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ABSTRACT The rapid growth of mobile internet and social media usage in Sub-Saharan Africa has 

amplified the need for accurate Quality of Experience (QoE) assessment in resource-constrained network 

environments. This paper introduces a novel hybrid Machine Learning (ML) framework for predicting user 

QoE in Cameroon’s Third Generation and Fourth Generation (3G/4G) networks, leveraging a unique real-

world dataset that integrates crowdsourced Quality of Service (QoS) measurements with subjective user 

satisfaction surveys. Addressing the limitations of existing QoE studies that focus on well-resourced regions, 

our approach proposes QoE Predictor (QoEPredict). This stacking ensemble combines eXtreme Gradient 

Boosting (XGBoost) and Random Forest classifiers with an XGBoost meta-learner. A key innovation is the 

use of disagreement features to capture divergences between base model predictions, allowing the meta-

learner to resolve conflicts and enhance predictive accuracy. The proposed five-stage pipeline incorporates 

data preprocessing, feature engineering via Uniform Manifold Approximation and Projection (UMAP), 

unsupervised clustering, and Bayesian hyperparameter optimisation using Hyperopt, ensuring a robust and 

transferable methodology. Explainable AI (XAI) is integrated through SHapley Additive exPlanations 

(SHAP) analysis to provide feature-level interpretability and actionable insights for network operators. An 

experimental evaluation of 1,934 user sessions demonstrates that QoEPredict achieves a 90% F1 Score and 

accuracy, outperforming single-model baselines across all metrics. This work represents one of the first large-

scale, interpretable QoE prediction frameworks for mobile social media applications in Sub-Saharan Africa. 

By combining ensemble modelling with explainability and contextualised insights, the study offers both 

methodological advances and practical guidance for implementing QoE-aware network management 

strategies in developing regions facing infrastructural and operational constraints. 

INDEX TERMS Hybrid Ensemble Model, Mobile Networks, Machine Learning, Quality of Experience 

(QoE), Quality of Service (QoS), eXplainable Artificial Intelligence (XAI) 

I. INTRODUCTION 

The last decade has witnessed a surge in global mobile 

internet usage, with social media applications being the 

primary driver of data traffic. Like many Sub-Saharan 

African countries, Cameroon has seen a rapid growth in 

mobile connectivity. By early 2025, there were 12.4 million 

internet users (41.9% penetration), and 5.45 million active 

social media users in the country. Most of these users use 

these services via Third Generation and Fourth Generation 

(3G/4G) cellular networks, reaching roughly 70% of the 

population [1]. In this landscape, ensuring a high Quality of 

Experience (QoE) for mobile apps is both a commercial 

imperative and a technical challenge. QoE, which is defined 

as the overall level of user satisfaction or dissatisfaction with 

an application or service, as perceived subjectively by the 

end-user [2], is a holistic metric that expands upon network 

Quality of Service (QoS) indicators by incorporating the 

user’s end-to-end perspective, including human factors, and 

context.  

In practical terms, good QoS, e.g., high throughput, is ideal 

but not always sufficient to guarantee good QoE as 

expectations, application design, and individual perception 

all influence user satisfaction. Research has shown that QoS 

alone is insufficient to capture the subjective dimension of 

the user experience. Instead, QoE assessment must integrate 

technical metrics with human factors like user expectations, 

context of use, etc [3]. In this light, recent works have started 
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adopting Machine Learning (ML) to predict users’ QoE. For 

example, Panahi et al. [4] presented ML-based QoE 

prediction frameworks that achieved high accuracy (~95%) 

for video streaming services. However, these frameworks 

largely focused on controlled or well-resourced 

environments, highlighting the potential of data-driven QoE 

prediction. Also, these frameworks reveal current limitations 

regarding real-world QoE modelling, especially in 

developing regions.  
Assessing and improving QoE in Cameroonian mobile 

networks, like other African mobile networks, remains 

challenging due to limited local research. Regional factors 

such as frequent power outages, legacy infrastructure, 

limited bandwidth, and inconsistent coverage exacerbate 

these challenges [5]. A glance through the social media 

handles of local mobile operators further underscores the 

need for studies like this. These platforms reveal a daily 

influx of subscriber complaints and widespread 

dissatisfaction with the services provided. A phenomenon 

that has drawn government scrutiny and hefty fines for the 

operators involved [6]. These subscriber complaints 

underscore the practical importance of QoE. Poor QoE 

directly affects both users and businesses, highlighting the 

need for more effective QoE monitoring tools in this context. 

 
A. MAIN CONTRIBUTIONS OF THE PAPER 

We introduce a novel hybrid QoE prediction framework 

tailored to an African 3G/4G scenario with social media 

usage as the use-case, validated on a real-world dataset. To 

our knowledge, this is the first known ML-based QoE study 

in this setting, using a hybrid approach that combines 

crowdsourced network QoS data and user satisfaction 

surveys with explainable Artificial Intelligence (XAI). Our 

approach introduces a stacking ensemble, named QoE 

Predictor (QoEPredict), that combines eXtreme Gradient 

Boosting (XGBoost) and Random Forest classifiers with an 

XGBoost meta-learner. We not only fed the meta-learner 

with the base models’ contributions but also with 

disagreement features. This permitted the ensemble to 

capture any conflicting base model predictions and resolve 

them via learned compensatory patterns. Hyperparameter 

optimisation was performed using the Hyperopt Bayesian 

engine to find the best configurations for all models, ensuring 

a fair and optimised comparison. In addition, we incorporate 

model interpretability via SHapley Additive exPlanations 

(SHAP), enabling us to explain the predictions of the 
ensemble in terms of feature importance and contributions.  

This hybrid of high-performance ensemble modelling with 

XAI is a novel contribution in the QoE domain. This paper 

makes several significant contributions to the field of QoE 

prediction, particularly within the context of African 3G/4G 

networks and social media usage: 

1. Hybrid QoE Prediction Framework for an 

Understudied Region: We propose the first known ML-

based QoE prediction framework tailored to the 

Cameroonian 3G/4G environment, combining crowdsourced 

QoS measurements from user devices with subjective user 

satisfaction surveys. This provides unique insights into QoE 

within an underrepresented market. 

2. Novel Stacking Ensemble with Disagreement 

Features: We introduce QoEPredict, a hybrid ensemble 

model that integrates XGBoost and Random Forest 

classifiers with an XGBoost meta-learner. Unlike 

conventional stacking, our approach incorporates 

disagreement features, quantifying divergences between 

base model predictions, to allow the meta-learner to resolve 

conflicting outputs through learned compensatory patterns, 

thereby enhancing prediction accuracy. 

3. Modular Five-Stage Machine Learning Pipeline: 

We develop a comprehensive and reusable ML pipeline 

comprising (i) data preprocessing, (ii) feature engineering 

with Uniform Manifold Approximation and Projection 

(UMAP), (iii) unsupervised clustering, (iv) Bayesian 

hyperparameter optimisation using Hyperopt, and (v) 

stacked ensemble modelling. This modular structure 

supports reproducibility and adaptability to other QoE 

contexts. 

4. Integration of Explainable AI (XAI): We embed 

model interpretability into the framework using SHAP 

analysis, enabling domain experts to understand feature 

contributions and the decision mechanisms of the ensemble. 

Combined with cluster profiling, this provides actionable 

insights for network operators to link QoE drivers to 

operational strategies. 

5. State-of-the-Art Performance and Regional 

Relevance: The proposed framework achieves a peak F1 

Score and accuracy of 90%, outperforming single-model 

baselines across all evaluation metrics. Beyond performance, 

it offers region-specific value by uncovering QoE 

determinants in Cameroon, thereby supporting QoE-aware 

network management strategies in emerging markets. 

6. Creation of a hybrid dataset for QoE prediction: 

A unique dataset from Cameroonian 3G/4G users, collected 

from user devices via a network measurement app and 

follow-up user surveys, illustrating QoE in an understudied 

environment. 

Collectively, this work advances QoE prediction research by 

delivering a high-performance, interpretable, and regionally 

contextualised framework. It serves as a methodological 

contribution through the novel integration of stacking and 

XAI techniques. This study also provides a practical 

blueprint for applying predictive analytics to enhance user 

experience in resource-constrained mobile network 

environments. 

 
B. ORGANISATION OF THIS PAPER 

The remainder of the paper is structured as follows: Section 

II presents the related works associated with this study, and 

Section III depicts the methodology employed in this 

research. Section IV presents the interpretable insights and 

performance results of the models. This is followed by a 

discussion of the implications of these findings, the 

limitations of this study, and the constraints faced during this 

research in Section V. The paper concludes with Section VI, 



 

3 
 

highlighting the significance of this study within the African 

context. 

 
II. RELATED WORKS 

Globally, early works on QoE focused on subjective 

measurement techniques such as user surveys and Mean 

Opinion Score (MOS) experiments to map QoS metrics to 

perceived QoE [7]. While these methods were regarded as 

the “ground truth” for user experience, they were labour-

intensive, costly, and lacked scalability for large-scale 

deployment. In response, research shifted toward objective 

ML-based QoE prediction models trained on network 

performance indicators. In this regard, Alreshoodi and 

Woods [8] provided a comprehensive review of such 

objective and subjective QoS-to-QoE mapping efforts. They 

observed that although many models exist, each only 

partially addresses the challenge of robust, real-world QoE 

prediction. This study emphasised the importance of 

integrating subjective measurements with objective metrics 

to develop more reliable and comprehensive hybrid QoE 

models. 

Building on this, Casas et al. [9] compared single-model 

predictors to ensemble methods using smartphone-collected 

QoE data and found that while decision-tree-based models, 

e.g., RF, performed well individually, ensemble methods 

yielded superior predictive accuracy. These ensemble 

approaches, including bagging, boosting, and stacking, 

enhance performance by aggregating outputs from multiple 

base learners. Stacking, in particular, is advantageous 

because it allows the integration of heterogeneous base 

models, leveraging their complementary strengths for 

improved generalisation and stability [10]. In parallel, 

explainable ML techniques have gained attention in QoE 

research; methods such as SHAP are now being used to 

elucidate how specific features impact user-perceived QoE 

[11]. These tools enhance the interpretability and 

trustworthiness of ML-based QoE systems, especially in 

operational or regulatory contexts [12]. 

At the national level in Cameroon, research on QoE has 

followed a similar evolutionary trajectory, albeit with 

distinct local challenges. Molem et al. [13] analysed the 

impact of technological innovations on customer satisfaction 

using survey data from 363 long-term MTN subscribers in 

Buea. This study employed descriptive statistics and 

classification analysis to examine the relationship between 

the rollout of 3G and 4G networks and user satisfaction and 

loyalty. However, it relied solely on subjective perceptions 

and lacked integration with network KPIs or predictive 

modelling. Expanding on this, Kum and Austin [14] 

proposed a theoretical framework called QoE-Incorporation 

Feedback Mechanism (QoE-IFM), which combined 

technical (e.g., optimal network coverage), regulatory (e.g., 

compliance with Net Neutrality), and business (e.g., cost), 

dimensions into a mathematical model. While their approach 

provided a high-level view of QoE integration within 

network operations, it remained conceptual. It did not utilise 

granular user-level metrics or field data from end-user 

devices. 

The most technically advanced work within the 

Cameroonian context is that of Abana et al. [15], who 

developed an ML and Deep Learning-based platform for 

predicting customer satisfaction at Orange Cameroon 

(OCM). Their model was trained on internal KPIs such as 

Call Success Rate, SMS Hit Rate, TCP Session Counters, 

and MOS, supplemented by a very small-scale internal user 

satisfaction survey of OCM’s Customer Experience 

Department employees. Their system was limited to internal 

network logs and lacked external validation via large-scale 

crowdsourced data. Moreover, interpretability and 

actionable feedback mechanisms were absent. Together, 

these works reflect a logical progression: from survey-based 

perception studies to theoretical modelling, and recently, to 

predictive QoE modelling using network KPIs.  

However, a critical gap remains: the lack of an integrated 

framework that combines large-scale crowdsourced QoS 

data from user devices with structured user-rated QoE 

feedback, supported by explainable and optimisable ML 

architectures. Hence, the following questions: how can we 

accurately predict users’ QoE in Cameroon’s mobile 

networks, with a focus on social media applications, by 

combining large-scale crowdsourced network performance 

metrics with user feedback? Which factors have a greater 

influence on user experience in this local context? 

 
III. METHODOLOGY 

To achieve our objectives, we followed a 4-step 

methodology encompassing data collection, data fusion, 

modelling, and evaluation. An overview of the process is 

depicted in Fig. 1. 

 
A. DATA COLLECTION 

Over 3 months, we gathered data points from volunteer 

smartphone users of all the local networks across 6 regions 

of Cameroon. The South West Region (Buea, Limbe), the 

Centre Region (Yaoundé), the Littoral Region (Douala), the 

East Region (Bertoua), the North Region (Garoua), and the 

North West Region (Bamenda) are the towns with the most 

participants. Each data point consists of: (a) Objective 

network performance features collected via the SpeedTest 

Master Pro application, and (b) Subjective user satisfaction 

feedback collected via a Google Forms questionnaire. The 

SpeedTest Master Pro app; a mobile app used for measuring 

QoS metrics over WI-FI and mobile networks, was chosen 

due to its ease of use and ability to capture the network QoS 

metrics of interest for our case. 
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FIGURE 1. Four-step research method outlining the workflow from data collection, fusion, model development and performance evaluation of our 
developed model 

 
The QoS metrics measured on the user’s mobile device using 

the SpeedTest Master Pro app included: Downlink 

throughput (Mbps), Uplink throughput (Mbps), 

Ping/Latency (ms), Jitter (ms), Packet Loss (%), and Device 

(Operating System) type, along with test timestamp. These 

were automatically logged on the user’s device after 

executing the network tests under everyday conditions, thus 

reflecting realistic network performance. The Google Forms 

survey was administered immediately after each network 

Speedtest to capture the user’s subjective satisfaction ratings 

and provide context like the primary app in use, e.g., 

Facebook, Content type, e.g., text messaging, any observed 

issues, e.g., video buffering, location, and time of day. Basic 

user demographics, e.g., age and technical literacy, network 

type, i.e., 3G or 4G, were also recorded to enrich the analysis. 

Since the app measures both mobile and WI-FI network 

ratings, we filtered out any WI-FI readings from the app’s 

metadata. We retained only records where the app’s 

metadata field for network type explicitly indicated a mobile 

network connection (Mobile, LTE, 4G, 3G). This systematic 

Wi-Fi exclusion ensures the dataset focuses solely on mobile 

network QoE measurements. Each data entry was 

accompanied by a user-reported QoE score, a MOS-style 

rating on a 1-5 scale. This served as the ground truth target 

for our predictive models regarding social media app usage 

experience at that moment, presumably influenced by the 

network performance they just experienced.  

We also collected users’ actual phone numbers as user IDs 

to serve a dual purpose: first, to ensure we were collecting 

data from real users of local mobile networks, and second, to 

use them as the pivot for data fusion. Also, these user IDs 

could be used to identify different network operators, 

especially for studies that would be interested in evaluating 

the QoE of particular networks. All users who participated in 

this data collection did so willingly and gave their informed 

consent by signing a consent form for their data to be used 

anonymously for the aggregate analysis. To ensure 

anonymity, we hashed the user IDs in both QoS and the User 

feedback files using SHA3-256. The hashed identifiers were 

stored on a secure, access-controlled system. All raw data 

were retained only for the duration of model development 

before being permanently deleted, in compliance with 

General Data Protection Regulation (GDPR) standards. 

 
B. DATA FUSION TECHNIQUE 

For the scope of this paper, we used early fusion as the 

baseline fusion technique to merge all collected features into 

a single dataset. Early fusion simplified our pipeline and is a 

common approach in related QoE prediction works. Early 

fusion means that we merged the network QoS and user data 

from the very beginning, before feeding it into the ML 

models [16]. Concretely, we treated each QoE score as the 

dependent variable and all corresponding QoS and user 

feedback metrics as independent variables in a single feature 

vector. This way, the model directly learns the mapping from 

technical parameters plus context to the user’s QoE. E.g., our 

model could discover if “high throughput is only beneficial 

to QoE when latency is also low”, by examining those 

features together. All data lived in one table, and standard 

classification algorithms could be applied directly. 

To achieve a successful merge, we implemented the 

following precautions: Firstly, since QoS data files came 

from different devices with possibly different versions of 

excel/csv and also since there is the possibility of having 

Classification Metrics (F ,  ccuracy, 

 ecall, Specificity,  OC   C) 

Data Fusion

Early Fusion

(   Minute Merge Window)

Other Considerations 

(Late Fusion and Weighted 

Fusion)

 etwor  QoS  arameters

(using SpeedTest Master  ro  pp) 

 ser Feedbac  Survey

(using  oogle Forms)

Data Collection

S     nalyses

Silhouette Score  nalysis 

 isualisations using M T LOTLI  

and SE  O   

Evaluation

Modelling  ipeline

Friedman significance test,  onferroni 

correction,  ootstrapping
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special characters in the user feedback file, we encoded the 

compiled network QoS and user feedback data files using 

ISO 8859-1 encoding to guarantee uniformity. Secondly, we 

cleaned and forced the User ID on both files to strings to 

eliminate any spaces or ‘-’s between user ID digits, which 

may lead to possible mismatches. Thirdly, we harmonised 

the column names for uniformity. Also, we harmonised the 

Timestamps on both files to the ‘dd/mm/yyyy hh:mm’ 

format. Then, we fused both files, using the User ID (one 

entry per user ID) and the nearest Timestamp within a 30-

minute tolerance window, into one dataset. This strict 

deduplication process guarantees that each entry is linked to 

a unique user experience rating. The 30-minute window was 

necessary to balance user convenience with our data fusion 

needs. However, it may introduce noise if a user's network 

conditions change significantly between the speed test and 

survey completion. Future work employing real-time 

triggering or continuous monitoring could further enhance 

label fidelity. Next, we removed all users’ personal 

identifiable information to anonymise the dataset, adhering 

to relevant ethical GDPR guidelines. Finally, we cleaned the 

dataset for outliers, e.g., we filtered extremely low speeds 

likely due to test errors. We also dropped entries with no 

corresponding user survey responses.  

The final merged dataset (1934, 38), which served as the 

basis for training and evaluating our hybrid QoE prediction 

models, has 1934 user-collected data points (from 1934 

different users) with 38 feature columns and the QoE target 

variable. We selected and designed these 38 features to 

represent 14 of the most documented categories of factors 

influencing QoE in the literature. Table I below presents the 

taxonomy of these QoE influencing factor categories and 

their references, the dataset features that represent these 

categories, and brief descriptions of these features.

 
TABLE I. Taxonomy of QoE influencing factors from literature captured in the hybrid dataset features (adapted from references [17] - [18]) 

Dataset Feature Feature Description 
QoE Influence Factor 

Category 

Improve Experience Increase Use Likelihood of increased usage if QoE improves 

User Behaviour/Preference [17] 
[18] 

Platform Loyalty Willingness to switch platforms 

User engagement tendency Impact of poor performance on willingness to engage with social media content 

Usage per day Time spent daily on social media 

Platform Preference Social media platforms frequently used 

Content Type Most consumed content type Content Type [19] [20] 

Congestion Impact on Experience Impact of network congestion on social media experience 

User Experience [21] [22] 

Network instability Frequency of interruptions during social media use 

Difference during Peak Hour Noticing performance differences at peak hours 

Peak Hour Rating Network rating during congested times 

App Speed Rating Satisfaction with social media app speed/responsiveness 

Network Reliability How important a good network is 

Data Throttle Data exhaustion or throttling during congestion 

Video Loading Time Time to start video playback 

Usability [23] [24] 

Message Delivery Speed Delay in sending/receiving messages 

Notification Latency Delay in receiving app notifications 

Video Buffer duration How long do delays usually last 

Video Reliability Interruption frequency while watching social media videos 

Message Reliability Messages not being delivered or arriving out of order 

Video Buffering Pauses during video playback 

Product Quality Degradation 

[25] [26] 

Video Quality Experience of poor visual resolution 

Image Resolution Blurry or failed image loads 

Image Quality Quality of images displayed on social media platforms 

Video Stuttering Lag in videos or live streaming while using social media apps 

Network Type Network connection 
Demographics and 

Environmental Context [27] 

[28] 

Age Group Age group of the respondent 

TimeStamp Time of day record of data collection 

User Environment User location 

Pay for QoE Willingness to pay for a better experience Price and Value [29] [30] 

QoS awareness/Expectations Belief that social media prioritisation would help 
User Expectation [31] [32] 

Suggestions User opinion to improve the network 

Latency Round-trip time for packets Latency [33] [34] 

Packet Loss Packet loss results in content not loading Packet Loss [32] [35] 

Jitter Variation in network delays Jitter [36] [37] 

Throughput (Downlink and Uplink) Both download and upload speeds Throughput [38] [39] 

Bandwidth Available Bandwidth to user Bandwidth [36] [39] 

Device type Operating system type Device Capability [34] [38] 

Note: This categorisation is the authors’ synthesis of referenced literature and not results from new experiment 

 

The QoE scores in our data spanned from 1 (Very poor), 2 

(Poor), 3(Average), 4(Good) to 5 (Excellent), with a roughly 

symmetric distribution around the middle. This indicates 

many moderately satisfied users, coupled with a significant 

number of dissatisfied users, as seen in Fig. 2. The QoS 

metrics varied widely, e.g., latency ranged from less than 

2ms up to more than 1000ms. These variations highlight the 

heterogeneity of network conditions captured in the country. 
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The combined dataset is multidimensional, comprising both 

numerical and categorical variables, which necessitates 

careful feature engineering. 

To enrich our understanding of local context, we additionally 

asked 20 randomly selected participants an open-ended 

question: “Please describe any issues or factors affecting 

your social media experience.”, “Would you increase your 

social media usage if these issues or factors affecting your 

social media experience were resolved?” Users mentioned 

issues like “images took too long to load”, “videos usually 

froze for a moment”, “the connection was fine, no 

problems.” or “I may enjoy spending more time on my social 

media.”

 
FIGURE 2. Distribution of user-reported QoE scores across the sampled population of 1934 users. The figure shows a slightly right-skewed pattern, indicating that 

most users experienced moderate to good perceived quality 

 

We did not directly use these comments as inputs to the 

quantitative model. However, we analysed them to confirm 

that factors such as speed, loading time, and network stability 

were noticeable to users. Such insights underscore the 

importance of certain QoS metrics, e.g., many complaints 

about “slow loading” correlate with high latency or low 

throughput measurements. 

It is important to note that early fusion is not the only fusion 

strategy; we also considered alternatives for completeness: 

 
1) LATE FUSION 

In this scheme, separate submodels are trained on different 

datasets. E.g., one model predicts QoE purely from objective 

QoS metrics, and another predicts QoE from other subjective 

user-factor datasets. Then, these outputs are combined via 

another learning layer. Late fusion is useful if the 

relationship within each data type is complex and distinct 

[40].  If we had additional subjective inputs, such as a user’s 

qualitative sentiment, late fusion could have been applicable. 

As a conceptual exercise, one could imagine training one 

model to estimate QoE using only network QoS data and 

another using user survey responses about their expectations, 

and then fusing the two models. We recognise this as a 

potential extension of this work if more user-centric features 

become available. 

 
2) WEIGHTED FUSION 

Another approach is to explicitly weight the contributions of 

objective versus subjective features in the model [41]. E.g., 

if one suspects that network QoS explains, say, 65% of QoE 

and other factors explain 35%, one could adjust the input 

representation accordingly. This approach is more relevant 

in neural networks, where one could design a custom 

architecture, e.g., separate input layers that are later merged 

with certain weights. We did not implement a custom 

weighted fusion in our current study. We effectively let the 

learning algorithm determine the weights via feature 

importance or learned parameters. 

 
C. MODULAR ML PIPELINE ARCHITECTURE 

We implemented a five-stage pipeline as shown in Fig. 3, 

with each stage encapsulated in a Python module: 

 
1) PREPROCESSING STAGE 

This module handles data cleaning and normalisation. We 

parsed, cleaned, and transformed users’ multisuggestions 

and multiplatform preferences into dummy variables for 

inclusion as categorical features. We systematically imputed 

missing data; less than 3% of our dataset, using column-type-

aware strategies: we filled numerical fields using mean 

imputation via SimpleImputer, while we filled categorical 

fields using mode values with Pandas. Then, we extracted 

temporal information from Timestamps, yielding additional 

‘hour of day’ and ‘day of wee ’ features. For feature 

transformation, we employed a ColumnTransformer to apply 

StandardScaler to numeric columns and OneHotEncoder to 

categorical ones. The resulting pre-processed dataset (1934, 

3264), passed onward for downstream modelling, contained 

standardised numeric values, encoded features, temporal 

attributes, and a target vector. 
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FIGURE 3. Five-stage modular ML modelling pipeline illustrating data preprocessing, feature engineering, clustering, hyperparameter tuning, and 
model training for QoE prediction 

 
2) FEATURE ENGINEERING STAGE 

This module performs comprehensive feature selection and 

dimensionality reduction to refine the pre-processed dataset 

for optimal model performance. To achieve a robust feature 

selection and avoid overfitting, we employed a 5-fold Cross-

Validation (CV) feature selection procedure [42]. In each 

fold, features were first ranked by their Mutual Information 

(MI) with the QoE score, following the maximal 

dependency/relevance criterion [43]. An approach known to 

capture nonlinear QoS-QoE relationships. Then, we 

computed the SHAP values for feature importance; SHAP 

provides model-agnostic estimates of each feature’s 

contribution to predictions [44]. By examining SHAP bar 

plots of mean absolute feature contributions and the Feature 

Heatmap, we could transparently assess which factors most 

strongly affect the predicted QoE. This approach addresses 

the core challenge of quantifying each factor’s influence in 

telecommunications QoE models. 

Next, to reduce redundancy and noise, we applied UMAP for 

nonlinear dimensionality reduction. UMAP projects the data 

into a low-dimensional embedding while preserving its 

intrinsic structure. UMAP was chosen over alternatives like 

PCA and t-SNE because it better retains global structure in 

the data manifold, which improves cluster separability and 

visualisation [45]. Since UMAP is sensitive to feature 

scaling, we standardised all features before applying UMAP. 

Table II contains the UMAP parameters used in this study. 

 

As an exploratory exercise to justify our use of UMAP, we 

experimented with PCA, a well-known linear dimensionality 

reduction method [46]. PCA-reduced datasets failed to 

achieve a superior accuracy performance over our No PCA 

dataset as shown in Fig. 4, illustrating the nonsuitability of 

linear dimensionality reduction techniques for our context.  

This feature engineering stage serves as a critical 

intermediary in enhancing data quality and interpretability 

before model training and stacking. 

 

 
TABLE II. UMAP parameter configuration (adapted from [18]) 

Parameter Value Purpose 

n_components 10 and 2 Number of dimensions for the output embedding: 10 for grouping, 2 for visualisation. 

n_neighbors 20 Local neighbourhood size used for manifold approximation 

min_dist 0.1 Controls how tightly UMAP packs points together; lower values preserve local structure. 

Metric Euclidean Distance metric used to compute similarity between points. 
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FIGURE 4. Accuracy comparison of different PCA dimensions of the 

dataset to investigate PCA suitability for this study 

 
3) CLUSTERING STAGE 

This module seeks to enhance explainability and provide 

empirical justification for the choice of clustering method. It 

also offers insights into how different user or network 

behaviour groups relate to QoE levels. The first step was to 

provide a robust comparative analysis of the unsupervised 

clustering techniques, using the feature-engineered dataset to 

identify natural user experience groupings. In particular, we 

compared partitioning methods: K-Means [47] and Gaussian 

Mixture Models (GMM) [48], graph-based Spectral 

Clustering [49], Ward’s lin age hierarchical  gglomerative 

Clustering [50] and the density-based HDBSCAN method 

[51]. Evaluating a broad set of algorithms is important 

because each makes different assumptions about cluster 

shape and can reveal different structures. For example, K-

Means and GMM assume roughly convex, Gaussian clusters 

and require the number of clusters, k, to be specified a priori. 

In contrast, HDBSCAN automatically determines k based on 

density and identifies outliers as noise. 

For a fair comparison, we optimised each method’s 

hyperparameters using internal validation metrics to obtain 

its best configuration, as presented in Table III. For K-Means 

and GMM, we varied k and applied the elbow method and 

silhouette analysis to choose an optimal cluster count. We 

used the Silhouette Coefficient as a primary internal metric. 

Higher silhouette values indicate more coherent and well-

separated clustering. We also calculated the Davies–Bouldin 

(DB) Index for each result, with lower DB index values 

indicating low intra-cluster distance relative to inter-cluster 

distance [52]. Similarly, we tuned hyperparameters such as 

the number of neighbours in Spectral Clustering or the 

minimum cluster size in HDBSCAN, maximising silhouette 

scores or minimising density-based cluster validity indices.

 
TABLE III. Configurations used for tuning Clustering Algorithms (adapted from standard clustering practices [17] - [51]) 

Parameter Purpose K-Means GMM Spectral Clustering Agglomerative HDBSCAN 

n_clusters Number of clusters to form or evaluate 2–10  2–10 2–10  

n_components 
Number of components 

(clusters/distributions) 
 2–10    

affinity Similarity metric for graph construction   nearest_neighbours   

linkage Linkage criterion    Ward  

min_cluster_size Minimum number of samples per cluster     [15, 20, 25, 30] 

min_samples Minimum number of core samples per cluster     [5, 10, 15] 

gen_min_span_tree Hierarchical visualisation of clusters     True 

Next, we used a comprehensive set of metrics and statistical 

tests to investigate cluster quality and stability. These 

include: Silhouette Score and Davies-Bouldin Index for the 

final clustering solutions as global indicators of cluster 

quality, one-way ANOVA tests on the QoE scores across 

clusters to ensure the clusters represent significantly 

different QoE populations and Kruskal-Wallis tests to 

account for nonnormal score distributions, adding rigour to 

the clustering validity. Cluster Purity was also computed to 

measure how well each cluster aligned with known 

categories [53]. More so, we computed the inter-cluster 

effect size for QoE differences to assess practical 

significance beyond statistical significance [54]. 

To compare the performance of the different clustering 

methods, we defined a composite score that aggregates 

different validation metrics [55]. We combined metrics 

emphasising different aspects: silhouette for 

cohesion/separation, a penalty for high DB, external validity 

through cluster purity, and statistical effect size by using (1).  

Each component is weighted to reflect its relative 

importance, forming a robust and interpretable composite 

index for ranking the clustering solutions in our context (See 

Table IX). This multicriteria evaluation ensured that the 

“best” clustering method was chosen based on a balanced 

consideration of internal consistency, separation, and 

stability.  

 
Composite Score =  .4 × Silhouette +  .  × ( −Davies-Bouldin) + 0.2 × 
Purity + 0.2 × Effect Size    (1) 

 

Finally, for interpretability and practical insights on the 

clusters, we generated a suite of visualisations: Violin plots 

of QoE variation within clusters (see Fig. 12), Silhouette plot 

depicting the distribution of silhouette values per cluster to 

verify that most points have high within-cluster similarity 

and are appropriately assigned (see Fig. 13) and UMAP 

embedding to visually inspect how well the clusters separate 

in feature space (see Fig. 14), of the QoE distributions per 

cluster to reveal differences in central tendency and spread 

of user experience in each group. Additionally, to explain the 

cluster characteristics in terms of original features, we 

investigated the key QoS features influencing each cluster, 

effectively revealing why a data point belongs to that cluster.  

Thus, by combining statistical rigour: significance tests, 

effect size, sound engineering practices: multiple algorithms 

and tuning, and XAI techniques: SHAP plots and visual 

analytics, we yield a reproducible and transparent clustering 

module for QoE modelling in telecommunications. Also, we 
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identify distinct user experience profiles and reveal the key 

factors driving those differences, thereby offering both 

theoretical and practical value for network QoE 

optimisation. The final clustered dataset is forwarded 

downstream for supervised modelling. 

 
4) HYPERPARAMETER TUNING STAGE 

In this stage of our prediction pipeline, we employed an 

automated optimisation strategy using the Hyperopt library 

with the Tree-structured Parzen Estimator (TPE) algorithm 

[56], chosen for its efficiency in exploring high-dimensional, 

conditional search spaces. The goal was to maximise the 

predictive performance of six base classifiers: RF, SVC, 

XGBoost, Ridge, MLP, and KNN [56][57], by 

systematically searching for optimal parameter 

configurations. Table IV contains all the parameter 

configurations used for tuning all models. We chose the base 

classifiers to represent a mix of linear, nonlinear, and 

ensemble methods commonly used in QoE modelling. Also, 

we employed Synthetic Minority Oversampling TEchnique 

(SMOTE) to address the class imbalance in our dataset, a 

typical issue in real-world QoE classification tasks.

 
TABLE IV. Hyperparameter tuning space configurations (adapted from standard ML optimisation practices [17] - [18]) 

Parameter RFC SVC XGBoost MLP KNN Ridge Meta-Ridge Meta-XGBoost 

n_estimators 
100–400 
(step 50) 

 100–500 
(step 50) 

    50–300 (step 
50) 

max_depth 5–20 (step 5)  3–10 (step 

1) 
    2–10 (choice 

index) 

min_samples_split 2–10        

min_samples_leaf 1–4        

class_weight 'balanced' 'balanced'       

C  log-uniform 

[0.1, 10] 
      

gamma (γ)  log-uniform 
[0.001, 0.1] 

      

kernel  'rbf', 'linear'       

learning_rate   log-uniform 

[0.01, 0.3] 

'constant', 

'invscaling', 
'adaptive' 

   log-uniform 

[0.01, 0.2] 

subsample   uniform 

[0.6, 1.0] 
     

colsample_bytree   uniform 

[0.6, 1.0] 
     

hidden_layer_sizes    (50,), (100,), 

(100, 50) 
    

activation    'relu', 'tanh'     

solver    'adam', 'sgd'     

alpha (α)    log-uniform 

[1e-4, 1e-2] 
 log-uniform 

[0.1, 10] 

log-uniform 

[0.01, 10] 
 

tol      log-uniform 
[1e-4, 1e-2] 

log-uniform 
[1e-4, 1e-2] 

 

n_neighbors     3–15 (int)    

weights     'uniform', 

'distance' 
   

algorithm    
  'auto', 'ball_tree', 

'kd_tree' 
   

smote_k 3, 5, 7 3, 5, 7 3, 5, 7 3, 5, 7 3, 5, 7 3, 5, 7 3, 5, 7 3, 5, 7 

To ensure robust performance estimates of model variability 

and generalisation, as summarised in Table V, we employed 

a nested CV approach [58]. We tuned each model across 30 

trials within an outer 5-fold stratified CV loop, yielding 180 

tuning evaluations per fold. Then, we selected the top three 

base models, ranked by F1 Score, and investigated all four 

possible stacking combinations. This approach reflects a 

balanced trade-off between computational feasibility and 

statistical robustness, consistent with best practices in 

ensemble learning research. For each stacking combination, 

we further tuned two types of meta-learners: Ridge Classifier 

and XGBoost, using an inner 3-fold CV and 15 evaluations 

each. This dual meta-learning approach was necessary to 

compare linear and nonlinear meta-modelling paradigms for 

our context.

 
TABLE V. Synthesis of total trials performed in hyperparameter tuning (adapted from [59]) 

Component Per Fold Trials Total Folds Total Trials 

Base Models 6 × 30 = 180 5 900 

Meta-Learners 4 combinations × 2 × 15 = 120 5 600 

Grand Total  1500 
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The tuning process, though a critical step in ensuring each 

model component within the stacking framework was 

configured to achieve optimal performance, was 

computationally intensive. Each Hyperopt trial took ~2 

minutes, totalling a runtime of ~24 hours for all models. By 

automating this step and independently optimising each 

model-fold combination, we avoided the biases of manual 

tuning, information leakage, and ensured fair model 

comparison on unseen holdout data. 

 
5) MODEL TRAINING AND STACKING STAGE 

Each model was initialised using its best parameters, based 

on CV performance across all folds, and retrained on the 

entire 80% dataset. Then, we observed the test performance 

on the 20% validation dataset. For the proposed QoEPredict, 

as illustrated in Fig. 5, we implemented a two-level 

StackingClassifier using scikit-learn’s built-in stacking 

framework. In Level 1, XGBoost and Random Forest as the 

base learners. To explicitly capture instances of base model 

uncertainty, we computed a binary disagreement feature on 

the out-of-fold base learner predictions. This feature was set 

to ‘ ’ if the standard deviation of the base models’ class 

predictions for a sample was greater than zero, indicating 

disagreement and 0 otherwise (indicating consensus). We 

passed through the disagreement features to the meta-learner 

alongside the base models’ predictions, to provide the meta-

learner with more information to distinguish when the base 

models have conflicting predictions [59]. These 

disagreement features contributed to a 1.07% boost in 

QoE redict’s performance (an F  increase from   .59% to 

89.66%). In Level 2, XGBoost is used as the meta-learner, 

leveraging its flexibility and strong performance in blending 

predictions from base models. Although XGBoost includes 

default regularisation mechanisms to mitigate overfitting, we 

did not explicitly tune the L1 (alpha) and L2 (lambda) 

regularisation parameters (to minimise computational cost) 

in this case. L1 regularisation can effectively perform feature 

selection by reducing the impact of less important features. 

It achieves this by adding a penalty proportional to the 

absolute values of the leaf weights, which encourages 

sparsity in the model. L2 regularisation, on the other hand, 

adds a penalty proportional to the square of the leaf weights. 

This penalty shrinks the weights and stabilises predictions, 

reducing variance and making XGBoost less sensitive to 

noisy data. While these parameters play an important role in 

controlling model complexity and improving generalisation, 

tuning them was beyond the scope of the current study. 

Future work could explore systematic tuning of L1 and L2 to 

further enhance QoE redict’s performance and mitigate 

potential overfitting. 

.

 

FIGURE 5. Architecture of the QoEPredict ensemble framework. The model combines XGBoost and Random Forest Classifier(RFC) and as base 
learners, whose outputs feed into a meta-level XGBoost model for final QoE prediction. Disagreement-based features are incorporated to improve 

robustness, and SHAP-based explainability is integrated for model transparency 

 
The model's performance relied solely on boosting and its 

ability to capture complex relationships, with regularisation 

potentially applied but not fully optimised. We recognise this 

regularisation parameter tuning as a future direction to 

possibly improve the model's performance. 

The meta-learner was trained on the outputs of Level 1 

models for each training example. This stacked model, 

dubbed QoEPredict, essentially forms a hybrid function 

approximator that leverages the strengths of each base 

model. 

 
6) MATERIALS USED 

We configured the development environment using Python 

3.13.2 and Visual Studio Code (v1.100.0, Electron 34.5.1, 

Node.js 20.19.0) on a 64-bit Windows 10 (Build 26100) 

system. For model implementation, the main libraries used 

include pandas 2.2.3, NumPy 2.1.3, scikit-learn 1.6.1, 

XGBoost 2.1.4, and SHAP 0.47.1 for model explainability. 

We performed hyperparameter tuning using Hyperopt 0.2.7, 

and data visualisations were carried out using Matplotlib 

3.10.1 and Seaborn 0.13.2. The integrated environment 

leveraged the Chromium 132.0.6834.210 engine and V8 

JavaScript engine v13.2.152.41 for rendering and extension 

support. We used random state 42 for all model 

configurations and experiments in our pipeline. Table VI 

contains the libraries and tools used for this study, with their 

versions to aid reproducibility.
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TABLE VI. Materials used in this study 

Library/Tool Version 

Python 3.13.2 

Pandas 2.2.3 

Numpy 2.1.3 

Scikit-learn 1.6.1 

Xgboost 2.1.4 

Matplotlib 3.10.1 

Seaborn 0.13.2 

Shap 0.47.1 

Hyperopt 0.2.7 

VSCode 1.100.0 

OS Windows 10 x64 (Build 26100) 

Processor Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz, 2101Mhz, 4 Core(s), 8 Logical Processor(s) 

Node.js (VSCode) 20.19.0 

Electron (VSCode) 34.5.1 

Dataset Cameroon Hybrid QoS/QoE Dataset [60] 

D. EVALUATION 

We evaluated QoE redict’s prediction performance against 

the six other models using standard classification metrics, 

using (2) to (7), to capture different aspects of predictive 

accuracy and reliability. We used accuracy as a general 

indicator of correct predictions across all classes. Accuracy 

can be inflated by large QoE classes due to an imbalance in 

classes. 

Accuracy =
TP + TN

TP + TN + FP+FN 
    (2) 

 

Where: TP = True Positives, TN = True Negatives, FP = False Positives, 

FN = False Negatives 

 

However, acknowledging the imbalance in class distribution, 

we employed weighted precision, recall, and F1 Score, 

which account for class frequency, thereby ensuring fair 

performance assessment across all classes. We used F1 Score 

as the primary metric for model comparison, as it provides a 

harmonic balance between precision and recall. Unlike 

accuracy, the weighted F1 Score provides a more robust 

measure of a model’s overall classification performance, 

especially for correctly identifying both satisfied and 

dissatisfied users in QoE prediction. 

 

Precisionweighted =  
∑

TPₛ

TPₛ + FPₛ 
(𝜔ₛ)

𝐶

𝑠=1

∑ 𝜔ₛ𝐶
𝑠=1  

 ; 𝜔ₛ =
𝑛ₛ

𝑛
   (3) 

Where: ns = number of samples in class s, n = total number of samples 
 

Recallweighted =  
∑

TPₛ

TPₛ + FNₛ 
(𝜔ₛ)

𝐶

𝑠=1

∑ 𝜔ₛ𝐶
𝑠=1  

    (4) 

 

F1 Score =
2 x Precision x Recall

Precision + Recall 
    (5) 

 

To measure the model’s capability to correctly reject 

negative instances, we computed macro-averaged 

specificity, which evaluates true negative rates for each class 

and averages them, making it especially informative in 

multiclass imbalanced scenarios.  

True Negative Rate per class: 

 

Specificitys  = 
TNₛ

TNₛ + FPₛ 
    (6) 

 

Macro-average over all classes:  

 

Specificitymacro  =
1

𝐶 
∑ Specificityₛ𝐶

𝑠=1    (7) 

 

Additionally, we incorporated Receiver Operating 

Characteristic-Area Under Curve (ROC-AUC) as a 

threshold-independent metric to evaluate the separability of 

classes, using a One-vs-Rest strategy for multiclass settings 

using ( ). This diverse metric suite ensures that the model’s 

performance is not only accurate but also robust, fair, and 

generalisable, particularly crucial for QoE modelling, where 

misclassifications can have varying user impact.  

 

ROC-AUCovr  =
1

𝐶 
∑ AUCₛ𝐶

𝑠=1     (8) 

Where each AUCs is for class s versus all others 

We computed these metrics during CV hyperparameter 

tuning to select the best single models’ parameters, and 

during holdout testing of the data not seen by the models 

during training. This simulates the model’s performance on 

new users or new instances. To provide explainability that 

links directly to the original input features, we computed 

SHAP values for each base model separately using its 

respective explainers. Then we combined the SHAP values 

by averaging the absolute contributions across base models, 

while preserving the directional effects of XGBoost (the 

better-performing base learner). This approach produces a 

consensus feature importance ranking that guarantees the 

closest approximation of what the meta-learner sees. 

Avoiding the complex interactions of applying SHAP to the 

entire ensemble stacking. Also, to validate QoE redict’s 

performance’s statistical significance, we performed a 

Friedman significance test (p < 0.05); to control the Family-

Wise Error Rate (FWER) inherent in multiple comparisons, 

we applied a Bonferroni correction. We divided the 

significance threshold (α =  . 5) by the number of 

comparisons (n) against the top-performing model to 

establish a corrected alpha (α_corrected =  . 5/n). This is a 

conservative method that ensures only strong, meaningful 

differences are flagged as significant. Next, we performed 

a bootstrap analysis (α =  . 5, n=    iterations). For each 

model compared to QoEPredict, we calculated the difference 
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in F1-score on 100 resampled versions of the holdout set. 

Then, we observed the mean difference with a 95% 

confidence interval (CI). We considered a difference 

statistically significant if the 95% CI did not cross zero. 
Additionally, we plotted a learning curve to check for high 

bias or variance and a confusion matrix to inspect any 

systematic prediction errors. 

IV. RESULTS 

In this section, we present the performance results of our 

models, including quantitative metrics, comparative 

evaluations, and visual analyses of errors and interpretations. 

 

A. PERFORMANCE OF MODELS AND ENSEMBLES  

Table VII shows the four best-performing cross-validation 

stacking configurations ranked by F1 Score. F1 Score is 

appropriate in QoE classification, where there is class 

imbalance, and the need for sensitivity to both satisfied and 

dissatisfied users cannot be captured via accuracy alone. The 

top-ranked model, QoEPredict, combines XGBoost and 

Random Forest as base learners with XGBoost as the meta-

learner, achieving the highest F1 Score, 78.63%. This 

indicates a well-balanced trade-off between precision and 

recall across all QoE classes. Also, XGBoost was present in 

all top-performing stacks, indicating the unsuitability of a 

linear meta-learner like Ridge for this problem. 

 
TABLE VII. Top 4 Stacking configurations based on cross-validation performance, ranked by F1 Score 

Rank Base Model Meta-Learner F1 Score (%) Accuracy (%) 

1 (QoEPredict) XGBoost + Random Forest XGBoost 78.63 79.03 

2 XGBoost + MLP XGBoost 75.72 75.81 

3 XGBoost + MLP + Random Forest XGBoost 75.09 75.16 

4 MLP + Random Forest XGBoost 68.91 68.93 

Fig. 6 illustrates QoE redict’s performance based on F  

Score against the 6 single models on the Holdout (test set), 

as a surrogate for real-world performance on unseen data. 

QoEPredict is the top performer. Notably, among single 

models, XGBoost > Random Forest > KNN > MLP > SVC 

> Ridge, aligning with expectations that ensemble and 

nonlinear models do better for this complex task.

 

FIGURE 6. Comparison of the F1 Scores of QoEPredict and six baseline models on the holdout test set. QoEPredict outperforms all single-model 
baselines, demonstrating the benefit of our stacking ensemble 

 
Additionally, as seen in Table VIII, QoEPredict 

outperformed every individual model on all evaluation 

metrics (F1, accuracy, etc.), e.g., by 22.17% F1 over SVC. 

While a 1-2% gain over XGBoost is competitive. In practical 

terms, even a 1-2% improvement in accuracy and F1 score 

significantly enhances QoE prediction reliability for telecom 

operators [61]: enabling more precise identification of user 

experience issues, optimised network resource allocation, 

proactive customer support, and improved service quality. 

All of which ultimately fosters higher customer satisfaction 

and retention in mobile network services.
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TABLE VIII. Model Performance Comparison (Test Set) 

Model F1 Score (%) Accuracy (%) Precision (%) Recall (%) Specificity (%) 

QoEPredict 89.66 89.66 89.89 89.66 97.02 

XGBoost 88.60 88.63 88.85 88.63 96.66 

Random Forest 87.55 87.60 87.82 87.60 96.45 

KNN 85.36 85.27 85.86 85.27 96.07 

MLP 80.91 80.88 81.26 80.88 94.47 

SVC 73.39 73.39 73.53 73.39 92.52 

Ridge 31.57 32.04 47.30 32.04 84.10 

We also confirm that our stacking is beneficial by 

experimenting on a plain averaging ensemble of the base 

models. It yielded an F1 Score of 89.3%, which is lower than 

the 89.66% F1 Score of our stacked model. Thus, the meta-

learning approach effectively learned the optimal weighting 

and interaction of base model outputs. This aligns with 

findings in other studies that stacking can outperform 

weighted averaging [62]. Additionally, the Friedman test 

results (Statistic: 42.6873, p-value = 0.0000) confirmed that 

QoE redict’s performance is statistically significant and not 

due to chance. The Bootstrapping results further revealed 

that QoE redict’s performance was significantly superior 

compared to KNN, MLP, SVC and Ridge, while being very 

competitive with consistently higher mean F1 compared to 

XGBoost and Random Forest; although its superiority was 

not found to be statistically significant after our implemented 

strict correction, as shown in Table IX below.

 
TABLE IX. QoEPredict’s Bootstrapping results 

Model Mean F1 Difference Lower CI Upper CI Significant difference 

XGBoost 0.01065816 -0.011478646 0.029049682 FALSE 

RandomForest 0.023843873 -0.002338558 0.050741837 FALSE 

KNN 0.039838856 0.010446974 0.080060814 TRUE 

MLP 0.085139933 0.045899627 0.116775816 TRUE 

SVC 0.165032493 0.128220595 0.201732536 TRUE 

Ridge 0.577259038 0.526716299 0.633201388 TRUE 

1) LEARNING CURVE AND GENERALISATION 
CAPABILITY  

We examine the learning curve for the QoEPredict model in 

Fig. 7 to gain critical insights into the model's learning 

behaviour as a function of the training set size. The plot 

shows the F1 Score on the y-axis and the number of training 

examples on the x-axis, with separate lines for the training 

score and the CV score. The model achieved near-perfect 

performance, 0.98-1.0, on the training data regardless of the 

sample size, indicating high capacity and strong 

memorisation ability. More importantly, the validation F1 

Score displayed a consistent upward trend from 0.50 

upwards as the number of training examples increased from 

100 to 1200. This continuous improvement without a clear 

plateau suggests that the model has not yet reached its 

performance ceiling and could benefit further from 

additional data.

FIGURE 7. Learning curve of QoEPredict showing training and cross-validation F1 Scores as a function of training sample size. The gap between 
curves reduces as the training set size increases. This indicates that our ensemble’s overfitting to sample data decreases as data volume increases. 
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However, the persistent but narrowing gap between the 

training and validation scores highlights a moderate variance 

issue. This is expected in expressive models and can be 

effectively mitigated to enhance generalisation by increasing 

data volume and/or introducing additional model refinement. 

These observations confirm that the classifier not only fits 

the data well but also generalises increasingly better with 

more training samples. This learning curve also justifies the 

use of an ensemble: with limited data, a single complex 

model might overfit, but our stacked approach manages 

complexity well. 

 
2) CONFUSION MATRIX 

 To further investigate QoE redict’s performance, we 

assessed its class-wise predictive performance via a 

confusion matrix, Fig. 8, using predictions on the held-out 

test set. Overall, the matrix reveals strong alignment between 

predicted and actual classes, with dominant diagonal values 

across all categories. Notably, 133 correctly classified 

samples were in class 3 and 107 in class 4. Also, we observed 

minimal misclassification, with most errors occurring 

between adjacent QoE levels, e.g., class 3 is misclassified as 

class 2 and vice versa. This pattern is consistent with the 

ordinal nature of the QoE task, where semantic similarity 

between adjacent classes can naturally lead to borderline 

predictions. Extreme classes 1 and 5 exhibited lower values 

in terms of the magnitude of correct classifications, i.e., 28 

for class 1 and 20 for class 5. However, the equally high 

predictive accuracy for these classes, 1 and 5, similar to the 

other classes, justifies our use of SMOTE during training to 

mitigate the effects of class imbalance. Although SMOTE 

generates synthetic feature-space samples without explicit 

consideration of the ordinal QoE target, its use is justified 

pragmatically to improve model attention to minority 

classes.

 
FIGURE 8. Confusion matrix of QoEPredict on the holdout test set. Diagonal dominance across all five QoE classes (1–5) indicates strong predictive 

accuracy with minimal inter-class confusion 

 
Thus, the confusion matrix confirms not only the classifier’s 

robustness across varying QoE levels but also the model’s 

practical utility in distinguishing between subtly different 

user experiences with high fidelity, though not perfectly. 

Table X presents a class-wise breakdown of performance 

across all five QoE categories. This clearly illustrates how 

our model performs on critical extremes: very poor (class 1) 

and excellent (class 5). As shown, recall is slightly reduced 

for these underrepresented classes (0.86 and 0.77), which is 

consistent with class imbalance. Precision remains very high 

(0.96 and 0.95), indicating that when extreme QoE is 

predicted, it is almost always correct. This analysis confirms 

that the model is not simply optimised for average 

performance but captures critical QoE states with reasonable 

reliability.

 
TABLE X. Class-wise Classification report on the Hold-out test set 

Class F1-score(%) Precision(%) Recall(%) Precision(%) Specificity(%) Support 

1 91 96 86 96 99 31 

2 88 85 90 85 92 65 

3 90 88 92 88 89 149 

4 92 93 90 93 92 132 

5 85 95 77 95 99 20 

Macro Avg 89 91 87 91 94 397 

Weighted Avg 90 90 90 90 91 397 
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This near-perfect class separation was further confirmed by 

the registered ROC-AUC value of 95.52%. 

 
B. SHAP FEATURE IMPORTANCE AND 
INTERPRETATION 

A key benefit of our approach is the integration of SHAP 

explainability, which helps us understand why the model 

makes certain predictions. For the interpretability of 

QoEPredict, we examined the contribution of each input 

feature by creating two complementary visualisations: a bar 

chart of average SHAP values and a heatmap. Fig. 9 displays 

the top 20 features ranked by mean absolute SHAP value 

across the five QoE classes (QoE=1 to QoE=5), quantifying 

each feature’s contribution to the model’s output in the 

original feature space. The multicoloured bars illustrate the 

additive impact of each feature on different QoE levels, 

highlighting that high-impact features consistently influence 

both low and high QoE predictions.

 

FIGURE 9. Top 20 features ranked by mean absolute SHAP values across all QoE classes. Higher SHAP values indicate stronger influence on 
predicted user experience 

 
Notably, Image Quality, Message Delivery Speed, App 

Speed Rating, Network Reliability, and Video Quality 

emerge among the top predictors, each demonstrating 

substantial mean SHAP values across all QoE classes. These 

results suggest that perceived multimedia fidelity and 

responsiveness are primary drivers of user experience in 

social media applications. This confirms domain intuition: 

Faster Message delivery speed contributes positively to QoE, 

confirming that users strongly prefer instantaneous 

communication and are frustrated by delays [63][64]; Image 

quality and Video Quality demonstrate a high positive 

impact on QoE, indicating that preserving high resolution 

and clarity in shared images is crucial for user satisfaction 

e.g., reducing image resolution was found to have a 

significantly larger negative effect on perceived quality than 

minor losses in colour fidelity [63][65]. Network reliability 

was also among the top contributors, with reliable network 

conditions yielding higher predicted QoE, confirming that 

better network quality, e.g., stable connectivity and prompt 

data transfer, leads to quicker responses, fewer errors, and an 

overall enhanced user experience [63][18]. The model’s 

emphasis on both user-centric, e.g., the influence of time-of-

day (HourOfDay and DayOfWeek), user habits (Usage per 

Day(h)_2-4h), and network-level indicators (e.g., jitter_ms) 

justifies the effectiveness of the hybrid QoS-QoE modelling 

approach, reinforcing previous findings that both objective 

metrics and subjective perceptions are essential in accurate 

QoE estimation [66]. 
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These interpretable insights have practical significance: For 

mobile network providers, the findings highlight the 

importance of infrastructure that minimizes delay and 

maximizes consistency, since even subsecond message 

delays can erode user satisfaction; For app developers, the 

results suggest focusing on optimisations like efficient image 

compression and content delivery techniques such as 

streaming or background pre-loading of media, to ensure 

high visual quality and instantaneous feedback in the user 

interface.  

Additionally, the correlation heatmap, Fig. 10, provides 

further insight by visualising the pairwise linear relationships 

among the numeric features within the dataset. Notably, 

QoE_Score exhibits strong positive correlations with 

perceptual indicators such as Message Delivery Speed (r ≈ 

 .5), Image Quality (r ≈  .5), and  etwor   eliability (r ≈ 

0.5), further underscoring their critical role in shaping user 

satisfaction. Conversely, negative correlations were 

observed with impairments such as Network Instability (r ≈ 

- . ) and  ideo  uffering (r ≈ -0.2), which highlights the 

detrimental impact of service interruptions on QoE. Few 

feature pairs showed internal consistency, such as Video 

Stuttering and  ideo  uffering (r ≈  .4), confirming the 

opportunity for dimensionality reduction.

 

 
FIGURE 10. Correlation heatmap of key features in the hybrid dataset. Strong positive correlations with QoE_Score are observed for Image Quality, 

Message Delivery Speed, and Network Reliability, while negative correlations is observed for Video Buffering 
 

Interestingly, platform-specific dummy variables, e.g., 

platform_whatsapp and platform_instagram, exhibited 

minimal correlation with other numeric predictors and 

QoE_Score, implying limited direct influence on overall 

QoE when evaluated independently. However, this does not 

preclude their relevance when explored via interaction 

effects or segment-specific modelling. The heatmap thus 

reinforces the significance of media performance and 

network reliability features over platform identity in driving 

perceived QoE. These findings align with previous studies, 
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e.g., that emphasise service responsiveness, delivery fidelity, 

and network stability as key determinants of user experience 

[29] [67]. Insights that can guide both feature selection 

strategies in ML pipelines and practical prioritisation for 

network operators seeking to optimise service delivery. 

Using SHAP to probe our model not only validates that its 

predictions are grounded in known determinants of mobile 

QoE, but also bridges the gap from model outputs to 

actionable guidance, emphasising that improvements in 

message delivery speed, media quality, and network 

reliability can tangibly boost user experience in mobile and 

social applications, as consistently reported in QoE-focused 

studies. This convergence of model interpretability with 

domain knowledge greatly enhances trust in the model. It 

provides a clear roadmap for stakeholders seeking to 

leverage these insights to deliver improved user experiences. 

 

C. UMAP AND K-MEANS CLUSTERING 

Table XI presents the empirical summary of the Clustering 

methods comparison results. K-Means achieved superior 

performance across all key indicators, including the highest 

Silhouette score of 0.9242, lowest Davies-Bouldin index of 

0.0749, and a competitive cluster purity score of 0.3842, 

indicating well-separated and compact clusters. It also 

produced the highest composite score of 0.6985, matching 

GMM and Agglomerative Clustering. While GMM and 

Agglomerative showed comparable statistical performance, 

we proceeded with K-Means due to its computational 

efficiency, scalability, and robustness in high-dimensional 

spaces without relying on strong distributional assumptions. 

Spectral Clustering, in contrast, demonstrated significantly 

weaker clustering quality; Silhouette = 0.5288, DB = 1.4196, 

rendering it unsuitable for the present application.

TABLE XI. Clustering methods comparison results 

Metric K-Means GMM Spectral Agglomerative 

Clusters 5 5 2 5 

Silhouette 0.9242 0.9242 0.5288 0.9242 

DB 0.0749 0.0749 1.4196 0.0749 

Purity 0.3842 0.3842 0.3811 0.3842 

EffectSize 0.3345 0.3345 0.1822 0.3345 

ANOVA_p 0.0000 0.0000 0.0082 0.0000 

Kruskal_p 0.0000 0.0000 0.0054 0.0000 

Composite Score 0.6985 0.6985 0.2403 0.6985 

We visually illustrate the quality of the K-Means clustering 

using multiple supporting plots. Fig. 11 shows an 

imbalanced distribution of samples across the five clusters, 

with Cluster 2 holding the largest proportion with ~1000 

samples, confirming the actual imbalanced nature of QoE 

classes in the sampled context.  

 
FIGURE 11. Distribution of sample counts across five K-Means clusters derived from UMAP embeddings. Cluster 2 contains the largest group (~1000 

users), reflecting real-world QoE imbalance 

 
Furthermore, the trio of visualisations contained in Figs. 12, 

13, and 14 further strengthen the validation of the K-Means 

clustering outcome, revealing meaningful segmentation in 

user QoE profiles. Fig. 12 illustrates distinct QoE 

distributions across the five clusters using violin plots, 

highlighting heterogeneity in user experience levels and 

supporting actionable QoE differentiation. Cluster 0 exhibits 

a broader, higher median QoE, while clusters 1 and 3 skew 

lower.

 
 



 

18 
 

 
FIGURE 12. Violin plots of QoE distributions per cluster, illustrating varying median QoE levels across user groups 

 

The silhouette plot, Fig. 13, confirms strong intra-cluster 

cohesion and inter-cluster separation, with most samples 

achieving positive silhouette scores, and a considerable 

number of samples exceeding 0.75 (dotted red line). This 

implies that most points are assigned to their respective 

clusters with minimal confusion.
 

 
FIGURE 13. Silhouette plot showing intra-cluster cohesion and inter-cluster separation. Most samples achieve positive and high silhouette values, 

indicating stable clustering 

 
The silhouette structure reinforces that the clusters are 

internally cohesive and reasonably well-separated, even if 

not perfectly as depicted in Fig. 14.  The UMAP-based 

cluster separation scatterplot, Fig. 14, illustrates well-defined 

spatial separation among the clusters, with distinct groupings 

evident despite some peripheral dispersion; likely introduced 

by the nonlinear dimensionality reduction. This validates the 

model's ability to segment users meaningfully in the reduced 

feature space, preserving local structure and enhancing the 

interpretability of cluster-specific QoE patterns. 
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FIGURE 14. 2-D UMAP projection showing spatial separation among the five K-Means clusters. Distinct groupings highlight meaningful segmentation 

in real-world user experience profiles 
 

Together, these figures demonstrate that the selected K-

Means clustering yields interpretable, behaviourally distinct 

user groups. E.g., identifying the top QoS factors influencing 

the different clusters, Table XII, as revealed by SHAP, is 

essential for developing targeted QoE improvement 

strategies and supporting the deployment of adaptive QoE-

aware service or network interventions. 

 

TABLE XII. Taxonomy of Key QoS factors with the highest influence on different clusters 

Cluster Label Mean St. D. Cluster user count Key QoS factor 

0 1.944 0.998 18 Upload Speed < 1.18Mbps 

1 1.949 0.996 652 Upload Speed < 4.43Mbps 

2 2.237 1.005 1034 Bandwidth > 4.4Mbps 

3 1.902 1.061 82 Latency >200ms 

4 1.966 1.020 148 Download Speed < 2.35Mbps 

D. HYBRID VS. QOS-ONLY VS. USER-ONLY MODELS 

While our current results focus on the hybrid model, it is 

worth proposing how one would rigorously compare our 

hybrid versus single-source models in future work: Train a 

model using only the network QoS features as inputs and 

evaluate performance; Train another model using only user-

centric features as inputs and evaluate performance; and 

compare these to the hybrid model that uses all features. We 

expect that the hybrid model would outperform either model 

alone, demonstrating the benefit of combining network QoS 

and user feedback data. This is consistent with the findings 

of other researchers who note that QoE is multidimensional 

and purely objective or purely subjective models are 

incomplete. E.g., a study in video streaming QoE 

demonstrated that adding user interaction data to network 

data improved QoE prediction accuracy by a notable margin 

[68]. 

In summary, the results validate that our hybrid approach is 

effective for the given context. We have shown 

quantitatively that it can predict user satisfaction to a useful 

degree of accuracy. Qualitatively, we have interpreted what 

the model learned and found it aligns with domain 

knowledge, enhancing the understanding of QoE drivers in 

Cameroon’s mobile social media usage. With the core results 

established, the next section will discuss their implications: 

what they mean for network operators and policy, what 

limitations exist, and how future work can build upon this 

foundation. 

 
V. DISCUSSION, INSIGHTS AND FUTURE WORKS 

The findings of this study offer several revelations into an 

ensemble, hybrid QoE modelling and carry important 

practical implications for mobile network stakeholders in 

Cameroon and similar contexts. We discuss these insights, 

reflect on the local constraints, assess this study’s 

limitations, detail the ethical considerations we navigated, 

and suggest directions for future research and deployment. 

 
A. STUDY INSIGHTS 

This study uncovers contextual insights that enhance the 

understanding of Mobile Network QoE in a developing 

country like Cameroon. 

 
1) SUPERIOR MODEL PERFORMANCE 

 Our results reinforce the concept that QoE is best understood 

through a combination of network and user perspectives. 
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Neither QoS metrics nor user feedback alone paints the full 

picture; it is their interplay that matters. The hybrid ensemble 

model’s success demonstrates that much of what a user feels 

about service quality can indeed be predicted from technical 

parameters, provided we train the model on actual user 

opinion data. This marries the subjective and objective 

approaches found in QoE literature. The clear improvement 

of the stacking ensemble over any single model confirms the 

benefit of ensemble methods for QoE prediction. By 

aggregating different aspects of threshold-driven learning 

approaches, the ensemble likely captured a broader range of 

patterns. For instance, we suspect XGBoost's boosting 

mechanism captured dominant global thresholds, while 

Random Forest's feature randomness detected context-

specific local thresholds. The meta-learner successfully 

learned to trust the appropriate model in the appropriate 

scenario. This aligns with previous research that noted 

ensembles improve QoE regression accuracy [9], and 

extends it to a 5-class classification setting with a novel 

stacking scheme. The improvement is not just statistical but 

practical. 

We also note that the ensemble reduced overfitting. The 

stacking, by using CV predictions and combining models, 

smoothed out the idiosyncratic biases of each model. In 

effect, the ensemble behaves like a regulator; it is harder for 

random noise to consistently fool all base models in the same 

way. This is reflected in the increasingly reduced gap 

between training and test curves for the ensemble as the 

dataset size grows. That said, stacking itself could overfit at 

the meta-level if not using proper blending; our use of out-

of-fold predictions mitigated that. 

 
2) MODEL INTERPRETABILITY AND TRUST 

A key aspect of our work is the use of SHAP for interpreting 

the QoE model. This addresses the common criticism that 

advanced ML models are “blac  boxes” [69]. By applying 

S   , we were able to verify that the model’s behaviour 

makes sense. These insights are valuable to network 

providers and reveal that managing QoE is not a one-size-

fits-all solution, but should appropriately consider context.  

A specific insight is the primacy of App speed rating, service 

latency, service quality and reliability for social media QoE. 

This suggests social apps, while not “real-time” in the way 

video calls are, still demand responsiveness; people scroll 

quickly, tap on links, and expect snappy feedback. Even 

loading a photo thumbnail can feel frustrating if there is a 

long delay after a click. Thus, operators aiming to improve 

social media experience should focus as much on reducing 

latency, through network optimisation, edge caching, etc, as 

on increasing throughput. High bandwidth is beneficial up to 

a point, especially for video-heavy content on platforms like 

Instagram, but if the network is unreliable, users notice that 

first. This insight is somewhat in line with the general QoE 

theory that “quality is as good as the weakest link”. If any 

dimension is particularly bad, it will dominate the user’s 

perception. Furthermore, being able to explain individual 

predictions means operators could investigate specific 

complaints: e.g., if a user report is predicted as very 

dissatisfied, the model might highlight high Jitter as the 

cause, directing engineers where to look.  

Another insight is the role of contextual factors: time-of-day 

emerged as a surrogate for network load and possibly user 

mood. The fact that experiences during peak hours impact 

QoE indicates that network resource contention is impacting 

QoE. For Cameroon’s operators, this may highlight a need 

for capacity planning. If, e.g., users in urban areas 

consistently face reduced QoE at night, interventions like 

offloading traffic, deploying additional small cells, or 

optimising backhaul could be targeted at those hours. This 

interpretability also adds credibility to the model in a 

regulatory context. Regulators in Africa are increasingly 

interested in QoE but also cautious due to its subjectivity. A 

model that can demonstrate why it thinks QoE is below 

threshold for an area, e.g., “because average speeds are only 

1 Mbps and users expect at least 3 Mbps for acceptable video 

streaming”, can facilitate dialogue between operators and 

regulators on quality standards. 

 
3) REGIONAL NOVELTY 

This study is, to our knowledge, among the first to rigorously 

model QoE using actual user data from Africa. Past studies 

in Africa often relied on small surveys or focused on either 

QoS technical KPIs or qualitative assessments. Our work 

provides a quantitative baseline for what factors drive user 

experience in African mobile networks. One might wonder 

if the determinants of QoE are the same as elsewhere; we 

found that speed and quality issues reign supreme, but there 

could be subtle differences. For instance, one could imagine 

that in regions where users are new to mobile internet, their 

expectations might be lower; so QoE might not dip as sharply 

until QoS is very poor.  

Our model indirectly captures the collective expectations of 

the user base we sampled. If those expectations differ from, 

say, a European user base, the model’s learned threshold for 

“acceptable delays” would differ. In practice, our S    

analysis indicated that many users tend to rate QoE poorly 

when Video Buffer Durations exceed 30 seconds. This 

threshold might shift as networks improve and content 

demands increase. 

Another regional aspect is device variety; emerging markets 

often have older or lower-end smartphones, which might 

themselves limit performance. We did not explicitly model 

device type in this study, but it might be partially reflected in 

throughput, as older devices might not achieve high speeds 

even on good networks. In any case, future work should 

incorporate more region-specific aspects like power outages 

affecting networks. Also, we did not include 5G in our study, 

largely because 5G is currently scarce in Africa. As 5G rolls 

out, new QoE studies will be needed to see, for example, if 

ultralow latency and high bandwidth change the QoE game 

or simply raise user expectations further. 
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B. PRACTICAL IMPLICATIONS FOR MOBILE 
OPERATORS IN CAMEROON 

Practically, our QoEPredict model can be integrated into 

networ  operators’ analytics platforms as a decision-support 

module. Our model outputs (predicted QoE classes and 

SHAP-based feature importance scores) can feed into real-

time dashboards that visualise, for example, regional or cell-

level user experience trends. Low predicted QoE zones can 

automatically trigger alerts, e.g., for bandwidth reallocation, 

signal optimisation, or targeted maintenance. In parallel, the 

feature importance insights can guide strategic interventions 

by identifying which QoS factors (e.g., jitter or throughput) 

most affect user satisfaction. This integration enables a 

dynamic feedback loop between predictive analytics and 

network management, thereby supporting proactive QoE-

aware decision-making. For telecom companies and internet 

service providers in Cameroon, this research provides a 

prototype framework for QoE-centric network management: 

 
1) PROACTIVE TROUBLESHOOTING 

Instead of waiting for customers to call and complain about 

poor service, an operator could use a model like ours to 

predict in real-time which users or areas are likely to have a 

bad experience. For instance, by inputting the live QoS stats 

from base stations or user equipment into the model, the 

operator’s dashboard could highlight “Zone   has an 

estimated QoE of  /5 right now, li ely due to high latency.” 

This allows technicians to prioritise investigating Zone X; 

maybe a cell is overloaded or a backhaul link is congested, 

before user churn occurs. Over time, this could improve 

customer satisfaction and loyalty by reducing sustained poor 

experiences. 

 
2) RESOURCE ALLOCATION 

Knowing what affects QoE most helps in network 

optimisation decisions. Our results suggest that reducing 

latency could have a bigger bang-for-buck on QoE than 

marginally increasing throughput. So, an operator might 

invest in technologies like optimising routing paths, local 

caching of content, to reduce round-trip time to popular 

social media servers, or upgrading old transmission 

equipment that adds delay. In summary, a QoE model 

provides a user-centric lens as illustrated in Fig. 15, for 

network upgrades: rather than just looking at utilisation stats, 

it tells where users are hurting, as reflected in their 

suggestions. 

 
FIGURE 15. User Suggestions frequency ranking across the sampled population 

 
3) MARKETING AND SERVICE TIERS 

Another interesting implication is in customer relationship 

management. Operators could identify segments of users 

who consistently have lower QoE, maybe those in fringe 

coverage areas or with older devices. They can then target 

those users with upgrades. E.g., offer a special promotion for 

a 4G signal booster, or a discounted device upgrade, or 

simply prioritise network improvements in those locales. 

Conversely, if QoE is generally good, it can be used in 

marketing, especially on the social media platforms that 

subscribers use the most, as captured in Fig. 16. E.g., “90% 

of our customers enjoy HD video and fast social media 

browsing without issues, as indicated by our QoE scores!”. 

Caution is needed here to ensure the QoE scores are truly 

representative and not used misleadingly.
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FIGURE 16. Social Media Platforms usage frequency distribution of the sampled population 

 
4) REGULATORY REPORTING 

Regulators in some countries are starting to consider QoE in 

addition to QoS for assessing operators. Cameroon’s 

regulator could benefit from models like this to complement 

their QoS audits. E.g., instead of just checking if an operator 

meets 4G speed targets, they could use a QoE model on 

crowd-sourced data to see if users are satisfied. Our 

approach, being data-driven and local, is more reflective of 

ground truth user experience than generic thresholds. Thus, 

it could contribute to more consumer-centric regulations. 

 
C. LOCAL CONSTRAINTS 

During this study, we encountered a few Cameroon-specific 

constraints worth noting: 

 
1) INFRASTRUCTURE VARIABILITY 

The quality of 3G/4G in Cameroon is not uniform. Some 

areas, especially rural or certain carriers, might not 

consistently deliver what one would consider “  ” or “4 ” 

speeds. We had to ensure our data collection included a 

broad sample, which it did; though urban users were more 

represented, given smartphone penetration biases. This 

variability means the model has to cover from very poor to 

decent network conditions, which it did. But it also means 

our model is somewhat specific to the range of QoS present 

in Cameroon’s networ s. In an environment with ubiquitous 

high-speed broadband, the QoS-QoE curve might look 

different since only extreme conditions degrade QoE. 

 
2) DEVICE DIVERSITY 

Cameroon’s smartphone mar et includes many low-cost 

android devices, some with older 3G-only support. Lower-

end devices might produce more jitter in performance, 

independent of the network. A country where high-end 

phones are common might see QoE limited more by the 

network, whereas here, occasionally, the phone could be a 

bottleneck. 

  
3) USER EXPECTATIONS 

Cultural and usage pattern differences can affect how people 

rate their experience. It is possible that Cameroonian users, 

many coming from a history of slower internet or limited 

connectivity, might rate an average network experience as 

good/excellent because it meets their expectations. This can 

contrast with users in markets who expect ultrafast, always-

on connectivity. This expectation gap might partially explain 

why we had relatively few ratings in the very low end, since 

some users might just accept certain slowness as normal. 

Over time, as people get exposed to better service, their 

expectations may rise, and QoE ratings for the same QoS 

could become harsher. Operators and models will need to 

adapt to that moving target. 

 
4) DATA ACCESS AND COSTS 

Getting widespread user participation required careful 

consideration of data costs and incentives. We had to ensure 

the speedtest or survey did not consume too much of users’ 

data bundles, for ethical and practical reasons, by sometimes 

providing data bundle incentives. This constraint is 

somewhat unique to developing regions where unlimited 

data plans are rare and users are cost-sensitive. It means any 

large-scale QoE monitoring solution should ideally work 

with minimal overhead or be zero-rated by the operator to 

encourage participation. 

 
D. STUDY LIMITATIONS 

We recognise a few limitations to this study as thus: 
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1) SIZE OF DATASET 

The dataset with 1934 datapoints, while real, is modest. It 

covers selected towns, largely urban, in Cameroon. These 

results might vary if more samples and the entirety of the 

country are fully represented. We mitigated overfitting 

through CV and saw consistent performance, but a larger 

dataset would always be preferable to further enhance model 

generalisability. Secondly, there may be unobserved 

variables that affect QoE, which we did not include. For 

instance, QoS metrics like signal-to-noise ratio (SNR), and 

congestion/cell load measures, because we did not have 

access to operator probes. We did not have data on users’ 

current pricing or data caps; a user nearing their data limit 

might have lower QoE independent of instantaneous speed. 

Likewise, we did not explicitly model intrinsic device type 

or content type parameters beyond a rough platform 

category; more granular QoE models might consider video 

resolution, web page complexity, etc.  

 

Our model currently provides an offline prediction, based on 

collected data; it is not implemented as a real-time system. 

For practical deployment, one would integrate it into a 

network monitoring tool to predict QoE continuously, which 

might require optimisation for speed. Though our ensemble 

is reasonably fast in inference, monitoring millions of users 

would need further scaling strategies. Also, the scope of 

applications is limited to social media apps. Our model might 

not directly apply to other use cases, like online gaming, 

without retraining. Different app types have different QoE 

models. So, while our framework is general, the numerical 

model is specific to social media usage patterns. 

 
2) GROUND TRUTH SUBJECTIVITY 

We relied on user ratings as ground truth QoE. Human 

ratings have inherent noise; one user’s “4” might be 

another’s “5”. We tried to mitigate this by having a decent 

sample size and a robust model design. Random Forest and 

XGBoost are relatively robust to label noise. Furthermore, 

the stacking itself helps to smooth out idiosyncratic errors 

that might be present in the training labels, validating model 

performance across folds.  

However, the evaluation metrics themselves are based on 

these possibly noisy labels. In an ideal scenario, we might do 

multiple ratings or MOS averaging per condition to get a 

more stable ground truth. That was not feasible in our 

crowdsourced approach, but it is a trade-off. Also, to 

compensate for a formal inter-rater reliability test, such as 

Fleiss' Kappa, which requires multiple independent ratings 

for the same sample, one of our expert authors re-rated a 

random subset of 150 samples. This spot-check revealed a 

75% exact agreement and a 94% agreement (within ±1 class) 

between the expert and the original crowd-sourced labels. 

This high level of agreement provided strong confidence that 

the users largely applied the QoE scale as intended. 

 

3) STATIC Vs. DYNAMIC QoE 

Our analysis is static and point-in-time. We did not explicitly 

model how QoE evolves during a session because we did not 

record continuous QoE over a long session, just snapshots. 

So, we extracted the temporal features (HourOfDay and 

DayOfWeek) as numeric attributes and scaled. We did not 

use cyclical encoding because each record was independent 

and session-based; making a discrete contextual 

representation more appropriate. However, QoE can have 

memory, and a bad spike at the start of a session can taint the 

whole experience rating. Our data can not directly capture 

that effect since each rating is independent. This is a 

limitation if one tries to use the model in a scenario that 

requires time-series predictions. Nevertheless, cyclical 

encoding may be explored in future work when sequential 

temporal patterns are of interest. 

 
4) GENERALITY IN CAMEROON 

While we included users from various regions, our sample 

may still be slightly skewed to tech-savvy or engaged users, 

i.e., those who were willing to install a speed test app and 

take the survey. Although we collected data from all local 

networks, operator representation was volunteer-driven and 

thus uneven, potentially biasing our results toward the 

dominant operators within the sampled population. Also, our 

data collection period of three months may not have captured 

the longer-term network dynamics, such as network 

upgrades or evolving user expectations. So, the general 

mobile user population may have different characteristics. 

Therefore, if an operator has truly random sampling via 

network probes and occasional SMS surveys, they might 

gather a more representative dataset. We believe our sample 

is reasonably representative of the urban user base, which 

constitutes the majority of 3G/4G users; however, rural users 

may be underrepresented. We recognise that partnering with 

operators to access these rural populations, e.g., via 

incentivised campaigns, will boost future data collection 

endeavours. Thus, caution is warranted in assuming these 

exact metrics hold for 100% of users.  

 
5) REGULARISATION AND OVERFITTING TRADE-OFF 

We deliberately traded off fine-grained XGBoost 

regularisation tuning to minimise model computational cost. 

This decision may have contributed to the mild overfitting 

observed in Fig. 7, where training F  Scores (≈  .9  - 1.0) 

slightly exceed validation F  Scores (≈  . 9). This observed 

gap suggests that our ensemble may have marginally over-

specialised on training patterns due to the untuned XGBoost 

regularisation parameters (L1 and L2). Nonetheless, 

QoEPredict’s performance remains stable across CV folds, 

with a standard deviation of ±1.12 in F1 Scores, indicating 

consistent generalisation. Future work will incorporate 

systematic regularisation tuning to further reduce variance 

and enhance robustness. 

 

Despite these limitations, the study provides proof-of-

concept that hybrid QoE modelling using crowdsourced user 

data is feasible and useful in the Cameroonian context. It 
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establishes a baseline for further refinement. Therefore, 

while the model is calibrated to Cameroon, the modular 

pipeline is designed for replication. Generalisation to new 

regions will primarily require the collection of local QoS-

QoE data for re-training, allowing the framework to discover 

region-specific clusters and drivers. Thus, providing a 

scalable blueprint for data-driven QoE management across 

emerging markets. 

 
E. FUTURE DIRECTIONS 

Moving forward, we see several avenues to extend this work: 

 
1) OBTAINING MORE DATA 

Additional data, both in volume and variety, would allow 

validation and possible model improvement. E.g., 

integrating additional fine-grained radio network KPIs, such 

as Signal-To-Noise Ratio, modulation scheme, and 

congestion indicators, etc, which operators have. Our model 

used relatively high-level QoS metrics that a user app can 

measure. Future work will aim to collaborate with operators 

to integrate the broader socio-technical ecosystem 

influencing QoE, e.g., data pricing, data cap status. 

Additionally, collecting multi-country datasets could also 

help ensure that the model generalises well to different 

network conditions and user behaviours, especially within 

the Sub-Saharan region. This will also permit us to adapt the 

model to real-time QoE variations for optimised predictions. 

Furthermore, modelling the impact of external factors like 

power outages on network stability could provide a more 

complete picture of the user's experience. Capturing these 

elements is essential to achieving a truly context-aware QoE 

model that reflects the economic and infrastructural realities 

of users in emerging markets. 

 
2) INTEGRATION INTO OPERATOR DASHBOARDS 

We envision a system where the operator’s networ  

management software includes a QoE dashboard showing 

real-time predicted satisfaction scores across cells or regions. 

Implementing this would require robust real-time data 

pipelines from the network and possibly periodic user 

feedbac  collection integrated into an operator’s mobile app 

or via SMS. There would also need to be threshold-based 

alarms, e.g., “QoE in the Northwest region dropped below 

3.0 for >15 minutes”, to prompt action. Our model could be 

a starting algorithm for such a system, but deployment would 

involve engineering efforts and validation. 

 
3) REFINE THE CLUSTERING APPROACH 

Future work could turn our unsupervised analysis into a 

semi-supervised approach where cluster identity is used to 

train specialised models, e.g., one model for urban versus 

rural users. This might improve predictions further by 

allowing varying model parameters for each segment. The 

challenge is ensuring enough data per segment. In our 

analysis of linear versus non-linear clustering methods, 

UMAP achieved a significantly higher silhouette score 

( .9 ) compared to  C ’s  .  , suggesting that it preserves 

the intrinsic structure of the dataset more effectively. 

However, when benchmarked directly against the no-

reduction baseline, UMAP did not consistently outperform it 

in terms of predictive accuracy or F1 score; a similar 

behaviour to PCA is shown in Fig. 4. But unlike PCA, which 

showed decreasing performance with higher dimensions, the 

no-UMAP reduction baseline achieved an accuracy of 82%, 

while the UMAP(40), UMAP(75) and UMAP(100) 

configurations achieved 55.5%, 56.3% and 56.8% 

respectively. 

This indicates that although UMAP provides superior cluster 

separation and interpretability of latent data structure, this 

improvement in representation does not automatically 

translate into higher predictive performance in our QoE 

classification setting. This provides a more complete view of 

 M  ’s role: it excels in revealing structure and supporting 

interpretability, but does not necessarily surpass the no-

reduction approach in predictive accuracy. 

 
4) COLLABORATION WITH CONTENT PROVIDERS 

Social media companies also measure QoE from their side, 

with more granular metrics like time to load content. A 

collaboration between network operators and content 

providers could lead to richer datasets, combining network 

QoS with application-level QoE metrics. Such combined 

data could improve model accuracy and also help pinpoint 

whether issues are network or app-related. While this might 

be beyond the scope of a single research study, it is a 

direction the industry is moving in. 

 
5) REGULATORY FRAMEWORKS 

As a future consideration, if the regulator in Cameroon or 

regionally were interested, they could sponsor larger studies 

to continuously monitor QoE using approaches like ours. 

This could feed into a public scorecard for operators, adding 

a competitive drive to improve QoE. We believe research 

like this can inform those policy-level initiatives by 

providing methodology and evidence of what works. 

 

6) EXTENSION INTO 5G, 6G AND NEW APPLICATION 

DOMAINS 

A key future step is to implement and test our QoE modelling 

approach in the context of newer network generations (5G 

and beyond) and emerging applications. Our work has 

mainly focused on 3G/4G networks and social media usage 

in Cameroon. However, as 5G networks become more 

widespread (and 6G approaches), it is essential to explore 

how the significantly different features of these networks 

influence QoE. 5 ’s ultra-low latency and high bandwidth 

enable applications like cloud gaming, VR, or telemedicine 

with exceptional quality, but they could also raise user 

expectations considerably. Future research should 

investigate whether the factors that were critical for QoE in 

3G/4G in developing countries continue to be relevant in 
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5G/6G, or if new factors appear when, say, holographic 

communication or tactile internet services are introduced. 

 
F. ETHICAL CONSIDERATIONS FOR FUTURE WORKS 

Any future work should maintain the focus on user benefit. 

QoE prediction should ultimately serve to enhance user 

experience, not to justify charging more for “premium 

QoE”. As this is a potential misuse, where an operator might 

say “pay more to get better QoE”. That would be 

problematic if the baseline QoE is intentionally kept low. 

Transparency with users, offering opt-outs, and using the 

data responsibly will be key as this field progresses. 

In summary, the discussion highlights that hybrid QoE 

modelling is a promising tool that, when applied 

thoughtfully, can bridge the gap between network 

engineering and user satisfaction. By focusing on 

Cameroon’s context, we have ensured that the model and 

insights are grounded in local reality, a step towards more 

inclusive global research where regions with different usage 

patterns and constraints are represented. Our proposed model 

also demonstrated a successful case of applying state-of-the-

art ML techniques to a practical engineering problem in a 

developing region context. This approach can serve as a 

reference for similar QoE studies or be extended as 

mentioned above. We hope this work spurs more data 

collection and research on QoE in Cameroon, Africa, and 

other underserved regions, as improving QoE is key to user 

satisfaction and broader digital inclusion. 

 
VI. CONCLUSION 

This paper introduced QoEPredict, a novel hybrid ML 

framewor  designed to predict QoE in Cameroon’s   /4  

networks, using social media usage as a case study. By 

integrating crowdsourced QoS data with user-reported 

satisfaction scores, we built a regionally contextualised, 

data-driven model capable of capturing both technical and 

perceptual dimensions of QoE. Our stacking ensemble, 

which combines XGBoost, Random Forest, and 

disagreement features, achieved a high predictive 

performance (F1 score and accuracy of 90%) and 

outperformed traditional baselines. Beyond its predictive 

strength, QoEPredict contributes methodologically through 

its modular pipeline and interpretability via SHAP-based 

explainability. These features can enable mobile network 

operators to identify actionable QoE drivers, such as jitter, 

service delivery delays, and contextual user feedback, 

informing more targeted and user-centric optimisation 

strategies. As one of the first large-scale ML-based QoE 

studies in Cameroon, this work fills a critical gap in the 

literature and sets a precedent for similar efforts in other 

resource-constrained regions. Future work can extend this 

framework to broader service types and geographies, further 

bridging the gap between technical performance and real 

user experience. 
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