cameroon’s Third Generation and Fourth Generation (3G/4G) networks, leveraging a unique real-
world dataset that integrates crowdsourced Quality of Service (QoS) measurements with subjective user
satisfaction surveys. Addressing the limitations of existing QoE studies that focus on well-resourced regions,
our approach proposes QoE Predictor (QoEPredict). This stacking ensemble combines eXtreme Gradient
Boosting (XGBoost) and Random Forest classifiers with an XGBoost meta-learner. A key innovation is the
use of disagreement features to capture divergences between base model predictions, allowing the meta-
learner to resolve conflicts and enhance predictive accuracy. The proposed five-stage pipeline incorporates
data preprocessing, feature engineering via Uniform Manifold Approximation and Projection (UMAP),
unsupervised clustering, and Bayesian hyperparameter optimisation using Hyperopt, ensuring a robust and
transferable methodology. Explainable Al (XAI) is integrated through SHapley Additive exPlanations
(SHAP) analysis to provide feature-level interpretability and actionable insights for network operators. An
experimental evaluation of 1,934 user sessions demonstrates that QoEPredict achieves a 90% F1 Score and
accuracy, outperforming single-model baselines across all metrics. This work represents one of the first large-
scale, interpretable QoE prediction frameworks for mobile social media applications in Sub-Saharan Africa.
By combining ensemble modelling with explainability and contextualised insights, the study offers both
methodological advances and practical guidance for implementing QoE-aware network management
strategies in developing regions facing infrastructural and operational constraints.

INDEX TERMS Hybrid Ensemble Model, Mobile Networks, Machine Learning, Quality of Experience
(QoE), Quality of Service (QoS), eXplainable Artificial Intelligence (XAI)

. INTRODUCTION

The last decade has witnessed a surge in global mobile
internet usage, with social media applications being the
primary driver of data traffic. Like many Sub-Saharan
African countries, Cameroon has seen a rapid growth in
mobile connectivity. By early 2025, there were 12.4 million
internet users (41.9% penetration), and 5.45 million active
social media users in the country. Most of these users use
these services via Third Generation and Fourth Generation
(3G/4G) cellular networks, reaching roughly 70% of the
population [1]. In this landscape, ensuring a high Quality of
Experience (QoE) for mobile apps is both a commercial
imperative and a technical challenge. QoE, which is defined
as the overall level of user satisfaction or dissatisfaction with
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an application or service, as perceived subjectively by the
end-user [2], is a holistic metric that expands upon network
Quality of Service (QoS) indicators by incorporating the
user’s end-to-end perspective, including human factors, and
context.

In practical terms, good QoS, e.g., high throughput, is ideal
but not always sufficient to guarantee good QOE as
expectations, application design, and individual perception
all influence user satisfaction. Research has shown that QoS
alone is insufficient to capture the subjective dimension of
the user experience. Instead, QoE assessment must integrate
technical metrics with human factors like user expectations,
context of use, etc [3]. In this light, recent works have started
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adopting Machine Learning (ML) to predict users’ QoE. For
example, Panahi et al. [4] presented ML-based QoE
prediction frameworks that achieved high accuracy (~95%)
for video streaming services. However, these frameworks
largely focused on controlled or well-resourced
environments, highlighting the potential of data-driven QoE
prediction. Also, these frameworks reveal current limitations
regarding real-world QoE modelling, especially in
developing regions.

Assessing and improving QoE in Cameroonian mobile
networks, like other African mobile networks, remains
challenging due to limited local research. Regional factors
such as frequent power outages, legacy infrastructure,
limited bandwidth, and inconsistent coverage exacerbate
these challenges [5]. A glance through the social media
handles of local mobile operators further underscores the
need for studies like this. These platforms reveal a daily
influx of subscriber complaints and widespread
dissatisfaction with the services provided. A phenomenon
that has drawn government scrutiny and hefty fines for the
operators involved [6]. These subscriber complaints
underscore the practical importance of QoE. Poor QoE
directly affects both users and businesses, highlighting the
need for more effective QoE monitoring tools in this context.

A. MAIN CONTRIBUTIONS OF THE PAPER

We introduce a novel hybrid QoE prediction framework
tailored to an African 3G/4G scenario with social media
usage as the use-case, validated on a real-world dataset. To
our knowledge, this is the first known ML-based QoE study
in this setting, using a hybrid approach that combines
crowdsourced network QoS data and user satisfaction
surveys with explainable Artificial Intelligence (XAI). Our
approach introduces a stacking ensemble, named QoE
Predictor (QoEPredict), that combines eXtreme Gradient
Boosting (XGBoost) and Random Forest classifiers with an
XGBoost meta-learner. We not only fed the meta-learner
with the base models’ contributions but also with
disagreement features. This permitted the ensemble to
capture any conflicting base model predictions and resolve
them via learned compensatory patterns. Hyperparameter
optimisation was performed using the Hyperopt Bayesian
engine to find the best configurations for all models, ensuring
a fair and optimised comparison. In addition, we incorporate
model interpretability via SHapley Additive exPlanations
(SHAP), enabling us to explain the predictions of the
ensemble in terms of feature importance and contributions.
This hybrid of high-performance ensemble modelling with
XAl is a novel contribution in the QoE domain. This paper
makes several significant contributions to the field of QoE
prediction, particularly within the context of African 3G/4G
networks and social media usage:

1. Hybrid QoE Prediction Framework for an
Understudied Region: We propose the first known ML-
based QoE prediction framework tailored to the
Cameroonian 3G/4G environment, combining crowdsourced
QoS measurements from user devices with subjective user

satisfaction surveys. This provides unique insights into QoE
within an underrepresented market.

2. Novel Stacking Ensemble with Disagreement
Features: We introduce QoEPredict, a hybrid ensemble
model that integrates XGBoost and Random Forest
classifiers with an XGBoost meta-learner. Unlike
conventional stacking, our approach incorporates
disagreement features, quantifying divergences between
base model predictions, to allow the meta-learner to resolve
conflicting outputs through learned compensatory patterns,
thereby enhancing prediction accuracy.

3. Modular Five-Stage Machine Learning Pipeline:
We develop a comprehensive and reusable ML pipeline
comprising (i) data preprocessing, (ii) feature engineering
with Uniform Manifold Approximation and Projection
(UMAP), (iii)) unsupervised -clustering, (iv) Bayesian
hyperparameter optimisation using Hyperopt, and (v)
stacked ensemble modelling. This modular structure
supports reproducibility and adaptability to other QoE
contexts.

4. Integration of Explainable Al (XAI): We embed
model interpretability into the framework using SHAP
analysis, enabling domain experts to understand feature
contributions and the decision mechanisms of the ensemble.
Combined with cluster profiling, this provides actionable
insights for network operators to link QoE drivers to
operational strategies.

5. State-of-the-Art Performance and Regional
Relevance: The proposed framework achieves a peak F1
Score and accuracy of 90%, outperforming single-model
baselines across all evaluation metrics. Beyond performance,
it offers region-specific value by uncovering QoE
determinants in Cameroon, thereby supporting QoE-aware
network management strategies in emerging markets.

6. Creation of a hybrid dataset for QoE prediction:
A unique dataset from Cameroonian 3G/4G users, collected
from user devices via a network measurement app and
follow-up user surveys, illustrating QoE in an understudied
environment.

Collectively, this work advances QoE prediction research by
delivering a high-performance, interpretable, and regionally
contextualised framework. It serves as a methodological
contribution through the novel integration of stacking and
XAI techniques. This study also provides a practical
blueprint for applying predictive analytics to enhance user
experience in resource-constrained mobile network
environments.

B. ORGANISATION OF THIS PAPER

The remainder of the paper is structured as follows: Section
II presents the related works associated with this study, and
Section III depicts the methodology employed in this
research. Section IV presents the interpretable insights and
performance results of the models. This is followed by a
discussion of the implications of these findings, the
limitations of this study, and the constraints faced during this
research in Section V. The paper concludes with Section VI,

2



IEEE Access

Muttidisciplinary : Rapid Review : Open Access Journal

highlighting the significance of this study within the African
context.

Il. RELATED WORKS

Globally, early works on QoE focused on subjective
measurement techniques such as user surveys and Mean
Opinion Score (MOS) experiments to map QoS metrics to
perceived QoE [7]. While these methods were regarded as
the “ground truth” for user experience, they were labour-
intensive, costly, and lacked scalability for large-scale
deployment. In response, research shifted toward objective
ML-based QoE prediction models trained on network
performance indicators. In this regard, Alreshoodi and
Woods [8] provided a comprehensive review of such
objective and subjective QoS-to-QoE mapping efforts. They
observed that although many models exist, each only
partially addresses the challenge of robust, real-world QoE
prediction. This study emphasised the importance of
integrating subjective measurements with objective metrics
to develop more reliable and comprehensive hybrid QoE
models.

Building on this, Casas et al. [9] compared single-model
predictors to ensemble methods using smartphone-collected
QoE data and found that while decision-tree-based models,
e.g., RF, performed well individually, ensemble methods
yielded superior predictive accuracy. These ensemble
approaches, including bagging, boosting, and stacking,
enhance performance by aggregating outputs from multiple
base learners. Stacking, in particular, is advantageous
because it allows the integration of heterogeneous base
models, leveraging their complementary strengths for
improved generalisation and stability [10]. In parallel,
explainable ML techniques have gained attention in QoE
research; methods such as SHAP are now being used to
elucidate how specific features impact user-perceived QoE
[11]. These tools enhance the interpretability and
trustworthiness of ML-based QoE systems, especially in
operational or regulatory contexts [12].

At the national level in Cameroon, research on QoE has
followed a similar evolutionary trajectory, albeit with
distinct local challenges. Molem et al. [13] analysed the
impact of technological innovations on customer satisfaction
using survey data from 363 long-term MTN subscribers in
Buea. This study employed descriptive statistics and
classification analysis to examine the relationship between
the rollout of 3G and 4G networks and user satisfaction and
loyalty. However, it relied solely on subjective perceptions
and lacked integration with network KPIs or predictive
modelling. Expanding on this, Kum and Austin [14]
proposed a theoretical framework called QoE-Incorporation
Feedback Mechanism (QoE-IFM), which combined
technical (e.g., optimal network coverage), regulatory (e.g.,
compliance with Net Neutrality), and business (e.g., cost),

dimensions into a mathematical model. While their approach
provided a high-level view of QOoOE integration within
network operations, it remained conceptual. It did not utilise
granular user-level metrics or field data from end-user
devices.

The most technically advanced work within the
Cameroonian context is that of Abana et al. [15], who
developed an ML and Deep Learning-based platform for
predicting customer satisfaction at Orange Cameroon
(OCM). Their model was trained on internal KPIs such as
Call Success Rate, SMS Hit Rate, TCP Session Counters,
and MOS, supplemented by a very small-scale internal user
satisfaction survey of OCM’s Customer Experience
Department employees. Their system was limited to internal
network logs and lacked external validation via large-scale
crowdsourced data. Moreover, interpretability and
actionable feedback mechanisms were absent. Together,
these works reflect a logical progression: from survey-based
perception studies to theoretical modelling, and recently, to
predictive QoE modelling using network KPIs.

However, a critical gap remains: the lack of an integrated
framework that combines large-scale crowdsourced QoS
data from user devices with structured user-rated QoE
feedback, supported by explainable and optimisable ML
architectures. Hence, the following questions: how can we
accurately predict users’ QoE in Cameroon’s mobile
networks, with a focus on social media applications, by
combining large-scale crowdsourced network performance
metrics with user feedback? Which factors have a greater
influence on user experience in this local context?

Ill. METHODOLOGY

To achieve our objectives, we followed a 4-step
methodology encompassing data collection, data fusion,
modelling, and evaluation. An overview of the process is
depicted in Fig. 1.

A. DATA COLLECTION

Over 3 months, we gathered data points from volunteer
smartphone users of all the local networks across 6 regions
of Cameroon. The South West Region (Buea, Limbe), the
Centre Region (Yaoundé), the Littoral Region (Douala), the
East Region (Bertoua), the North Region (Garoua), and the
North West Region (Bamenda) are the towns with the most
participants. Each data point consists of: (a) Objective
network performance features collected via the SpeedTest
Master Pro application, and (b) Subjective user satisfaction
feedback collected via a Google Forms questionnaire. The
SpeedTest Master Pro app; a mobile app used for measuring
QoS metrics over WI-FI and mobile networks, was chosen
due to its ease of use and ability to capture the network QoS
metrics of interest for our case.
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(using Google Forms)

Modelling Pipeline

Clustering Hyperparameter Model Training
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FIGURE 1. Four-step research method outlining the workflow from data collection, fusion, model development and performance evaluation of our
developed model

The QoS metrics measured on the user’s mobile device using
the SpeedTest Master Pro app included: Downlink
throughput  (Mbps), Uplink  throughput (Mbps),
Ping/Latency (ms), Jitter (ms), Packet Loss (%), and Device
(Operating System) type, along with test timestamp. These
were automatically logged on the user’s device after
executing the network tests under everyday conditions, thus
reflecting realistic network performance. The Google Forms
survey was administered immediately after each network
Speedtest to capture the user’s subjective satisfaction ratings
and provide context like the primary app in use, e.g.,
Facebook, Content type, e.g., text messaging, any observed
issues, e.g., video buffering, location, and time of day. Basic
user demographics, e.g., age and technical literacy, network
type, i.e., 3G or 4G, were also recorded to enrich the analysis.
Since the app measures both mobile and WI-FI network
ratings, we filtered out any WI-FI readings from the app’s
metadata. We retained only records where the app’s
metadata field for network type explicitly indicated a mobile
network connection (Mobile, LTE, 4G, 3G). This systematic
Wi-Fi exclusion ensures the dataset focuses solely on mobile
network QoE measurements. Each data entry was
accompanied by a user-reported QoE score, a MOS-style
rating on a 1-5 scale. This served as the ground truth target
for our predictive models regarding social media app usage
experience at that moment, presumably influenced by the
network performance they just experienced.

We also collected users’ actual phone numbers as user IDs
to serve a dual purpose: first, to ensure we were collecting
data from real users of local mobile networks, and second, to
use them as the pivot for data fusion. Also, these user IDs
could be used to identify different network operators,

especially for studies that would be interested in evaluating
the QoE of particular networks. All users who participated in
this data collection did so willingly and gave their informed
consent by signing a consent form for their data to be used
anonymously for the aggregate analysis. To ensure
anonymity, we hashed the user IDs in both QoS and the User
feedback files using SHA3-256. The hashed identifiers were
stored on a secure, access-controlled system. All raw data
were retained only for the duration of model development
before being permanently deleted, in compliance with
General Data Protection Regulation (GDPR) standards.

B. DATA FUSION TECHNIQUE

For the scope of this paper, we used early fusion as the
baseline fusion technique to merge all collected features into
a single dataset. Early fusion simplified our pipeline and is a
common approach in related QoE prediction works. Early
fusion means that we merged the network QoS and user data
from the very beginning, before feeding it into the ML
models [16]. Concretely, we treated each QoE score as the
dependent variable and all corresponding QoS and user
feedback metrics as independent variables in a single feature
vector. This way, the model directly learns the mapping from
technical parameters plus context to the user’s QoE. E.g., our
model could discover if “high throughput is only beneficial
to QoE when latency is also low”, by examining those
features together. All data lived in one table, and standard
classification algorithms could be applied directly.

To achieve a successful merge, we implemented the
following precautions: Firstly, since QoS data files came
from different devices with possibly different versions of
excel/csv and also since there is the possibility of having
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special characters in the user feedback file, we encoded the
compiled network QoS and user feedback data files using
ISO 8859-1 encoding to guarantee uniformity. Secondly, we
cleaned and forced the User ID on both files to strings to
eliminate any spaces or ‘-’s between user ID digits, which
may lead to possible mismatches. Thirdly, we harmonised
the column names for uniformity. Also, we harmonised the
Timestamps on both files to the ‘dd/mm/yyyy hh:mm’
format. Then, we fused both files, using the User ID (one
entry per user ID) and the nearest Timestamp within a 30-
minute tolerance window, into one dataset. This strict
deduplication process guarantees that each entry is linked to
a unique user experience rating. The 30-minute window was
necessary to balance user convenience with our data fusion
needs. However, it may introduce noise if a user's network
conditions change significantly between the speed test and
survey completion. Future work employing real-time

triggering or continuous monitoring could further enhance
label fidelity. Next, we removed all users’ personal
identifiable information to anonymise the dataset, adhering
to relevant ethical GDPR guidelines. Finally, we cleaned the
dataset for outliers, e.g., we filtered extremely low speeds
likely due to test errors. We also dropped entries with no
corresponding user survey responses.

The final merged dataset (1934, 38), which served as the
basis for training and evaluating our hybrid QoE prediction
models, has 1934 user-collected data points (from 1934
different users) with 38 feature columns and the QoE target
variable. We selected and designed these 38 features to
represent 14 of the most documented categories of factors
influencing QoE in the literature. Table I below presents the
taxonomy of these QoE influencing factor categories and
their references, the dataset features that represent these
categories, and brief descriptions of these features.

TABLE I. Taxonomy of QoE influencing factors from literature captured in the hybrid dataset features (adapted from references [17] - [18])

Dataset Feature

Feature Description

QoE Influence Factor
Category

Improve Experience Increase Use

Likelihood of increased usage if QoE improves

Platform Loyalty Willingness to switch platforms .
—— - - - User Behaviour/Preference [17]
User engagement tendency Impact of poor performance on willingness to engage with social media content [18]
Usage per day Time spent daily on social media
Platform Preference Social media platforms frequently used
Content Type Most consumed content type Content Type [19] [20]

Congestion Impact on Experience

Impact of network congestion on social media experience

Network instability

Frequency of interruptions during social media use

Difference during Peak Hour

Noticing performance differences at peak hours

Peak Hour Rating Network rating during congested times User Experience [21] [22]
App Speed Rating Satisfaction with social media app speed/responsiveness
Network Reliability How important a good network is
Data Throttle Data exhaustion or throttling during congestion
Video Loading Time Time to start video playback

Message Delivery Speed

Delay in sending/receiving messages

Notification Latency

Delay in receiving app notifications

Video Buffer duration

How long do delays usually last

Usability [23] [24]

Video Reliability

Interruption frequency while watching social media videos

Message Reliability

Messages not being delivered or arriving out of order

Video Buffering

Pauses during video playback

Video Quality

Experience of poor visual resolution

Image Resolution

Blurry or failed image loads

Product Quality Degradation

[25] [26]

Image Quality Quality of images displayed on social media platforms
Video Stuttering Lag in videos or live streaming while using social media apps
Network Type Network connection .
Demographics and
Age Group Age group of the respondent .
- - - Environmental Context [27]
TimeStamp Time of day record of data collection 28]
User Environment User location
Pay for QoE Willingness to pay for a better experience Price and Value [29] [30]
QoS awareness/l?xpectatmns Belief that soc.la.l medl.a prioritisation would help User Expectation [31] [32]
Suggestions User opinion to improve the network
Latency Round-trip time for packets Latency [33] [34]
Packet Loss Packet loss results in content not loading Packet Loss [32] [35]

Jitter Variation in network delays

Jitter [36] [37]

Throughput (Downlink and Uplink)

Both download and upload speeds

Throughput [38] [39]

Bandwidth

Available Bandwidth to user

Bandwidth [36] [39]

Device type

Operating system type

Device Capability [34] [38]

Note: This categorisation is the authors’ synthesis of referenced literature and not results from new experiment

The QoE scores in our data spanned from 1 (Very poor), 2
(Poor), 3(Average), 4(Good) to 5 (Excellent), with a roughly
symmetric distribution around the middle. This indicates
many moderately satisfied users, coupled with a significant

number of dissatisfied users, as seen in Fig. 2. The QoS
metrics varied widely, e.g., latency ranged from less than
2ms up to more than 1000ms. These variations highlight the
heterogeneity of network conditions captured in the country.
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The combined dataset is multidimensional, comprising both
numerical and categorical variables, which necessitates
careful feature engineering.

To enrich our understanding of local context, we additionally
asked 20 randomly selected participants an open-ended
question: “Please describe any issues or factors affecting

social media usage if these issues or factors affecting your
social media experience were resolved?” Users mentioned
issues like “images took too long to load”, “videos usually
froze for a moment”, “the connection was fine, no
problems.” or “I may enjoy spending more time on my social

media.”

your social media experience.”, “Would you increase your
700 ]
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FIGURE 2. Distribution of user-reported QoE scores across the sampled population of 1934 users. The figure shows a slightly right-skewed pattern, indicating that
most users experienced moderate to good perceived quality

We did not directly use these comments as inputs to the
quantitative model. However, we analysed them to confirm
that factors such as speed, loading time, and network stability
were noticeable to users. Such insights underscore the
importance of certain QoS metrics, e.g., many complaints
about “slow loading” correlate with high latency or low
throughput measurements.

It is important to note that early fusion is not the only fusion
strategy; we also considered alternatives for completeness:

1) LATE FUSION

In this scheme, separate submodels are trained on different
datasets. E.g., one model predicts QoE purely from objective
QoS metrics, and another predicts QoE from other subjective
user-factor datasets. Then, these outputs are combined via
another learning layer. Late fusion is useful if the
relationship within each data type is complex and distinct
[40]. If we had additional subjective inputs, such as a user’s
qualitative sentiment, late fusion could have been applicable.
As a conceptual exercise, one could imagine training one
model to estimate QoE using only network QoS data and
another using user survey responses about their expectations,
and then fusing the two models. We recognise this as a
potential extension of this work if more user-centric features
become available.

2) WEIGHTED FUSION

Another approach is to explicitly weight the contributions of
objective versus subjective features in the model [41]. E.g.,
if one suspects that network QoS explains, say, 65% of QoE
and other factors explain 35%, one could adjust the input

representation accordingly. This approach is more relevant
in neural networks, where one could design a custom
architecture, e.g., separate input layers that are later merged
with certain weights. We did not implement a custom
weighted fusion in our current study. We effectively let the
learning algorithm determine the weights via feature
importance or learned parameters.

C. MODULAR ML PIPELINE ARCHITECTURE
We implemented a five-stage pipeline as shown in Fig. 3,
with each stage encapsulated in a Python module:

1) PREPROCESSING STAGE

This module handles data cleaning and normalisation. We
parsed, cleaned, and transformed users’ multisuggestions
and multiplatform preferences into dummy variables for
inclusion as categorical features. We systematically imputed
missing data; less than 3% of our dataset, using column-type-
aware strategies: we filled numerical fields using mean
imputation via Simplelmputer, while we filled categorical
fields using mode values with Pandas. Then, we extracted
temporal information from Timestamps, yielding additional
‘hour of day’ and ‘day of week’ features. For feature
transformation, we employed a ColumnTransformer to apply
StandardScaler to numeric columns and OneHotEncoder to
categorical ones. The resulting pre-processed dataset (1934,
3264), passed onward for downstream modelling, contained
standardised numeric values, encoded features, temporal
attributes, and a target vector.
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FIGURE 3. Five-stage modular ML modelling pipeline illustrating data preprocessing, feature engineering, clustering, hyperparameter tuning, and
model training for QoE prediction

2) FEATURE ENGINEERING STAGE

This module performs comprehensive feature selection and
dimensionality reduction to refine the pre-processed dataset
for optimal model performance. To achieve a robust feature
selection and avoid overfitting, we employed a 5-fold Cross-
Validation (CV) feature selection procedure [42]. In each
fold, features were first ranked by their Mutual Information
(MI) with the QoE score, following the maximal
dependency/relevance criterion [43]. An approach known to
capture nonlinear QoS-QoE relationships. Then, we
computed the SHAP values for feature importance; SHAP
provides model-agnostic estimates of each feature’s
contribution to predictions [44]. By examining SHAP bar
plots of mean absolute feature contributions and the Feature
Heatmap, we could transparently assess which factors most
strongly affect the predicted QoE. This approach addresses
the core challenge of quantifying each factor’s influence in
telecommunications QoE models.

Next, to reduce redundancy and noise, we applied UMAP for
nonlinear dimensionality reduction. UMAP projects the data

into a low-dimensional embedding while preserving its
intrinsic structure. UMAP was chosen over alternatives like
PCA and t-SNE because it better retains global structure in
the data manifold, which improves cluster separability and
visualisation [45]. Since UMAP is sensitive to feature
scaling, we standardised all features before applying UMAP.
Table IT contains the UMAP parameters used in this study.

As an exploratory exercise to justify our use of UMAP, we
experimented with PCA, a well-known linear dimensionality
reduction method [46]. PCA-reduced datasets failed to
achieve a superior accuracy performance over our No PCA
dataset as shown in Fig. 4, illustrating the nonsuitability of
linear dimensionality reduction techniques for our context.
This feature engineering stage serves as a critical
intermediary in enhancing data quality and interpretability
before model training and stacking.

TABLE II. UMAP parameter configuration (adapted from [18])

Parameter Value Purpose
n_components 10 and 2 Number of dimensions for the output embedding: 10 for grouping, 2 for visualisation.
n_neighbors 20 Local neighbourhood size used for manifold approximation
min_dist 0.1 Controls how tightly UMAP packs points together; lower values preserve local structure.
Metric Euclidean Distance metric used to compute similarity between points.
Random State 42 Handles UMAP’s stochasticity
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FIGURE 4. Accuracy comparison of different PCA dimensions of the
dataset to investigate PCA suitability for this study

3) CLUSTERING STAGE

This module seeks to enhance explainability and provide
empirical justification for the choice of clustering method. It
also offers insights into how different user or network
behaviour groups relate to QoE levels. The first step was to
provide a robust comparative analysis of the unsupervised
clustering techniques, using the feature-engineered dataset to
identify natural user experience groupings. In particular, we
compared partitioning methods: K-Means [47] and Gaussian
Mixture Models (GMM) [48], graph-based Spectral

Clustering [49], Ward’s linkage hierarchical Agglomerative
Clustering [50] and the density-based HDBSCAN method
[51]. Evaluating a broad set of algorithms is important
because each makes different assumptions about cluster
shape and can reveal different structures. For example, K-
Means and GMM assume roughly convex, Gaussian clusters
and require the number of clusters, £, to be specified a priori.
In contrast, HDBSCAN automatically determines k& based on
density and identifies outliers as noise.

For a fair comparison, we optimised each method’s
hyperparameters using internal validation metrics to obtain
its best configuration, as presented in Table I1I. For K-Means
and GMM, we varied & and applied the elbow method and
silhouette analysis to choose an optimal cluster count. We
used the Silhouette Coefficient as a primary internal metric.
Higher silhouette values indicate more coherent and well-
separated clustering. We also calculated the Davies—Bouldin
(DB) Index for each result, with lower DB index values
indicating low intra-cluster distance relative to inter-cluster
distance [52]. Similarly, we tuned hyperparameters such as
the number of neighbours in Spectral Clustering or the
minimum cluster size in HDBSCAN, maximising silhouette
scores or minimising density-based cluster validity indices.

TABLE III. Configurations used for tuning Clustering Algorithms (adapted from standard clustering practices [17] - [51])

(clusters/distributions)

Parameter Purpose K-Means | GMM | Spectral Clustering | Agglomerative HDBSCAN
n_clusters Number of clusters to form or evaluate 2-10 2-10
Number of components
n_components 2-10

affinity Similarity metric for graph construction

nearest_neighbours

linkage Linkage criterion

Ward

min_cluster size Minimum number of samples per cluster

[15, 20, 25, 30]

min_samples Minimum number of core samples per cluster

[5, 10, 15]

Hierarchical visualisation of clusters

gen_min_span_tree

True

Next, we used a comprehensive set of metrics and statistical
tests to investigate cluster quality and stability. These
include: Silhouette Score and Davies-Bouldin Index for the
final clustering solutions as global indicators of cluster
quality, one-way ANOVA tests on the QoE scores across
clusters to ensure the clusters represent significantly
different QoE populations and Kruskal-Wallis tests to
account for nonnormal score distributions, adding rigour to
the clustering validity. Cluster Purity was also computed to
measure how well each cluster aligned with known
categories [53]. More so, we computed the inter-cluster
effect size for QoE differences to assess practical
significance beyond statistical significance [54].

To compare the performance of the different clustering
methods, we defined a composite score that aggregates
different validation metrics [55]. We combined metrics
emphasising different aspects: silhouette for
cohesion/separation, a penalty for high DB, external validity
through cluster purity, and statistical effect size by using (1).
Each component is weighted to reflect its relative
importance, forming a robust and interpretable composite
index for ranking the clustering solutions in our context (See
Table IX). This multicriteria evaluation ensured that the
“best” clustering method was chosen based on a balanced

consideration of internal consistency, separation, and
stability.

Composite Score = 0.4 x Silhouette + 0.2 x (1-Davies-Bouldin) + 0.2 x
Purity + 0.2 x Effect Size (@)

Finally, for interpretability and practical insights on the
clusters, we generated a suite of visualisations: Violin plots
of QoE variation within clusters (see Fig. 12), Silhouette plot
depicting the distribution of silhouette values per cluster to
verify that most points have high within-cluster similarity
and are appropriately assigned (see Fig. 13) and UMAP
embedding to visually inspect how well the clusters separate
in feature space (see Fig. 14), of the QoE distributions per
cluster to reveal differences in central tendency and spread
of user experience in each group. Additionally, to explain the
cluster characteristics in terms of original features, we
investigated the key QoS features influencing each cluster,
effectively revealing why a data point belongs to that cluster.
Thus, by combining statistical rigour: significance tests,
effect size, sound engineering practices: multiple algorithms
and tuning, and XAI techniques: SHAP plots and visual
analytics, we yield a reproducible and transparent clustering
module for QoE modelling in telecommunications. Also, we
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identify distinct user experience profiles and reveal the key
factors driving those differences, thereby offering both
theoretical and practical value for network QoE
optimisation. The final clustered dataset is forwarded
downstream for supervised modelling.

4) HYPERPARAMETER TUNING STAGE

In this stage of our prediction pipeline, we employed an
automated optimisation strategy using the Hyperopt library
with the Tree-structured Parzen Estimator (TPE) algorithm
[56], chosen for its efficiency in exploring high-dimensional,

conditional search spaces. The goal was to maximise the
predictive performance of six base classifiers: RF, SVC,

XGBoost, Ridge, MLP, and KNN [56][57], by
systematically ~ searching for optimal parameter
configurations. Table IV contains all the parameter

configurations used for tuning all models. We chose the base
classifiers to represent a mix of linear, nonlinear, and
ensemble methods commonly used in QoE modelling. Also,
we employed Synthetic Minority Oversampling TEchnique
(SMOTE) to address the class imbalance in our dataset, a
typical issue in real-world QoE classification tasks.

TABLE IV. Hyperparameter tuning space configurations (adapted from standard ML optimisation practices [17] - [18])
Parameter RFC SvC XGBoost MLP KNN Ridge Meta-Ridge | Meta-XGBoost
1 estimators 100400 100-500 50-300 (step
- (step 50) (step 50) 50)
max_depth 5-20 (step 5) 37101)(step 27131522())106
min_samples_split 2-10
min_samples_leaf 14
class weight 'balanced' 'balanced'
C log-uniform
[0.1, 10]
log-uniform
gamma (y) [0.001, 0.1]
kernel 'rbf, 'linear'
. 'constant’ .
. log-uniform v . log-uniform
learning_rate [0.01,0.3] 1nvsca1}ng A [0.01,0.2]
’ 'adaptive' i
uniform
subsample [0.6, 1.0]
colsample_bytree [%néfolrr(r)l]
. . (50,), (100,),
hidden_layer_sizes (100, 50)
activation 'relu’, 'tanh'
solver 'adam’, 'sgd'
log-uniform log-uniform | log-uniform
alpha (o) [1%-4, le-2] fgo.l, 10] [%.01, 10]
tol log-uniform | log-uniform
[le-4, 1e2] | [le-4, 1e-2]
n_neighbors 3—15 (int)
. 'uniform’,
weights 'distance’
. 'auto’, 'ball_tree',
algorithm d tred
smote k 3,5,7 3,5,7 3,5,7 3,5,7 3,5,7 3,5,7 3,5,7 3,5,7

To ensure robust performance estimates of model variability
and generalisation, as summarised in Table V, we employed
a nested CV approach [58]. We tuned each model across 30
trials within an outer 5-fold stratified CV loop, yielding 180
tuning evaluations per fold. Then, we selected the top three
base models, ranked by F1 Score, and investigated all four
possible stacking combinations. This approach reflects a
balanced trade-off between computational feasibility and

statistical robustness, consistent with best practices in
ensemble learning research. For each stacking combination,
we further tuned two types of meta-learners: Ridge Classifier
and XGBoost, using an inner 3-fold CV and 15 evaluations
each. This dual meta-learning approach was necessary to
compare linear and nonlinear meta-modelling paradigms for
our context.

TABLE V. Synthesis of total trials performed in hyperparameter tuning (adapted from [59])

Component Per Fold Trials Total Folds Total Trials

Base Models 6 x30=180 5 900
Meta-Learners 4 combinations x 2 x 15=120 5 600

Grand Total 1500
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The tuning process, though a critical step in ensuring each
model component within the stacking framework was
configured to achieve optimal performance, was
computationally intensive. Each Hyperopt trial took ~2
minutes, totalling a runtime of ~24 hours for all models. By
automating this step and independently optimising each
model-fold combination, we avoided the biases of manual
tuning, information leakage, and ensured fair model
comparison on unseen holdout data.

5) MODEL TRAINING AND STACKING STAGE

Each model was initialised using its best parameters, based
on CV performance across all folds, and retrained on the
entire 80% dataset. Then, we observed the test performance
on the 20% validation dataset. For the proposed QoEPredict,
as illustrated in Fig. 5, we implemented a two-level
StackingClassifier using scikit-learn’s built-in stacking
framework. In Level 1, XGBoost and Random Forest as the
base learners. To explicitly capture instances of base model
uncertainty, we computed a binary disagreement feature on
the out-of-fold base learner predictions. This feature was set
to ‘1’ if the standard deviation of the base models’ class
predictions for a sample was greater than zero, indicating
disagreement and 0 otherwise (indicating consensus). We
passed through the disagreement features to the meta-learner
alongside the base models’ predictions, to provide the meta-

learner with more information to distinguish when the base
models have conflicting predictions [59]. These
disagreement features contributed to a 1.07% boost in
QoEPredict’s performance (an F1 increase from 88.59% to
89.66%). In Level 2, XGBoost is used as the meta-learner,
leveraging its flexibility and strong performance in blending
predictions from base models. Although XGBoost includes
default regularisation mechanisms to mitigate overfitting, we
did not explicitly tune the L1 (alpha) and L2 (lambda)
regularisation parameters (to minimise computational cost)
in this case. L1 regularisation can effectively perform feature
selection by reducing the impact of less important features.
It achieves this by adding a penalty proportional to the
absolute values of the leaf weights, which encourages
sparsity in the model. L2 regularisation, on the other hand,
adds a penalty proportional to the square of the leaf weights.
This penalty shrinks the weights and stabilises predictions,
reducing variance and making XGBoost less sensitive to
noisy data. While these parameters play an important role in
controlling model complexity and improving generalisation,
tuning them was beyond the scope of the current study.
Future work could explore systematic tuning of L1 and L2 to
further enhance QoEPredict’s performance and mitigate
potential overfitting.

Base Model 1 Prediction

Base Model 1
| (XGBoost)
Meta
4 L
Input dataset Disagreement Feature (Xéa];(r)lzzt)
Base Model 2 | | QoE Prediction
(REC)
Base Model 2 Prediction

FIGURE 5. Architecture of the QoEPredict ensemble framework. The model combines XGBoost and Random Forest Classifier(RFC) and as base
learners, whose outputs feed into a meta-level XGBoost model for final QoE prediction. Disagreement-based features are incorporated to improve
robustness, and SHAP-based explainability is integrated for model transparency

The model's performance relied solely on boosting and its
ability to capture complex relationships, with regularisation
potentially applied but not fully optimised. We recognise this
regularisation parameter tuning as a future direction to
possibly improve the model's performance.

The meta-learner was trained on the outputs of Level 1
models for each training example. This stacked model,
dubbed QoEPredict, essentially forms a hybrid function
approximator that leverages the strengths of each base
model.

6) MATERIALS USED
We configured the development environment using Python
3.13.2 and Visual Studio Code (v1.100.0, Electron 34.5.1,

Node.js 20.19.0) on a 64-bit Windows 10 (Build 26100)
system. For model implementation, the main libraries used
include pandas 2.2.3, NumPy 2.1.3, scikit-learn 1.6.1,
XGBoost 2.1.4, and SHAP 0.47.1 for model explainability.
We performed hyperparameter tuning using Hyperopt 0.2.7,
and data visualisations were carried out using Matplotlib
3.10.1 and Seaborn 0.13.2. The integrated environment
leveraged the Chromium 132.0.6834.210 engine and V8§
JavaScript engine v13.2.152.41 for rendering and extension
support. We used random state 42 for all model
configurations and experiments in our pipeline. Table VI
contains the libraries and tools used for this study, with their
versions to aid reproducibility.
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TABLE VI. Materials used in this study

Library/Tool Version
Python 3.13.2
Pandas 223
Numpy 2.1.3
Scikit-learn 1.6.1
Xgboost 2.14
Matplotlib 3.10.1
Seaborn 0.13.2
Shap 0.47.1
Hyperopt 0.2.7
VSCode 1.100.0
oS Windows 10 x64 (Build 26100)
Processor Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz, 2101Mhz, 4 Core(s), 8 Logical Processor(s)
Node.js (VSCode) 20.19.0
Electron (VSCode) 34.5.1
Dataset Cameroon Hybrid QoS/QoE Dataset [60]

D. EVALUATION

We evaluated QoEPredict’s prediction performance against
the six other models using standard classification metrics,
using (2) to (7), to capture different aspects of predictive
accuracy and reliability. We used accuracy as a general
indicator of correct predictions across all classes. Accuracy
can be inflated by large QoE classes due to an imbalance in
classes.

TP + TN
Accuracy =

TP + TN + FP+FN

@

Where: TP = True Positives, TN = True Negatives, FP = False Positives,
FN = False Negatives

However, acknowledging the imbalance in class distribution,
we employed weighted precision, recall, and F1 Score,
which account for class frequency, thereby ensuring fair
performance assessment across all classes. We used F1 Score
as the primary metric for model comparison, as it provides a
harmonic balance between precision and recall. Unlike
accuracy, the weighted F1 Score provides a more robust
measure of a model’s overall classification performance,
especially for correctly identifying both satisfied and
dissatisfied users in QoE prediction.

c
TP,
Z ——(ws)
. _1TP,+FP, ns
Precisionyeighed = —=cg————; Ws = n ®)

Where: n, = number of samples in class s, n = total number of samples

c

TP,
g TP+ N (@s)
=1 TP+ FN, \ 5

Py @

Recallweiglﬂed =

F1Score = P ®
To measure the model’s capability to correctly reject
negative instances, we computed macro-averaged
specificity, which evaluates true negative rates for each class
and averages them, making it especially informative in
multiclass imbalanced scenarios.

True Negative Rate per class:

TN,
TN, + FP;

Specificity, = (6)

Macro-average over all classes:
Specificitymmeo = %Egzl Specificity, (7)

Additionally, we incorporated Receiver Operating
Characteristic-Area Under Curve (ROC-AUC) as a
threshold-independent metric to evaluate the separability of
classes, using a One-vs-Rest strategy for multiclass settings
using (8). This diverse metric suite ensures that the model’s
performance is not only accurate but also robust, fair, and
generalisable, particularly crucial for QoE modelling, where
misclassifications can have varying user impact.

ROC-AUC,,, = ClzgzlAUCs ®)
Where each AUC is for class s versus all others
We computed these metrics during CV hyperparameter
tuning to select the best single models’ parameters, and
during holdout testing of the data not seen by the models
during training. This simulates the model’s performance on
new users or new instances. To provide explainability that
links directly to the original input features, we computed
SHAP values for each base model separately using its
respective explainers. Then we combined the SHAP values
by averaging the absolute contributions across base models,
while preserving the directional effects of XGBoost (the
better-performing base learner). This approach produces a
consensus feature importance ranking that guarantees the
closest approximation of what the meta-learner sees.
Avoiding the complex interactions of applying SHAP to the
entire ensemble stacking. Also, to validate QoEPredict’s
performance’s statistical significance, we performed a
Friedman significance test (p < 0.05); to control the Family-
Wise Error Rate (FWER) inherent in multiple comparisons,
we applied a Bonferroni correction. We divided the
significance threshold (o = 0.05) by the number of
comparisons (n) against the top-performing model to
establish a corrected alpha (o_corrected = 0.05/n). This is a
conservative method that ensures only strong, meaningful
differences are flagged as significant. Next, we performed
a bootstrap analysis (o = 0.05, n=100 iterations). For each
model compared to QoEPredict, we calculated the difference

11
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in Fl-score on 100 resampled versions of the holdout set.
Then, we observed the mean difference with a 95%
confidence interval (CI). We considered a difference
statistically significant if the 95% CI did not cross zero.
Additionally, we plotted a learning curve to check for high
bias or variance and a confusion matrix to inspect any
systematic prediction errors.

IV. RESULTS

In this section, we present the performance results of our
models, including quantitative metrics, comparative
evaluations, and visual analyses of errors and interpretations.

A. PERFORMANCE OF MODELS AND ENSEMBLES
Table VII shows the four best-performing cross-validation
stacking configurations ranked by F1 Score. F1 Score is
appropriate in QoE classification, where there is class
imbalance, and the need for sensitivity to both satisfied and
dissatisfied users cannot be captured via accuracy alone. The
top-ranked model, QoEPredict, combines XGBoost and
Random Forest as base learners with XGBoost as the meta-
learner, achieving the highest F1 Score, 78.63%. This
indicates a well-balanced trade-off between precision and
recall across all QoE classes. Also, XGBoost was present in
all top-performing stacks, indicating the unsuitability of a
linear meta-learner like Ridge for this problem.

TABLE VII. Top 4 Stacking configurations based on cross-validation performance, ranked by F1 Score

Rank Base Model Meta-Learner F1 Score (%) Accuracy (%)
1 (QoEPredict) XGBoost + Random Forest XGBoost 78.63 79.03
2 XGBoost + MLP XGBoost 75.72 75.81
3 XGBoost + MLP + Random Forest XGBoost 75.09 75.16
4 MLP + Random Forest XGBoost 68.91 68.93

Fig. 6 illustrates QoEPredict’s performance based on F1
Score against the 6 single models on the Holdout (test set),
as a surrogate for real-world performance on unseen data.
QoEPredict is the top performer. Notably, among single

models, XGBoost > Random Forest > KNN > MLP > SVC
> Ridge, aligning with expectations that ensemble and
nonlinear models do better for this complex task.
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FIGURE 6. Comparison of the F1 Scores of QoEPredict and six baseline models on the holdout test set. QoEPredict outperforms all single-model
baselines, demonstrating the benefit of our stacking ensemble

Additionally, as seen in Table VIII, QoEPredict
outperformed every individual model on all evaluation
metrics (F1, accuracy, etc.), e.g., by 22.17% F1 over SVC.
While a 1-2% gain over XGBoost is competitive. In practical
terms, even a 1-2% improvement in accuracy and F1 score
significantly enhances QoE prediction reliability for telecom

operators [61]: enabling more precise identification of user
experience issues, optimised network resource allocation,
proactive customer support, and improved service quality.
All of which ultimately fosters higher customer satisfaction
and retention in mobile network services.



IEEE Access

Muttidisciplinary : Rapid Review : Open Access Journal

TABLE VIII. Model Performance Comparison (Test Set)

Model F1 Score (%) Accuracy (%) Precision (%) Recall (%) Specificity (%)
QoEPredict 89.66 89.66 89.89 89.66 97.02
XGBoost 88.60 88.63 88.85 88.63 96.66
Random Forest 87.55 87.60 87.82 87.60 96.45
KNN 85.36 85.27 85.86 85.27 96.07
MLP 80.91 80.88 81.26 80.88 94.47
SvC 73.39 73.39 73.53 73.39 92.52
Ridge 31.57 32.04 47.30 32.04 84.10

We also confirm that our stacking is beneficial by
experimenting on a plain averaging ensemble of the base
models. It yielded an F1 Score of 89.3%, which is lower than
the 89.66% F1 Score of our stacked model. Thus, the meta-
learning approach effectively learned the optimal weighting
and interaction of base model outputs. This aligns with
findings in other studies that stacking can outperform
weighted averaging [62]. Additionally, the Friedman test
results (Statistic: 42.6873, p-value = 0.0000) confirmed that

QoEPredict’s performance is statistically significant and not
due to chance. The Bootstrapping results further revealed
that QoEPredict’s performance was significantly superior
compared to KNN, MLP, SVC and Ridge, while being very
competitive with consistently higher mean F1 compared to
XGBoost and Random Forest; although its superiority was
not found to be statistically significant after our implemented
strict correction, as shown in Table IX below.

TABLE IX. QoEPredict’s Bootstrapping results

Model Mean F1 Difference Lower CI Upper CI Significant difference
XGBoost 0.01065816 -0.011478646 0.029049682 FALSE
RandomForest 0.023843873 -0.002338558 0.050741837 FALSE
KNN 0.039838856 0.010446974 0.080060814 TRUE
MLP 0.085139933 0.045899627 0.116775816 TRUE
SvC 0.165032493 0.128220595 0.201732536 TRUE
Ridge 0.577259038 0.526716299 0.633201388 TRUE

1)  LEARNING CURVE AND GENERALISATION sample size, indicating high capacity and strong

CAPABILITY

We examine the learning curve for the QoEPredict model in
Fig. 7 to gain critical insights into the model's learning
behaviour as a function of the training set size. The plot
shows the F1 Score on the y-axis and the number of training
examples on the x-axis, with separate lines for the training
score and the CV score. The model achieved near-perfect
performance, 0.98-1.0, on the training data regardless of the

memorisation ability. More importantly, the validation F1
Score displayed a consistent upward trend from 0.50
upwards as the number of training examples increased from
100 to 1200. This continuous improvement without a clear
plateau suggests that the model has not yet reached its
performance ceiling and could benefit further from
additional data.
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FIGURE 7. Learning curve of QoEPredict showing training and cross-validation F1 Scores as a function of training sample size. The gap between
curves reduces as the training set size increases. This indicates that our ensemble’s overfitting to sample data decreases as data volume increases.
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However, the persistent but narrowing gap between the
training and validation scores highlights a moderate variance
issue. This is expected in expressive models and can be
effectively mitigated to enhance generalisation by increasing
data volume and/or introducing additional model refinement.
These observations confirm that the classifier not only fits
the data well but also generalises increasingly better with
more training samples. This learning curve also justifies the
use of an ensemble: with limited data, a single complex
model might overfit, but our stacked approach manages
complexity well.

2) CONFUSION MATRIX

To further investigate QoEPredict’s performance, we
assessed its class-wise predictive performance via a
confusion matrix, Fig. 8, using predictions on the held-out
test set. Overall, the matrix reveals strong alignment between
predicted and actual classes, with dominant diagonal values

across all categories. Notably, 133 correctly classified
samples were in class 3 and 107 in class 4. Also, we observed
minimal misclassification, with most errors occurring
between adjacent QoE levels, e.g., class 3 is misclassified as
class 2 and vice versa. This pattern is consistent with the
ordinal nature of the QoE task, where semantic similarity
between adjacent classes can naturally lead to borderline
predictions. Extreme classes 1 and 5 exhibited lower values
in terms of the magnitude of correct classifications, i.e., 28
for class 1 and 20 for class 5. However, the equally high
predictive accuracy for these classes, 1 and 5, similar to the
other classes, justifies our use of SMOTE during training to
mitigate the effects of class imbalance. Although SMOTE
generates synthetic feature-space samples without explicit
consideration of the ordinal QoE target, its use is justified
pragmatically to improve model attention to minority
classes.
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FIGURE 8. Confusion matrix of QoEPredict on the holdout test set. Diagonal dominance across all five QoE classes (1-5) indicates strong predictive
accuracy with minimal inter-class confusion

Thus, the confusion matrix confirms not only the classifier’s
robustness across varying QoE levels but also the model’s
practical utility in distinguishing between subtly different
user experiences with high fidelity, though not perfectly.

Table X presents a class-wise breakdown of performance
across all five QoE categories. This clearly illustrates how
our model performs on critical extremes: very poor (class 1)
and excellent (class 5). As shown, recall is slightly reduced

for these underrepresented classes (0.86 and 0.77), which is
consistent with class imbalance. Precision remains very high
(0.96 and 0.95), indicating that when extreme QoE is
predicted, it is almost always correct. This analysis confirms
that the model is not simply optimised for average
performance but captures critical QoE states with reasonable
reliability.

TABLE X. Class-wise Classification report on the Hold-out test set

Class F1-score(%) Precision(%) Recall(%) Precision(%) Specificity(%) Support

1 91 96 86 96 99 31

2 88 85 90 85 92 65
3 90 88 92 88 89 149
4 92 93 90 93 92 132

5 85 95 77 95 99 20
Macro Avg 89 91 87 91 94 397
Weighted Avg 90 90 90 90 91 397
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This near-perfect class separation was further confirmed by
the registered ROC-AUC value of 95.52%.

B. SHAP FEATURE
INTERPRETATION

A key benefit of our approach is the integration of SHAP
explainability, which helps us understand why the model
makes certain predictions. For the interpretability of
QoEPredict, we examined the contribution of each input

IMPORTANCE AND

feature by creating two complementary visualisations: a bar
chart of average SHAP values and a heatmap. Fig. 9 displays
the top 20 features ranked by mean absolute SHAP value
across the five QoE classes (QoE=1 to QoE=5), quantifying
each feature’s contribution to the model’s output in the
original feature space. The multicoloured bars illustrate the
additive impact of each feature on different QoE levels,
highlighting that high-impact features consistently influence
both low and high QoE predictions.
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FIGURE 9. Top 20 features ranked by mean absolute SHAP values across all QoE classes. Higher SHAP values indicate stronger influence on
predicted user experience

Notably, Image Quality, Message Delivery Speed, App
Speed Rating, Network Reliability, and Video Quality
emerge among the top predictors, each demonstrating
substantial mean SHAP values across all QoE classes. These
results suggest that perceived multimedia fidelity and
responsiveness are primary drivers of user experience in
social media applications. This confirms domain intuition:
Faster Message delivery speed contributes positively to QoE,
confirming that wusers strongly prefer instantaneous
communication and are frustrated by delays [63][64]; Image
quality and Video Quality demonstrate a high positive
impact on QoE, indicating that preserving high resolution
and clarity in shared images is crucial for user satisfaction
e.g., reducing image resolution was found to have a

significantly larger negative effect on perceived quality than
minor losses in colour fidelity [63][65]. Network reliability
was also among the top contributors, with reliable network
conditions yielding higher predicted QoE, confirming that
better network quality, e.g., stable connectivity and prompt
data transfer, leads to quicker responses, fewer errors, and an
overall enhanced user experience [63][18]. The model’s
emphasis on both user-centric, e.g., the influence of time-of-
day (HourOfDay and DayOfWeek), user habits (Usage per
Day(h) 2-4h), and network-level indicators (e.g., jitter ms)
justifies the effectiveness of the hybrid QoS-QoE modelling
approach, reinforcing previous findings that both objective
metrics and subjective perceptions are essential in accurate
QoE estimation [66].
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These interpretable insights have practical significance: For
mobile network providers, the findings highlight the
importance of infrastructure that minimizes delay and
maximizes consistency, since even subsecond message
delays can erode user satisfaction; For app developers, the
results suggest focusing on optimisations like efficient image
compression and content delivery techniques such as
streaming or background pre-loading of media, to ensure
high visual quality and instantaneous feedback in the user
interface.

Additionally, the correlation heatmap, Fig. 10, provides
further insight by visualising the pairwise linear relationships
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among the numeric features within the dataset. Notably,
QoE Score exhibits strong positive correlations with
perceptual indicators such as Message Delivery Speed (r =
0.5), Image Quality (r = 0.5), and Network Reliability (r =
0.5), further underscoring their critical role in shaping user
satisfaction. Conversely, negative correlations were
observed with impairments such as Network Instability (r =
-0.2) and Video Buffering (r = -0.2), which highlights the
detrimental impact of service interruptions on QoE. Few
feature pairs showed internal consistency, such as Video
Stuttering and Video Buffering (r = 0.4), confirming the
opportunity for dimensionality reduction.
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FIGURE 10. Correlation heatmap of key features in the hybrid dataset. Strong positive correlations with QoE_Score are observed for Image Quality,
Message Delivery Speed, and Network Reliability, while negative correlations is observed for Video Buffering

Interestingly, platform-specific dummy variables, e.g.,
platform_whatsapp and platform_instagram, exhibited
minimal correlation with other numeric predictors and
QoE_Score, implying limited direct influence on overall
QoE when evaluated independently. However, this does not

preclude their relevance when explored via interaction
effects or segment-specific modelling. The heatmap thus
reinforces the significance of media performance and
network reliability features over platform identity in driving
perceived QoE. These findings align with previous studies,
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e.g., that emphasise service responsiveness, delivery fidelity,
and network stability as key determinants of user experience
[29] [67]. Insights that can guide both feature selection
strategies in ML pipelines and practical prioritisation for
network operators seeking to optimise service delivery.

Using SHAP to probe our model not only validates that its
predictions are grounded in known determinants of mobile
QoE, but also bridges the gap from model outputs to
actionable guidance, emphasising that improvements in
message delivery speed, media quality, and network
reliability can tangibly boost user experience in mobile and
social applications, as consistently reported in QoE-focused
studies. This convergence of model interpretability with
domain knowledge greatly enhances trust in the model. It
provides a clear roadmap for stakeholders seeking to
leverage these insights to deliver improved user experiences.

C. UMAP AND K-MEANS CLUSTERING

Table XI presents the empirical summary of the Clustering
methods comparison results. K-Means achieved superior
performance across all key indicators, including the highest
Silhouette score of 0.9242, lowest Davies-Bouldin index of
0.0749, and a competitive cluster purity score of 0.3842,
indicating well-separated and compact clusters. It also
produced the highest composite score of 0.6985, matching
GMM and Agglomerative Clustering. While GMM and
Agglomerative showed comparable statistical performance,
we proceeded with K-Means due to its computational
efficiency, scalability, and robustness in high-dimensional
spaces without relying on strong distributional assumptions.
Spectral Clustering, in contrast, demonstrated significantly
weaker clustering quality; Silhouette = 0.5288, DB = 1.4196,
rendering it unsuitable for the present application.

TABLE XI. Clustering methods comparison results

Metric K-Means GMM Spectral Agglomerative
Clusters 5 5 2 5

Silhouette 0.9242 0.9242 0.5288 0.9242
DB 0.0749 0.0749 1.4196 0.0749
Purity 0.3842 0.3842 0.3811 0.3842
EffectSize 0.3345 0.3345 0.1822 0.3345
ANOVA p 0.0000 0.0000 0.0082 0.0000
Kruskal p 0.0000 0.0000 0.0054 0.0000
Composite Score 0.6985 0.6985 0.2403 0.6985

We visually illustrate the quality of the K-Means clustering
using multiple supporting plots. Fig. 11 shows an
imbalanced distribution of samples across the five clusters,

with Cluster 2 holding the largest proportion with ~1000
samples, confirming the actual imbalanced nature of QoE
classes in the sampled context.
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FIGURE 11. Distribution of sample counts across five K-Means clusters derived from UMAP embeddings. Cluster 2 contains the largest group (~1000
users), reflecting real-world QoE imbalance

Furthermore, the trio of visualisations contained in Figs. 12,
13, and 14 further strengthen the validation of the K-Means
clustering outcome, revealing meaningful segmentation in
user QoE profiles. Fig. 12 illustrates distinct QoE
distributions across the five clusters using violin plots,

highlighting heterogeneity in user experience levels and
supporting actionable QoE differentiation. Cluster 0 exhibits
a broader, higher median QoE, while clusters 1 and 3 skew
lower.
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FIGURE 12. Violin plots of QoE distributions per cluster, illustrating varying median QoE levels across user groups

The silhouette plot, Fig. 13, confirms strong intra-cluster number of samples exceeding 0.75 (dotted red line). This
cohesion and inter-cluster separation, with most samples implies that most points are assigned to their respective
achieving positive silhouette scores, and a considerable clusters with minimal confusion.
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FIGURE 13. Silhouette plot showing intra-cluster cohesion and inter-cluster separation. Most samples achieve positive and high silhouette values,
indicating stable clustering

The silhouette structure reinforces that the clusters are evident despite some peripheral dispersion; likely introduced
internally cohesive and reasonably well-separated, even if by the nonlinear dimensionality reduction. This validates the
not perfectly as depicted in Fig. 14. The UMAP-based model's ability to segment users meaningfully in the reduced
cluster separation scatterplot, Fig. 14, illustrates well-defined feature space, preserving local structure and enhancing the
spatial separation among the clusters, with distinct groupings interpretability of cluster-specific QoE patterns.
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FIGURE 14. 2-D UMAP projection showing spatial separation among the five K-Means clusters. Distinct groupings highlight meaningful segmentation
in real-world user experience profiles

Together, these figures demonstrate that the selected K-
Means clustering yields interpretable, behaviourally distinct
user groups. E.g., identifying the top QoS factors influencing
the different clusters, Table XII, as revealed by SHAP, is

essential for developing targeted QoE improvement
strategies and supporting the deployment of adaptive QoE-
aware service or network interventions.

TABLE XII. Taxonomy of Key QoS factors with the highest influence on different clusters

Cluster Label Mean St. D. Cluster user count Key QoS factor
0 1.944 0.998 18 Upload Speed < 1.18Mbps
1 1.949 0.996 652 Upload Speed < 4.43Mbps
2 2.237 1.005 1034 Bandwidth > 4.4Mbps
3 1.902 1.061 82 Latency >200ms
4 1.966 1.020 148 Download Speed < 2.35Mbps

D. HYBRID VS. QOS-ONLY VS. USER-ONLY MODELS
While our current results focus on the hybrid model, it is
worth proposing how one would rigorously compare our
hybrid versus single-source models in future work: Train a
model using only the network QoS features as inputs and
evaluate performance; Train another model using only user-
centric features as inputs and evaluate performance; and
compare these to the hybrid model that uses all features. We
expect that the hybrid model would outperform either model
alone, demonstrating the benefit of combining network QoS
and user feedback data. This is consistent with the findings
of other researchers who note that QoE is multidimensional
and purely objective or purely subjective models are
incomplete. E.g., a study in video streaming QoE
demonstrated that adding user interaction data to network
data improved QoE prediction accuracy by a notable margin
[68].

In summary, the results validate that our hybrid approach is
effective for the given context. We have shown
quantitatively that it can predict user satisfaction to a useful
degree of accuracy. Qualitatively, we have interpreted what
the model learned and found it aligns with domain
knowledge, enhancing the understanding of QoE drivers in

Cameroon’s mobile social media usage. With the core results
established, the next section will discuss their implications:
what they mean for network operators and policy, what
limitations exist, and how future work can build upon this
foundation.

V. DISCUSSION, INSIGHTS AND FUTURE WORKS

The findings of this study offer several revelations into an
ensemble, hybrid QoE modelling and carry important
practical implications for mobile network stakeholders in
Cameroon and similar contexts. We discuss these insights,
reflect on the local constraints, assess this study’s
limitations, detail the ethical considerations we navigated,
and suggest directions for future research and deployment.

A. STUDY INSIGHTS

This study uncovers contextual insights that enhance the
understanding of Mobile Network QoE in a developing
country like Cameroon.

1) SUPERIOR MODEL PERFORMANCE
Our results reinforce the concept that QoE is best understood
through a combination of network and user perspectives.
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Neither QoS metrics nor user feedback alone paints the full
picture; it is their interplay that matters. The hybrid ensemble
model’s success demonstrates that much of what a user feels
about service quality can indeed be predicted from technical
parameters, provided we train the model on actual user
opinion data. This marries the subjective and objective
approaches found in QoE literature. The clear improvement
of the stacking ensemble over any single model confirms the
benefit of ensemble methods for QoE prediction. By
aggregating different aspects of threshold-driven learning
approaches, the ensemble likely captured a broader range of
patterns. For instance, we suspect XGBoost's boosting
mechanism captured dominant global thresholds, while
Random Forest's feature randomness detected context-
specific local thresholds. The meta-learner successfully
learned to trust the appropriate model in the appropriate
scenario. This aligns with previous research that noted
ensembles improve QoE regression accuracy [9], and
extends it to a S-class classification setting with a novel
stacking scheme. The improvement is not just statistical but
practical.

We also note that the ensemble reduced overfitting. The
stacking, by using CV predictions and combining models,
smoothed out the idiosyncratic biases of each model. In
effect, the ensemble behaves like a regulator; it is harder for
random noise to consistently fool all base models in the same
way. This is reflected in the increasingly reduced gap
between training and test curves for the ensemble as the
dataset size grows. That said, stacking itself could overfit at
the meta-level if not using proper blending; our use of out-
of-fold predictions mitigated that.

2) MODEL INTERPRETABILITY AND TRUST

A key aspect of our work is the use of SHAP for interpreting
the QoE model. This addresses the common criticism that
advanced ML models are “black boxes” [69]. By applying
SHAP, we were able to verify that the model’s behaviour
makes sense. These insights are valuable to network
providers and reveal that managing QoE is not a one-size-
fits-all solution, but should appropriately consider context.
A specific insight is the primacy of App speed rating, service
latency, service quality and reliability for social media QoE.
This suggests social apps, while not “real-time” in the way
video calls are, still demand responsiveness; people scroll
quickly, tap on links, and expect snappy feedback. Even
loading a photo thumbnail can feel frustrating if there is a
long delay after a click. Thus, operators aiming to improve
social media experience should focus as much on reducing
latency, through network optimisation, edge caching, etc, as
on increasing throughput. High bandwidth is beneficial up to
a point, especially for video-heavy content on platforms like
Instagram, but if the network is unreliable, users notice that
first. This insight is somewhat in line with the general QoE
theory that “quality is as good as the weakest link”. If any
dimension is particularly bad, it will dominate the user’s
perception. Furthermore, being able to explain individual
predictions means operators could investigate specific
complaints: e.g., if a user report is predicted as very

dissatisfied, the model might highlight high Jitter as the
cause, directing engineers where to look.

Another insight is the role of contextual factors: time-of-day
emerged as a surrogate for network load and possibly user
mood. The fact that experiences during peak hours impact
QoE indicates that network resource contention is impacting
QoE. For Cameroon’s operators, this may highlight a need
for capacity planning. If, e.g., users in urban areas
consistently face reduced QoE at night, interventions like
offloading traffic, deploying additional small cells, or
optimising backhaul could be targeted at those hours. This
interpretability also adds credibility to the model in a
regulatory context. Regulators in Africa are increasingly
interested in QoE but also cautious due to its subjectivity. A
model that can demonstrate why it thinks QoE is below
threshold for an area, e.g., “because average speeds are only
1 Mbps and users expect at least 3 Mbps for acceptable video
streaming”, can facilitate dialogue between operators and
regulators on quality standards.

3) REGIONAL NOVELTY

This study is, to our knowledge, among the first to rigorously
model QoE using actual user data from Africa. Past studies
in Africa often relied on small surveys or focused on either
QoS technical KPIs or qualitative assessments. Our work
provides a quantitative baseline for what factors drive user
experience in African mobile networks. One might wonder
if the determinants of QoE are the same as elsewhere; we
found that speed and quality issues reign supreme, but there
could be subtle differences. For instance, one could imagine
that in regions where users are new to mobile internet, their
expectations might be lower; so QoE might not dip as sharply
until QoS is very poor.

Our model indirectly captures the collective expectations of
the user base we sampled. If those expectations differ from,
say, a European user base, the model’s learned threshold for
“acceptable delays” would differ. In practice, our SHAP
analysis indicated that many users tend to rate QoE poorly
when Video Buffer Durations exceed 30 seconds. This
threshold might shift as networks improve and content
demands increase.

Another regional aspect is device variety; emerging markets
often have older or lower-end smartphones, which might
themselves limit performance. We did not explicitly model
device type in this study, but it might be partially reflected in
throughput, as older devices might not achieve high speeds
even on good networks. In any case, future work should
incorporate more region-specific aspects like power outages
affecting networks. Also, we did not include 5G in our study,
largely because 5G is currently scarce in Africa. As 5G rolls
out, new QoE studies will be needed to see, for example, if
ultralow latency and high bandwidth change the QoE game
or simply raise user expectations further.
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B. PRACTICAL IMPLICATIONS
OPERATORS IN CAMEROON

Practically, our QoEPredict model can be integrated into
network operators’ analytics platforms as a decision-support
module. Our model outputs (predicted QoE classes and
SHAP-based feature importance scores) can feed into real-
time dashboards that visualise, for example, regional or cell-
level user experience trends. Low predicted QoE zones can
automatically trigger alerts, e.g., for bandwidth reallocation,
signal optimisation, or targeted maintenance. In parallel, the
feature importance insights can guide strategic interventions
by identifying which QoS factors (e.g., jitter or throughput)
most affect user satisfaction. This integration enables a
dynamic feedback loop between predictive analytics and
network management, thereby supporting proactive QoE-
aware decision-making. For telecom companies and internet
service providers in Cameroon, this research provides a
prototype framework for QoE-centric network management:

FOR  MOBILE

1) PROACTIVE TROUBLESHOOTING

Instead of waiting for customers to call and complain about
poor service, an operator could use a model like ours to
predict in real-time which users or areas are likely to have a

Top 6 Suggestions

bad experience. For instance, by inputting the live QoS stats
from base stations or user equipment into the model, the
operator’s dashboard could highlight “Zone X has an
estimated QoE of 2/5 right now, likely due to high latency.”
This allows technicians to prioritise investigating Zone X;
maybe a cell is overloaded or a backhaul link is congested,
before user churn occurs. Over time, this could improve
customer satisfaction and loyalty by reducing sustained poor
experiences.

2) RESOURCE ALLOCATION

Knowing what affects QoE most helps in network
optimisation decisions. Our results suggest that reducing
latency could have a bigger bang-for-buck on QoE than
marginally increasing throughput. So, an operator might
invest in technologies like optimising routing paths, local
caching of content, to reduce round-trip time to popular
social media servers, or upgrading old transmission
equipment that adds delay. In summary, a QoE model
provides a user-centric lens as illustrated in Fig. 15, for
network upgrades: rather than just looking at utilisation stats,
it tells where users are hurting, as reflected in their
suggestions.
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FIGURE 15. User Suggestions frequency ranking across the sampled population

3) MARKETING AND SERVICE TIERS

Another interesting implication is in customer relationship
management. Operators could identify segments of users
who consistently have lower QoE, maybe those in fringe
coverage areas or with older devices. They can then target
those users with upgrades. E.g., offer a special promotion for
a 4G signal booster, or a discounted device upgrade, or
simply prioritise network improvements in those locales.

Conversely, if QoE is generally good, it can be used in
marketing, especially on the social media platforms that
subscribers use the most, as captured in Fig. 16. E.g., “90%
of our customers enjoy HD video and fast social media
browsing without issues, as indicated by our QoE scores!”.
Caution is needed here to ensure the QoE scores are truly
representative and not used misleadingly.
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FIGURE 16. Social Media Platforms usage frequency distribution of the sampled population

4) REGULATORY REPORTING

Regulators in some countries are starting to consider QoE in
addition to QoS for assessing operators. Cameroon’s
regulator could benefit from models like this to complement
their QoS audits. E.g., instead of just checking if an operator
meets 4G speed targets, they could use a QoE model on
crowd-sourced data to see if users are satisfied. Our
approach, being data-driven and local, is more reflective of
ground truth user experience than generic thresholds. Thus,
it could contribute to more consumer-centric regulations.

C. LOCAL CONSTRAINTS
During this study, we encountered a few Cameroon-specific
constraints worth noting:

1) INFRASTRUCTURE VARIABILITY

The quality of 3G/4G in Cameroon is not uniform. Some
areas, especially rural or certain carriers, might not
consistently deliver what one would consider “3G” or “4G”
speeds. We had to ensure our data collection included a
broad sample, which it did; though urban users were more
represented, given smartphone penetration biases. This
variability means the model has to cover from very poor to
decent network conditions, which it did. But it also means
our model is somewhat specific to the range of QoS present
in Cameroon’s networks. In an environment with ubiquitous
high-speed broadband, the QoS-QoE curve might look
different since only extreme conditions degrade QoE.

2) DEVICE DIVERSITY

Cameroon’s smartphone market includes many low-cost
android devices, some with older 3G-only support. Lower-
end devices might produce more jitter in performance,
independent of the network. A country where high-end

phones are common might see QoE limited more by the
network, whereas here, occasionally, the phone could be a
bottleneck.

3) USER EXPECTATIONS

Cultural and usage pattern differences can affect how people
rate their experience. It is possible that Cameroonian users,
many coming from a history of slower internet or limited
connectivity, might rate an average network experience as
good/excellent because it meets their expectations. This can
contrast with users in markets who expect ultrafast, always-
on connectivity. This expectation gap might partially explain
why we had relatively few ratings in the very low end, since
some users might just accept certain slowness as normal.
Over time, as people get exposed to better service, their
expectations may rise, and QoE ratings for the same QoS
could become harsher. Operators and models will need to
adapt to that moving target.

4) DATA ACCESS AND COSTS

Getting widespread user participation required careful
consideration of data costs and incentives. We had to ensure
the speedtest or survey did not consume too much of users’
data bundles, for ethical and practical reasons, by sometimes
providing data bundle incentives. This constraint is
somewhat unique to developing regions where unlimited
data plans are rare and users are cost-sensitive. It means any
large-scale QoE monitoring solution should ideally work
with minimal overhead or be zero-rated by the operator to
encourage participation.

D. STUDY LIMITATIONS
We recognise a few limitations to this study as thus:
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1) SIZE OF DATASET

The dataset with 1934 datapoints, while real, is modest. It
covers selected towns, largely urban, in Cameroon. These
results might vary if more samples and the entirety of the
country are fully represented. We mitigated overfitting
through CV and saw consistent performance, but a larger
dataset would always be preferable to further enhance model
generalisability. Secondly, there may be unobserved
variables that affect QoE, which we did not include. For
instance, QoS metrics like signal-to-noise ratio (SNR), and
congestion/cell load measures, because we did not have
access to operator probes. We did not have data on users’
current pricing or data caps; a user nearing their data limit
might have lower QoE independent of instantaneous speed.
Likewise, we did not explicitly model intrinsic device type
or content type parameters beyond a rough platform
category; more granular QoE models might consider video
resolution, web page complexity, etc.

Our model currently provides an offline prediction, based on
collected data; it is not implemented as a real-time system.
For practical deployment, one would integrate it into a
network monitoring tool to predict QoE continuously, which
might require optimisation for speed. Though our ensemble
is reasonably fast in inference, monitoring millions of users
would need further scaling strategies. Also, the scope of
applications is limited to social media apps. Our model might
not directly apply to other use cases, like online gaming,
without retraining. Different app types have different QoE
models. So, while our framework is general, the numerical
model is specific to social media usage patterns.

2) GROUND TRUTH SUBJECTIVITY

We relied on user ratings as ground truth QoE. Human
ratings have inherent noise; one user’s “4” might be
another’s “5”. We tried to mitigate this by having a decent
sample size and a robust model design. Random Forest and
XGBoost are relatively robust to label noise. Furthermore,
the stacking itself helps to smooth out idiosyncratic errors
that might be present in the training labels, validating model
performance across folds.

However, the evaluation metrics themselves are based on
these possibly noisy labels. In an ideal scenario, we might do
multiple ratings or MOS averaging per condition to get a
more stable ground truth. That was not feasible in our
crowdsourced approach, but it is a trade-off. Also, to
compensate for a formal inter-rater reliability test, such as
Fleiss' Kappa, which requires multiple independent ratings
for the same sample, one of our expert authors re-rated a
random subset of 150 samples. This spot-check revealed a
75% exact agreement and a 94% agreement (within £1 class)
between the expert and the original crowd-sourced labels.
This high level of agreement provided strong confidence that
the users largely applied the QoE scale as intended.

3) STATIC Vs. DYNAMIC QoE

Our analysis is static and point-in-time. We did not explicitly
model how QoE evolves during a session because we did not
record continuous QoE over a long session, just snapshots.
So, we extracted the temporal features (HourOfDay and
DayOfWeek) as numeric attributes and scaled. We did not
use cyclical encoding because each record was independent
and session-based; making a discrete contextual
representation more appropriate. However, QoE can have
memory, and a bad spike at the start of a session can taint the
whole experience rating. Our data can not directly capture
that effect since each rating is independent. This is a
limitation if one tries to use the model in a scenario that
requires time-series predictions. Nevertheless, cyclical
encoding may be explored in future work when sequential
temporal patterns are of interest.

4) GENERALITY IN CAMEROON

While we included users from various regions, our sample
may still be slightly skewed to tech-savvy or engaged users,
i.e., those who were willing to install a speed test app and
take the survey. Although we collected data from all local
networks, operator representation was volunteer-driven and
thus uneven, potentially biasing our results toward the
dominant operators within the sampled population. Also, our
data collection period of three months may not have captured
the longer-term network dynamics, such as network
upgrades or evolving user expectations. So, the general
mobile user population may have different characteristics.
Therefore, if an operator has truly random sampling via
network probes and occasional SMS surveys, they might
gather a more representative dataset. We believe our sample
is reasonably representative of the urban user base, which
constitutes the majority of 3G/4G users; however, rural users
may be underrepresented. We recognise that partnering with
operators to access these rural populations, e.g., via
incentivised campaigns, will boost future data collection
endeavours. Thus, caution is warranted in assuming these
exact metrics hold for 100% of users.

5) REGULARISATION AND OVERFITTING TRADE-OFF
We deliberately traded off fine-grained XGBoost
regularisation tuning to minimise model computational cost.
This decision may have contributed to the mild overfitting
observed in Fig. 7, where training F1 Scores (= 0.98 - 1.0)
slightly exceed validation F1 Scores (= 0.89). This observed
gap suggests that our ensemble may have marginally over-
specialised on training patterns due to the untuned XGBoost
regularisation parameters (L1 and L2). Nonetheless,
QoEPredict’s performance remains stable across CV folds,
with a standard deviation of +1.12 in F1 Scores, indicating
consistent generalisation. Future work will incorporate
systematic regularisation tuning to further reduce variance
and enhance robustness.

Despite these limitations, the study provides proof-of-
concept that hybrid QoE modelling using crowdsourced user
data is feasible and useful in the Cameroonian context. It
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establishes a baseline for further refinement. Therefore,
while the model is calibrated to Cameroon, the modular
pipeline is designed for replication. Generalisation to new
regions will primarily require the collection of local QoS-
QoE data for re-training, allowing the framework to discover
region-specific clusters and drivers. Thus, providing a
scalable blueprint for data-driven QoE management across
emerging markets.

E. FUTURE DIRECTIONS
Moving forward, we see several avenues to extend this work:

1) OBTAINING MORE DATA

Additional data, both in volume and variety, would allow
validation and possible model improvement. E.g.,
integrating additional fine-grained radio network KPIs, such
as Signal-To-Noise Ratio, modulation scheme, and
congestion indicators, etc, which operators have. Our model
used relatively high-level QoS metrics that a user app can
measure. Future work will aim to collaborate with operators
to integrate the broader socio-technical ecosystem
influencing QoE, e.g., data pricing, data cap status.
Additionally, collecting multi-country datasets could also
help ensure that the model generalises well to different
network conditions and user behaviours, especially within
the Sub-Saharan region. This will also permit us to adapt the
model to real-time QoE variations for optimised predictions.
Furthermore, modelling the impact of external factors like
power outages on network stability could provide a more
complete picture of the user's experience. Capturing these
elements is essential to achieving a truly context-aware QoE
model that reflects the economic and infrastructural realities
of users in emerging markets.

2) INTEGRATION INTO OPERATOR DASHBOARDS

We envision a system where the operator’s network
management software includes a QoF dashboard showing
real-time predicted satisfaction scores across cells or regions.
Implementing this would require robust real-time data
pipelines from the network and possibly periodic user
feedback collection integrated into an operator’s mobile app
or via SMS. There would also need to be threshold-based
alarms, e.g., “QoF in the Northwest region dropped below
3.0 for >15 minutes”, to prompt action. Our model could be
a starting algorithm for such a system, but deployment would
involve engineering efforts and validation.

3) REFINE THE CLUSTERING APPROACH
Future work could turn our unsupervised analysis into a

semi-supervised approach where cluster identity is used to
train specialised models, e.g., one model for urban versus
rural users. This might improve predictions further by
allowing varying model parameters for each segment. The
challenge is ensuring enough data per segment. In our
analysis of linear versus non-linear clustering methods,
UMAP achieved a significantly higher silhouette score
(0.92) compared to PCA’s 0.21, suggesting that it preserves

the intrinsic structure of the dataset more effectively.
However, when benchmarked directly against the no-
reduction baseline, UMAP did not consistently outperform it
in terms of predictive accuracy or F1 score; a similar
behaviour to PCA is shown in Fig. 4. But unlike PCA, which
showed decreasing performance with higher dimensions, the
no-UMAP reduction baseline achieved an accuracy of 82%,

while the UMAP(40), UMAP(75) and UMAP(100)
configurations achieved 55.5%, 56.3% and 56.8%
respectively.

This indicates that although UMAP provides superior cluster
separation and interpretability of latent data structure, this
improvement in representation does not automatically
translate into higher predictive performance in our QoE
classification setting. This provides a more complete view of
UMAP’s role: it excels in revealing structure and supporting
interpretability, but does not necessarily surpass the no-
reduction approach in predictive accuracy.

4) COLLABORATION WITH CONTENT PROVIDERS
Social media companies also measure QoE from their side,
with more granular metrics like time to load content. A
collaboration between network operators and content
providers could lead to richer datasets, combining network
QoS with application-level QoE metrics. Such combined
data could improve model accuracy and also help pinpoint
whether issues are network or app-related. While this might
be beyond the scope of a single research study, it is a
direction the industry is moving in.

5) REGULATORY FRAMEWORKS

As a future consideration, if the regulator in Cameroon or
regionally were interested, they could sponsor larger studies
to continuously monitor QoE using approaches like ours.
This could feed into a public scorecard for operators, adding
a competitive drive to improve QoE. We believe research
like this can inform those policy-level initiatives by
providing methodology and evidence of what works.

6) EXTENSION INTO 5G, 6G AND NEW APPLICATION
DOMAINS

A key future step is to implement and test our QoE modelling
approach in the context of newer network generations (5G
and beyond) and emerging applications. Our work has
mainly focused on 3G/4G networks and social media usage
in Cameroon. However, as 5G networks become more
widespread (and 6G approaches), it is essential to explore
how the significantly different features of these networks
influence QoE. 5G’s ultra-low latency and high bandwidth
enable applications like cloud gaming, VR, or telemedicine
with exceptional quality, but they could also raise user
expectations  considerably. Future research should
investigate whether the factors that were critical for QoE in
3G/4G in developing countries continue to be relevant in
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5G/6G, or if new factors appear when, say, holographic
communication or tactile internet services are introduced.

F. ETHICAL CONSIDERATIONS FOR FUTURE WORKS
Any future work should maintain the focus on user benefit.
QoE prediction should ultimately serve to enhance user
experience, not to justify charging more for “premium
QoFE”. As this is a potential misuse, where an operator might
say “pay more to get better QoE”. That would be
problematic if the baseline QoE is intentionally kept low.
Transparency with users, offering opt-outs, and using the
data responsibly will be key as this field progresses.

In summary, the discussion highlights that hybrid QoE
modelling is a promising tool that, when applied
thoughtfully, can bridge the gap between network
engineering and user satisfaction. By focusing on
Cameroon’s context, we have ensured that the model and
insights are grounded in local reality, a step towards more
inclusive global research where regions with different usage
patterns and constraints are represented. Our proposed model
also demonstrated a successful case of applying state-of-the-
art ML techniques to a practical engineering problem in a
developing region context. This approach can serve as a
reference for similar QoE studies or be extended as
mentioned above. We hope this work spurs more data
collection and research on QoE in Cameroon, Africa, and
other underserved regions, as improving QoE is key to user
satisfaction and broader digital inclusion.

VI. CONCLUSION

This paper introduced QoEPredict, a novel hybrid ML
framework designed to predict QoE in Cameroon’s 3G/4G
networks, using social media usage as a case study. By
integrating crowdsourced QoS data with user-reported
satisfaction scores, we built a regionally contextualised,
data-driven model capable of capturing both technical and
perceptual dimensions of QoE. Our stacking ensemble,
which combines XGBoost, Random Forest, and
disagreement features, achieved a high predictive
performance (F1 score and accuracy of 90%) and
outperformed traditional baselines. Beyond its predictive
strength, QoEPredict contributes methodologically through
its modular pipeline and interpretability via SHAP-based
explainability. These features can enable mobile network
operators to identify actionable QoE drivers, such as jitter,
service delivery delays, and contextual user feedback,
informing more targeted and user-centric optimisation
strategies. As one of the first large-scale ML-based QoE
studies in Cameroon, this work fills a critical gap in the
literature and sets a precedent for similar efforts in other
resource-constrained regions. Future work can extend this
framework to broader service types and geographies, further
bridging the gap between technical performance and real
user experience.
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