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a b s t r a c t 

The Cognitive Packet Network (CPN) bases its routing decisions and flow control on the Random Neural 

Network (RNN) Reinforcement Learning algorithm; this paper proposes the addition of a Deep Learning 

(DL) Cluster management structure to the CPN for Quality of Service metrics (Delay Loss and Bandwidth), 

Cyber Security keys (User, Packet and Node) and Management decisions (QoS, Cyber and CEO). The RNN 

already models how neurons transmit information using positive and negative impulsive signals whereas 

the proposed additional Deep Learning structure emulates the way the brain learns and takes decisions; 

this paper presents a brain model as the combination of both learning algorithms, RNN and DL. The pro- 

posed model has been simulated under different network sizes and scenarios and it has been validated 

against the CPN itself without DL clusters. The simulation results are promising; the presented CPN with 

DL clusters as a mechanism to transmit, learn and make packet routing decisions is a step closer to em- 

ulate the way the brain transmits information, learns the environment and takes decisions. 

© 2019 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

a  

d  

a  

a  

p  

t  

t  

m  

o  

fi  

m  

W  

o  

d  

a  

a  

a  

i  

l  

b  

a  

m  

c  

t  
1. Introduction 

Our brain performs several functions at the same time; it learns

about the environment from our five senses; it stores memories to

preserve our identity; it takes decisions on different situations and

finally; it protects itself against external treats or attacks. Our brain

is formed by clusters of neurons [1] specialized in learning from

different senses where information is transmitted as positive and

negative spikes or impulses. It functions with two types of mem-

ories [2] ; short term memory is used for fast decisions and task

related actions whereas long term memory preserves our identity

and security. Another brain duality consists on its two operation

modes [3] ; consciousness under normal activities and unconscious-

ness under emergency situations such as being under external at-

tack or routine operations like storing information while sleeping. 

1.1. Related work 

The expansion of the connectivity provided by the Ethernet

and Internet protocols has enabled new industrial, technological

and social applications and services however users are increasingly

under new cybersecurity threats and risks. Ericsson [4] introduces

cybersecurity issues and threats within Power Communications

Systems in a smart grid infrastructure where network vulnera-

bilities and information security domains are analyzed. Ten et al.
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5] present a survey on cybersecurity of critical infrastructure; in

ddition they propose a SCADA framework based on four proce-

ures: real time monitoring, anomaly detection, impact analysis

nd mitigation strategy. They model an attack tree analysis with an

lgorithm for cybersecurity evaluation that incorporates password

olicies and port auditing. Cruz et al. [6] present a distributed in-

rusion detection system for SCADA systems that includes different

ypes of security agents tuned for each specific domain: develop-

ent of network, device and process level capabilities, integration

f signature and anomaly based techniques against threats and

nally the adoption of a distributed multi layered design with

essage queues to transmit predefined events between elements.

ang et al. [7] propose a framework to facilitate the development

f adversary resistant Deep Neural Networks (DNN) by inserting a

ata transformation module between the sample and the DNN that

voids threat samples with a minimum impact on the classification

ccuracy. Tuor et al. [8] present an unsupervised Deep Learning

pproach to detect anomalous network activity from system logs

n real time where events are extracted as features and the DNN

earns users’ normal behaviour or anomaly as potential malicious

ehaviour. Wu et al. [9] present a classification of cyber physical

ttacks and risks in cyber manufacturing systems with possible

itigation measures such as supervised machine learning for

lassification and unsupervised machine learning for anomaly de-

ection on physical data. Kim [10] proposes a new cyber defensive

omputer control system architecture based on the diversification

f hardware systems and unidirectional communications assuming

hat the detection and prevention of cyber attacks will never be

omplete. 

https://doi.org/10.1016/j.neucom.2018.07.101
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.07.101&domain=pdf
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Fig. 1. The Cognitive Packet Network. 
Deep Learning is characterized for using a cascade of L -layers

f non linear processing units for feature extraction and transfor-

ation; each successive layer uses the output from the previous

ayer as input. Deep Learning learns multiple layers of representa-

ions that correspond to different levels of abstractions; those lev-

ls form a hierarchy of concepts where the higher the level, the

ore abstract concepts are learned. Schmidhuber [24] examines

eep Learning in neural networks. Bengio et al. [25] review recent

ork in the area of unsupervised feature learning and Deep Learn-

ng including advances in probabilistic models. They propose a new

robabilistic framework to include likelihood based probabilistic

odels, reconstruction based models such as auto encoder vari-

nts and geometrically based manifold learning approaches. Jiea

t al. [26] propose a progressive framework to deep optimize neu-

al networks. They combine the stability of linear methods with

he ability of learning complex and abstract internal representa-

ions of Deep Learning methods. They insert a linear loss layer be-

ween the input layer and the first hidden non-linear layer of a tra-

itional Deep Learning model. Le et al. [27] study the advantages

nd disadvantages of off-the shelf optimization algorithms in the

ontext of simplification and speed up the process of pre-training

he unsupervised feature learning and Deep Learning. Ngiam et al.

28] propose an application of deep networks to learn features over

ultiple modalities to demonstrate that cross modality feature

earning performs better than single modality learning. Sutskever

t al. [29] present an approach to sequence learning that makes

inimal assumptions on the sequence structure using a multi-

ayered Long Short Term Memory (LSTM) to map the input se-

uence to a vector of a fixed dimensionality. Bekker et al. [30] pro-

ose an intra cluster training strategy for Deep Learning with

pplications to language identification where the language clusters

re used to define a cost function to train a neural network. 

The concept of Cognitive Packet Networks or Artificial Intelli-

ence in network routing has also been researched. Li and Zhang

37] define the architecture of Network Artificial Intelligence (NAI)

hat includes key components and key protocol extension require-

ents for self-adjustment, self-optimization, self-recovery of the

etwork through collection of Big data of network state and ma-

hine learning. Zhang et al. [38] propose a collaborative Internet ar-

hitecture that removes the restrictions from the resource/location

inding, user/network binding, and control/data binding, which

re the root causes of the current Internet’s issues. Qadir et al.

39] provide a vision how Artificial Intelligence can simplify net-

ork management such as cloud computing, network functions

irtualization, and software-defined networking where intelligent

ervices and cognitive networks will show network-wide intelli-

ent behaviour to solve problems of network heterogeneity, per-

ormance, and quality of service (QoS). Quan et al. [40] investigate

 new Smart Identifier NETworking (SINET) prototype and pro-

ose a customized solution that enables crowd collaborations for

oftware defined vehicular networks through crowd sensing where

etwork function allocations are organized with a group of com-

onents with similar function. 

.2. Summary of contributions 

This paper presents the association of the most complex biolog-

cal system; our brain with the most complex artificial system rep-

esented in large data networks: the Internet; the information in-

rastructure of the Big Data and the Web. The link between both of

hem is the Random Neural Network [16–18] . Data networks col-

ect information from users and transmit it to different locations;

o perform this activity, they are required to make routing deci-

ions based on different Quality of Service metrics while storing

outing tables in memory under the threat of Cyber attacks. 
This paper proposes the Cognitive Packet Network (CPN) [11–

5] with an additional Deep Learning (DL) cluster [31,32] structure

hat emulates how the brain operates. The proposed model adds a

ayer of specialised Deep Learning management clusters that take

he final routing decision; DL clusters behave as a long term mem-

ry to remember network identity: QoS metrics and Cyber keys.

he CPN-RNN routing algorithm is chosen under normal or con-

cious operations due its fast and adaptable route learning as short

emory whereas DL cluster route is selected when the network

s under external cyber attacks. DL clusters take routing decisions

ased on the long term memory in unconsciousness operation as

 safe and resilient although inefficient and inflexible routing. 

The mathematical model of CPN with DL clusters is described

n Section 2 . The implementation of the CPN-DL is defined in

ection 3 . The validation of the proposed model under different

oS and Cyber scenarios in small (3 × 3, 4 × 4, 5 × 5), medium

6 × 6, 7 × 7) and large square configuration node networks (8 × 8,

 × 9, 10 × 10) from one up to eight decision layers, respectively,

s presented in Section 4 . Final conclusions are presented in

ection 5 , and related bibliography is presented at the endof the

eferences. 

. The Cognitive Packet Network with Deep Learning Clusters 

The Cognitive Packet Network was introduced by Gelenbe et al.

11–15] ; it has been tested in large scale networks up to 100 nodes

ith worst and best case performance scenarios. The CPN assigns

outing and flow control capabilities to the packets rather than the

odes. QoS goals are assigned to Cognitive Packets (CP) within the

PN, which they follow when making routing decisions themselves

ith minimum dependence on the nodes. 

Given a Goal G based on QoS parameters that the CP has to

chieve, G = αDelay + βLoss + γ Bandwidth, and its associated re-

ard R which is R = 1/ G . Successive measured values of the R

re denoted by R l , l = 1,2… These are used to compute a deci-

ion threshold T l = αT l -1 + (1- α) R l . The CP makes a routing decision

ased on this value; if the observed measured reward is greater

han the associated node threshold; the CPN rewards the decision

aken; otherwise; it penalises it ( Fig. 1 ). 

The Random Neural Network [16–18] represents more closely

ow signals are transmitted in many biological neural networks

here they travel as spikes or impulses, rather than as analogue

ignal levels. The RNN is a spiking recurrent stochastic model

or neural networks where its main analytical properties are the

product form” and the existence of the unique network steady

tate solution. It has been applied in different applications includ-

ng network routing in the Cognitive Packet Network with Rein-

orcement Learning algorithm, which requires the search for paths

hat meet certain pre-specified Quality of Service requirements
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Fig. 2. The Random Neural Network with multiple clusters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The Random Neural Network with a Management Cluster. 

Fig. 4. CPN node with DL clusters architecture. 
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P  
[11–15] , search for exit routes for evacuees in emergency situations

[19,20] , pattern based search for specific objects [21] , video com-

pression [22] , and image texture learning and generation [23] . 

Deep Learning with the Random Neural Network is described

by Gelenbe and Yin [31,32] . This model is based on the generalized

queuing network with triggered customer movement (G-networks)

where customers are either “positive” or “negative” that can be

moved from queues or leave the network. G-Networks are intro-

duced by Gelenbe, E. [33,34] ; an extension to this model is devel-

oped by Gelenbe, E. et al. [35] where synchronized interactions of

two queues could add a customer in a third queue ( Fig. 2 ). 

The Deep Learning Clusters model defines: 

• a U -dimensional vector I Є [0,1] U that represents the input state

q u for the cell u : 

I = 

(
i d l 1 , i d l 2 , i d l k , . . . , i d l u 

)
(1)

• the U × C matrix of weights from the U input cells to the cells

in each of the C clusters: 

w 

−(u , c) (2)

• a C-dimensional vector Y Є [0,1] C that represents the cell state

q c for the cluster c : 

Y = 

(
y d l 1 , y d l 2 , . . . , y d l c 

)
(3)

The network learns the U × C weight matrix w 

−( u,c ) by calculat-

ing the new values of the network parameters for the input I and

output Y using Gradient Descent learning algorithm which opti-

mizes the network weight parameters w 

−( u,c ) from a set of input-

output pairs ( i dl 
u , y 

dl 
c ). 

The Deep Learning management cluster was proposed by Ser-

rano and Gelenbe [36] . It takes management decisions based on

the inputs from different Deep Learning clusters ( Fig. 3 ). 

The Deep Learning management cluster model considers: 

• a C-dimensional vector I mc Є [0,1] C that represents the input

state q c for cluster c : 

I mc = ( i m c 1 , i m c 2 , . . . , i m c c ) (4)

• the C-dimensional vector of weights from the C input clusters

to the cells in the Management Cluster mc: 

w 

−(c) (5)

• a scalar Y mc Є [0,1], the cell state q mc for the Management Clus-

ter mc representing its final decision: 
Y mc (6) a  
.1. The Cognitive Packet Network with Deep Learning Clusters model 

The CPN instantaneously updates its network weights based

n the direct observations from the network parameters; this en-

bles its routing algorithm to take fast decisions adaptable to QoS

hanges. The CPN emulates the brain in conscious mode when tak-

ng fast decisions in normal operation using short term memory

ased on the direct information received from the senses. This pa-

er proposes the addition of a Deep Learning Cluster structure to

he Cognitive Packet Network where each DL cluster learns differ-

nt QoS network metrics (Delay, Loss and Bandwidth), the best

outes for each QoS metric, and Cyber keys (User, Packet and

ode). In addition, this paper proposes the addition of a layer of

L management clusters (QoS, Cyber and CEO) that take the final

outing decision based on the inputs from the DL QoS clusters and

PN-RNN algorithm. The Deep Learning routing algorithm adapts

lowly to network changes where the proposed model applies it

s a reliable and safe routing when the CPN is compromised by

 Cyber attack; it emulates the brain in subconscious mode using

ong term memory when it takes minimum decisions for defense

r survival ( Fig. 4 ). 

.2. QoS Deep Learning Cluster 

A Deep Learning Cluster is assigned to each QoS metric: Delay,

acket Loss and Bandwidth. Each QoS DL cluster learns the best

ssociated QoS metric with its best associated node gates. When
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Fig. 5. CPN node with DL clusters model. 
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 node observes a better QoS route with a lower QoS metric; it

earns its value and includes the gate on the first position of the

oS DL routing table. 

This model defines three QoS clusters; Delay, Packet Loss and

andwidth: 

• a U-dimensional I QoS Є [0,1] U vector where i QoS 
1 , i QoS 

2 , and

i QoS 
u are the same value for each QoS type: 

I QoS = 

(
i Qo S 1 , i Qo S 2 , . . . , i Qo S u 

)
(7) 

• the U × C matrix of weights of the QoS Deep Learning Cluster: 

w 

−
QoS (u , c) (8) 

 C-dimensional vector Y QoS Є [0,1] C where y QoS 
1 is the QoS metric

nd y QoS 
2 , …, y QoS 

c are the node’s QoS best routing gates: 

 QoS = 

(
y Qo S 1 , y Qo S 2 , . . . , y Qo S c 

)
(9) 

.3. Cyber Deep Learning Cluster 

A Deep Learning Cluster is assigned per Cyber key: User, Packet

nd Node. The user cyber network weights authenticate the appli-

ation that has transmitted the packet. The packet cyber network

eights validates the packet transmitted is legitimate; this secures

he network against Denial of Service attacks. The node cyber net-

ork weights authenticate the nodes within the CPN; this secures

he CPN against impostor nodes. The Cyber network weights could

ave been assigned previously to the CPN nodes by the network

dministrator or the CPN nodes could have learnt them in an ini-

ialization mode. 

When a CPN node receives a Cognitive Packet (CP); each Cyber

L cluster extracts its relevant keys and uses them as input and

utput values. If the quadratic error between the Cyber DL cluster

utput vector and the input vector is over a threshold then the

PN node considers the certificate as invalid or the CPN is under

yber attack. 

This model defines there Cyber clusters; User Packet and Node:

• a U -dimensional vector I Cyber Є [0,1] U where i Cyber 
1 , i Cyber 

2 , …,

i Cyber 
u are the Cyber keys from the CP: 

I Cyber = 

(
i Cybe r 1 , i Cybe r 2 , . . . , i Cybe r u 

)
(10) 

• the U x C matrix of weights of the Cyber Deep Learning Cluster:

w 

−
Cyber 

(u , c) (11) 

• a C-dimensional vector Y Cyber Є [0,1] C where y Cyber 
1 , y 

Cyber 
2 , …,

y Cyber 
c are the Cyber keys from the DL cluster: 

Y Cyber = 

(
y Cybe r 1 , y Cybe r 2 , . . . , y Cybe r c 

)
(12) 

.4. Deep Learning management cluster 

The DL management clusters take the overall routing decision.

he QoS and Cyber management clusters analyse the output from

heir associated QoS and Cyber DL clusters respectively ( Fig. 5 ). If

he Cyber management cluster detects a failure in the cyber certifi-

ates; the CEO management cluster routes the network Cognitive

ackets as safe mode using the QoS DL clusters, otherwise, if the

yber certificates are valid the CEO management cluster choses the

oute provided by the CPN-RNN routing algorithm as normal mode.

This model defines the QoS management cluster as: 

• a C-dimensional vector I qmc Є [0,1] C with the values of the QoS

Metrics for each QoS cluster: 

I qmc = ( i qm c 1 , i qm c 2 , . . . , i qm c c ) (13) 

• the C-dimensional vector of weights that represents the

Goal = ( αDelay , βLoss , γ Bandwidth ): 

−
w qmc (c) (14) r  
• a scalar Y qmc Є [0,1] that represents the best QoS metric routing

decision to be taken: 

Y qmc (15) 

Cyber management cluster as: 

• a C-dimensional vector I cmc Є [0,1] C with the values of the key

errors for each Cyber cluster (User, Packet, Node): 

I cmc = ( i cm c 1 , i cm c 2 , . . . , i cm c c ) (16) 

• the C-dimensional vector of weights that represents the rele-

vance of each Cyber Cluster: 

w 

−
cmc (c) (17) 

• a scalar Y cmc Є [0,1] that represents if the packet has passed the

Cyber network security: 

Y cmc (18) 

CEO management cluster as: 

• a scalar I CEOmc Є [0,1] with the values of the QoS management

cluster: 

I CEOmc (19) 

• a scalar w CEOmc 
− Є [0,1] that represents the error of the Cyber

management cluster: 

w 

−
CEOmc (20) 

• a scalar Y CEOmc Є [0,1] that represents the final routing deci-

sion: 

Y CEOmc (21) 

. Implementation 

The Cognitive Packet Network with Deep Learning Clusters is

mplemented in the Network Simulator Omnet 5.0. The simulation

overs several size n × n square networks where all the nodes in

he same and adjacent layers are connected with each other. For

implicity, the simulation always consider the first node (Node 1)

s the only transmitter and the last node (Node n) as the only re-

eiver; the other nodes only participate in the routing of Cognitive

ackets. An example of a 4 × 4 network is shown in Fig. 6 . 

Each node has normalized QoS Delay, Loss and Bandwidth met-

ics as relative to their number; in a n × n network node i will
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Table 1 

QoS values – 4 × 4 network. 

Node 4 Initial - Final Node 5 Initial - Final Node 9 Initial - Final Node 16 Initial - Final 

Delay: 40 – 40 Delay: 50 – 80 Delay: 90–120 Delay: 160–160 

Loss: 65 – 65 Loss: 60 – 45 Loss: 40 –25 Loss: 05–05 

Bandwidth: 45 – 45 Bandwidth: 55 – 85 Bandwidth: 95 – 125 Bandwidth: 165 – 165 

Node 3 Initial - Final Node 6 Initial - Final Node 10 Initial - Final Node 15 Initial - Final 

Delay: 30 – 30 Delay: 60 – 70 Delay: 100 – 110 Delay: 150 – 150 

Loss: 70 – 70 Loss: 55 – 50 Loss: 35 – 30 Loss: 10 – 10 

Bandwidth: 35 – 35 Bandwidth: 65 – 75 Bandwidth: 105 – 115 Bandwidth:155 - 155 

Node 2 Initial - Final Node 7 Initial - Final Node 11 Initial - Final Node 14 Initial - Final 

Delay: 20 – 20 Delay: 70 – 60 Delay: 110 – 100 Delay: 140 – 140 

Loss: 75 – 75 Loss: 50 – 55 Loss: 30 – 35 Loss: 15 – 15 

Bandwidth: 25 – 25 Bandwidth: 75 – 65 Bandwidth: 115 – 105 Bandwidth: 145 - 145 

Node 1 Initial - Final Node 8 Initial - Final Node 12 Initial - Final Node 13 Initial - Final 

Delay: 10 – 10 Delay: 80 – 50 Delay: 120 – 90 Delay: 130 – 130 

Loss: 80 – 80 Loss: 45 – 60 Loss: 25 – 40 Loss: 20 – 20 

Bandwidth: 15 - 15 Bandwidth: 85 - 55 Bandwidth: 125 - 95 Bandwidth: 135 - 135 

Fig. 6. 4 × 4 Node CPN-DL Network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Cyber Deep Learning Cluster Implementation. 

Cluster type Input-Output Value (Input = Output) 

User i Cyber-u 
1 … i Cyber-u 

10 (0.9, 0.8, 0.9, 0.8, 0.9, 0.8, 

0.9, 0.8, 0.9, 0.8) y Cyber-u 
1 … y Cyber-u 

10 

Packet i Cyber-p 
1 … i Cyber-p 

10 (0.7, 0.6, 0.7, 0.6, 0.7, 0.6, 

0.7, 0.6, 0.7, 0.6) y Cyber-p 
1 … y Cyber-p 

10 

Node i Cyber-n 
1 … i Cyber-n 

10 (0.5, 0.4, 0.5, 0.4, 0.5, 0.4, 

0.5, 0.4, 0.5, 0.4) y Cyber-n 
1 … y Cyber-n 

10 

3
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have Delay: i ∗10; Loss: ( n - i ) ∗5 and Bandwidth: 5 + ( i ∗10), respec-

tively. The approach is represented in the Table 1 for a 4 × 4 net-

work. After two Cognitive Packets are sent with a defined QoS; the

QoS metric swaps between each internal node the within the same

column as shown on the Table 1 for a 4 × 4 network. This model

proposes to set the CPN-RNN network weights with initialization

packets sent at random gates. 

3.1. QoS DL clusters 

The QoS DL clusters have three input cells ( u = 3) and three

output clusters ( c = 3). The model therefore has i QoS-d 
1 = 0.5;

i QoS-d 
2 = 0.5 and i QoS-d 

3 = 0.5; y QoS-d 
1 is the best QoS Delay metric,

y QoS-d 
2 the best QoS Delay route and y QoS-d 

3 the second best Delay

route ( Table 2 ). The model follows a similar approach for the Loss

and Bandwidth QoS DL clusters respectively. The model normalizes

the inputs of the DL clusters to (0.5 + QoS Metric/10 0 0) and (0.5 +
Best Gate/100), respectively. 
Table 2 

QoS Deep Learning Cluster Implementation. 

Cluster Input Value Output Value 

QoS Delay i QoS-d 
1 0.5 y QoS-d 

1 Best QoS Delay Metric 

QoS Delay i QoS-d 
2 0.5 y QoS-d 

2 Best QoS Delay Gate 

QoS Delay i QoS-d 
3 0.5 y QoS-d 

3 Second Best QoS Delay Gate 

QoS Loss i QoS-l 
1 0.6 y QoS-l 

1 Best QoS Loss Metric 

QoS Loss i QoS-l 
2 0.6 y QoS-l 

2 Best QoS Loss Gate 

QoS Loss i QoS-l 
3 0.6 y QoS-l 

3 Second Best QoS Loss Gate 

QoS Bandwidth i QoS-b 
1 0.7 y QoS-b 

1 Best QoS Bandwidth Metric 

QoS Bandwidth i QoS-b 
2 0.7 y QoS-b 

2 Best QoS Bandwidth Gate 

QoS Bandwidth i QoS-b 
3 0.7 y QoS-b 

3 Second Best QoS Bandwidth Gate 

v  

t  

i  

b  

s

 

D  

s  

c  

c  

c  

m  

s  

m

.2. Cyber DL clusters 

The Cyber DL clusters have ten input cells ( u = 10) and ten out-

ut clusters ( c = 10). The key is a vector of 10 dimensions. i Cyber-u 
u ,

 

Cyber-p 
u , i 

Cyber-n 
u have a value between 0.1 and 0.9 with increments

.1 � ( Table 3 ). The Cyber DL clusters network weights are trained

ith the value of the input the same as the output. 

.3. DL management clusters 

The inputs of the Cyber management cluster are the errors

rovided by each Cyber DL cluster and the value of its network

eights are set with same value (0.1) therefore the different cyber

L clusters have the same priority. The output Y cmc is the overall

yber quantified error decision based on a threshold. 

The inputs of the QoS management cluster are the best QoS

etrics from each QoS DL cluster and the value of its networks

eights corresponds to the Goal = ( αDelay , βLoss , γ Bandwidth ). The

utput Y qmc is quantified best QoS metric decision. 

The input of the CEO management cluster is the value pro-

ided by the QoS management cluster and its network weight is

he value provided by the Cyber management cluster. The output

s the final routing decision between the different gates provided

y the RNN algorithm, Delay, Loss and Bandwidth DL clusters re-

pectively ( Table 4 ). 

The values of the different parameters for the Cyber and QoS

eep Learning management clusters ( I, w and Y ) are obtained re-

pectively from the Cyber and QoS Deep Learning Clusters. Suc-

essively, the parameters of the CEO Deep Learning management

luster are obtained from Cyber, QoS Deep Learning management

lusters. The thresholds or ranges correspond to the DL Manage-

ent cluster activation function [36] ; this activation function is

hown on Fig. 7 with explicit values for the CEO Deep Learning

anagement cluster. 
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Table 4 

Deep Learning Management Cluster Implementation. 

Cluster Input Network weights Output 

Cyber I Cmc w Cmc 
−(c) Y Cmc 

(User Error, Packet 

Error, Node Error) 

(0.1, 0.1, 0.1) 0.0 if Y cmc > 0.999 (Normal Condition) 

0.999 if Y cmc ≤ 0.999 (Cyber Attack) 

QoS I Qmc w Qmc 
−(c) Y Qmc 

(Delay Metric, Loss 

Metric, Bandwidth 

Metric) 

( αDelay , βLoss , γ Bandwidth ) 0.1 if Y Delay-qmc > Y Loss-qmc 

and Y Delay-qmc > Y Bandwidth-qmc 

0.5 if Y Loss-qmc > Y Delay-qmc 

and Y Loss-qmc > Y Bandwidth-qmc 

0.9 if Y Bandwidth-qmc > Y Delay-qmc 

and Y Bandwidth-qmc > Y Loss-qmc 

CEO I CEOmc w CEOmc 
− Y CEOmc 

(0.1, 0.5 or 0.9) (0.0 or 0.999) CPN-RNN if 0.6 < Y CEOmc < 1 

DL-Delay if 0.4 < Y CEOmc < 0.6 

DL-Loss if 0.2 < Y CEOmc < 0.4 

DL-Bandwidth if 0.1 < Y CEOmc < 0.2 

Fig. 7. Deep Learning Management Cluster activation function. 
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. Experimental results 

Different square n × n node network sizes are simulated, from

 × 3 up to 10 × 10 with different Cyber keys; QoS metrics and

oal changes to assess the adaptability and performance of our

roposed solution. 

.1. Cyber DL cluster validation 

The different Cyber DL clusters are validated where the security

eys are modified at node 1 and the cyber validation error is mea-
ured at the next node 4 once the CPs have an stable route. The

eys are gradually changed; from the correct key to 0.1 � incre-

ents applied to the different key dimensions. Table 5 , Table 6 and

able 7 shows the values for the Cyber User, Packet and Node Deep

earning cluster validation respectively. 

The Cyber DL cluster error largely increases even only with one

.1 � increment. The results are consistent between the different

yber DL clusters. Cyber key increments have a bigger error if they

re applied in the same dimension rather than split into different

imensions. 
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Table 5 

Cyber User Deep Learning Cluster Validation. 

Dimension �= 0.0 �= 0.1 �= 0.2 �= 0.3 �= 0.4 

1 9.75E −11 0.0102 0.0409 0.0921 0.1638 

2 9.7537E −11 0.0213 0.0851 0.1915 0.3406 

3 9.7537E −11 0.0326 0.1305 0.2938 0.5226 

4 9.7537E −11 0.0451 0.1806 0.4067 0.7238 

5 9.7537E −11 0.0576 0.2306 0.5195 0.9249 

6 9.7537E −11 0.0715 0.2867 0.6465 1.1519 

7 9.7537E −11 0.0851 0.3414 0.7703 1.3732 

8 9.7537E −11 0.1006 0.4038 0.9119 1.6273 

9 9.7537E −11 0.1153 0.4633 1.0470 1.8698 

10 9.7537E −11 0.1323 0.5321 1.2038 2.1526 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 

3 × 3 Network QoS Deep Learning Cluster Validation – Simulation Parameters. 

Cognitive packet Goal QoS metric 

100 Network Initialization Cognitive Packets 

0 01–0 02 1.0 ∗Delay + 0.0 ∗Loss + 0.0 ∗ Bandwidth Initial values 

003–020 1.0 ∗Delay + 0.0 ∗Loss + 0.0 ∗ Bandwidth Final values 

021–022 0.0 ∗Delay + 1.0 ∗Loss + 0.0 ∗ Bandwidth Initial values 

023–040 0.0 ∗Delay + 1.0 ∗Loss + 0.0 ∗ Bandwidth Final values 

041–042 0.0 ∗Delay + 0.0 ∗Loss + 1.0 ∗ Bandwidth Initial values 

043–060 0.0 ∗Delay + 0.0 ∗Loss + 1.0 ∗ Bandwidth Final values 

061–062 0.5 ∗Delay + 0.5 ∗Loss + 0.0 ∗ Bandwidth Initial values 

063–080 0.5 ∗Delay + 0.5 ∗Loss + 0.0 ∗ Bandwidth Final values 

081–082 0.5 ∗Delay + 0.0 ∗Loss + 0.5 ∗ Bandwidth Initial values 

083–100 0.5 ∗Delay + 0.0 ∗Loss + 0.5 ∗ Bandwidth Final values 

101–102 0.0 ∗Delay + 0.5 ∗Loss + 0.5 ∗ Bandwidth Initial values 

103–120 0.0 ∗Delay + 0.5 ∗Loss + 0.5 ∗ Bandwidth Final values 

121–122 0 × 3Delay + 0 × 3Loss + 0.3 ∗ Bandwidth Initial values 

123–140 0 × 3Delay + 0 × 3Loss + 0.3 ∗ Bandwidth Final values 
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Table 6 shows the values for the Cyber Packet Deep Learning

Cluster validation. 

Table 6 

Cyber Packet Deep Learning Cluster Validation. 

Dimension �= 0.0 �= 0.1 �= 0.2 �= 0.3 �= 0.4 

1 4.72E −10 0.0108 0.0431 0.0970 0.1725 

2 4.7238E −10 0.0233 0.0933 0.2104 0.3747 

3 4.7238E −10 0.0373 0.1497 0.3382 0.6036 

4 4.7238E −10 0.0533 0.2147 0.4864 0.8709 

5 4.7238E −10 0.0707 0.2855 0.6488 1.1659 

6 4.7238E −10 0.0904 0.3664 0.8363 1.5101 

7 4.7238E −10 0.1112 0.4527 1.0379 1.8831 

8 4.7238E −10 0.1347 0.5509 1.2701 2.3192 

9 4.7238E −10 0.1592 0.6541 1.5160 2.7853 

10 4.7238E −10 0.1866 0.7711 1.7993 3.3325 

Table 7 shows the values for the Cyber Node Deep Learning

Cluster validation. 

Table 7 

Cyber Node Deep Learning Cluster Validation. 

Dimension �= 0.0 �= 0.1 �= 0.2 �= 0.3 �= 0.4 

1 9.19E −10 0.0114 0.0458 0.1032 0.1838 

2 9.1918E −10 0.0200 0.0800 0.1800 0.3200 

3 9.1918E −10 0.0258 0.1259 0.2835 0.5044 

4 9.1918E −10 0.0400 0.1600 0.3600 0.6400 

5 9.1918E −10 0.0515 0.2061 0.4639 0.8250 

6 9.1918E −10 0.0600 0.2400 0.5400 0.9600 

7 9.1918E −10 0.0715 0.2863 0.6442 1.1455 

8 9.1918E −10 0.0800 0.3200 0.7200 1.2800 

9 9.1918E −10 0.0916 0.3664 0.8246 1.4661 

10 9.1918E −10 0.10 0 0 0.40 0 0 0.90 0 0 1.60 0 0 

4.2. 3 × 3 network – QoS DL cluster validation 

The 3 × 3 network is simulated with a continuous 240 Cogni-

tive Packet stream. The first 100 packets are used to initialize the

CPN network. Goal changes after 20 packets whereas QoS met-

ric changes 2 packets after the new Goal is selected following

T l = 0.9 ∗T l-1 + 0.1 ∗R where T l is the Threshold at decision packet l

and R is the Reward at Node 1 ( Table 8 ). 

The QoS DL clusters have been validated with seven different

variable Goals for the same Cognitive Packet stream. The CPN-RNN

route decision taken by the CEO Management Cluster when the Cy-

ber management cluster has authorised the different Cyber keys is

shown on Fig. 8 . The route provided by the QoS DL clusters re-

mains unchanged due its slow learning process until the new best

route is found by the CPN-RNN. The average Error and Iteration

values for the different Deep Learning Clusters are represented on

Table 9 . 

Table 10 shows the number of updates for the DL cluster and

the CPN-RNN. 
The CPN-RNN algorithm continuously updates its network

eighs whereas the DL Cluster route only refreshes when a

etter route is found, however the number of required iterations

o update CPN-RNN is only one whereas DL clusters require ap-

roximately 165 iterations as shown on Table 9 . 

Fig. 9 shows the final CPN-DL route follows the Optimum Route

n a 3 × 3 Network. 

.3. 3 × 3 node network – DL management cluster validation 

The DL Management Clusters (Cyber, QoS and CEO) on this sec-

ion are validated under two different Cyber Security scenarios;

= 0: normal operation and �= 0.1: CPN under Cyber attack. Three

ifferent strategic Cognitive Packets (CP 30, CP 85 and CP 148)

re chosen for the 3 × 3 network validation with different Goals

 Table 11 ). 

.4. 4 × 4 node network – QoS DL cluster validation 

The 4 × 4 network is simulated with a continuous 380 Cogni-

ive Packet stream. The first 100 packets are used to initialize the

PN network. Goal changes after 40 packets whereas QoS met-

ic changes 2 packets after the new Goal is selected following

 l = 0.99 ∗T l-1 + 0.01 ∗R ( Table 12 ). 

The first two Cognitive Packets follow the best route whereas

he third CP acknowledges the QoS metric has changed. The

hreshold adapts progressively as the Goal degrades. Node 1

hanges route after the CPN-RNN weights are updated finding the

ptimum route. When the new best route is discovered; the CPN

hreshold adapts gradually to the original value. The average Error

nd Iteration values for the different Deep Learning Clusters are

epresented on Table 13 . 

Table 14 shows the number of updates for the DL cluster and

he CPN-RNN. 

The CPN-RNN algorithm continuously updates its network

eighs whereas the DL Cluster route refreshes only when a bet-

er route is found, as the previous validation. The number of iter-

tions to update CPN-RNN is only one whereas DL clusters require

pproximately 140 iterations as shown on Table 13 ( Fig. 10 ). 

The results provided by the 4 × 4 network are similar to the

 × 3 network. The first two packets follow the best route whereas

he third packet acknowledges the QoS metrics have changed. CPN-

NN finds the optimum route after Cognitive Packets explore the

etwork and DL learns the route a Cognitive Packet after. Fig. 11

hows the CPN-DL route follows the Optimum Route in a 4 × 4 Net-

ork. 
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Fig. 8. 3 × 3 Network QoS Deep Learning Cluster validation. 

Table 9 

3 × 3 Network Deep Learning Cluster. 

Average Cyber user Cyber packet Cyber node QoS delay QoS loss QoS bandwidth 

Error 6.96E −10 7.34E −10 9.94E −10 9.47E −10 9.34E −10 9.54E −10 

Iterations 58.00 108.00 1162.33 175.69 161.50 160.50 

Table 10 

3 × 3 Network Deep Learning Cluster vs CPN-RNN. 

Updates CPN-RNN QoS delay QoS loss QoS bandwidth 

Initialization 0 4 1 3 

CP 001–140 140 9 1 9 

4

 

p  

c  

Table 11 

3 × 3 Network DL Management Cluster Validation. 

Variable Cognitive packet: 30 Cognitive packet

G:1.0 ∗D + 0.0 ∗L + 0.0 ∗B G: 0.5 ∗D + 0.5 ∗L +
�= 0.0 �= 0.1 �= 0.0 

Cyber I cmc 5E −11 3.4E −4 5E −11 

Cyber Y cmc 0.9994 0.9969 0.9994 

QoS-Delay I qmc 0.6300 0.6300 0.3150 

QoS-Loss I qmc 0.0 0 0 0 0.0 0 0 0 0.2625 

QoS-Band I qmc 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 

QoS-Delay Y qmc 0.1765 0.1765 0.30 0 0 

QoS-Loss Y qmc 0.9994 0.9994 0.3396 

QoS- Band Y qmc 0.9994 0.9994 0.9994 

CEO I CEOmc 0.10 0 0 0.10 0 0 0.10 0 0 

CEO w CEOmc 
−(c) 0.0 0 0 0 0.9999 0.0 0 0 0 

CEO Y CEOmc 0.9994 0.5746 0.9994 

Routing decision CPN Gate-4 Node 6 DL-Delay Gate-2 Node 4 CPN Gate-4 Node
.5. 4 × 4 node network – DL management cluster validation 

The results provided by the DL management cluster confirm the

roposed model. The correct quantification of the DL management

luster cell states and the selection of the accurate thresholds are
: 85 Cognitive packet: 148 

 0.0 ∗B G: 0.3 ∗D + 0.3 ∗L + 0.3 ∗B 

�= 0.1 �= 0.0 �= 0.1 

3.4E −4 5E −11 3.4E −4 

0.9969 0.9994 0.9969 

0.3150 0.2100 0.2100 

0.2625 0.1750 0.1750 

0.0 0 0 0 0.2133 0.2133 

0.30 0 0 0.3913 0.3913 

0.3396 0.4354 0.4354 

0.9994 0.3875 0.3875 

0.10 0 0 0.90 0 0 0.90 0 0 

0.9999 0.0 0 0 0 0.9999 

0.5746 0.9994 0.1305 

 6 DL-Delay Gate-2 Node 4 CPN Gate-4 Node 6 DL-Band Gate-2 Node 4 



414 W. Serrano and E. Gelenbe / Neurocomputing 396 (2020) 406–428 

Fig. 9. 3 × 3 Network Final CPN-DL Route. 
Table 12 

4 × 4 Network QoS Deep Learning Cluster Validation – Simulation Parameters. 

Cognitive packet Goal QoS metric 

100 Network Initialization Cognitive Packets 

0 01–0 02 1.0 ∗Delay + 0.0 ∗Loss + 0.0 ∗ Bandwidth Initial values 

003–040 1.0 ∗Delay + 0.0 ∗Loss + 0.0 ∗ Bandwidth Final values 

041–042 0.0 ∗Delay + 1.0 ∗Loss + 0.0 ∗ Bandwidth Initial values 

043–080 0.0 ∗Delay + 1.0 ∗Loss + 0.0 ∗ Bandwidth Final values 

081–082 0.0 ∗Delay + 0.0 ∗Loss + 1.0 ∗ Bandwidth Initial values 

083–120 0.0 ∗Delay + 0.0 ∗Loss + 1.0 ∗ Bandwidth Final values 

121–122 0.5 ∗Delay + 0.5 ∗Loss + 0.0 ∗ Bandwidth Initial values 

123–160 0.5 ∗Delay + 0.5 ∗Loss + 0.0 ∗ Bandwidth Final values 

161–162 0.5 ∗Delay + 0.0 ∗Loss + 0.5 ∗ Bandwidth Initial values 

163–200 0.5 ∗Delay + 0.0 ∗Loss + 0.5 ∗ Bandwidth Final values 

201–202 0.0 ∗Delay + 0.5 ∗Loss + 0.5 ∗ Bandwidth Initial values 

203–240 0.0 ∗Delay + 0.5 ∗Loss + 0.5 ∗ Bandwidth Final values 

241–242 0 × 3Delay + 0 × 3Loss + 0.3 ∗ Bandwidth Initial values 

243–280 0 × 3Delay + 0 × 3Loss + 0.3 ∗ Bandwidth Final values 

Table 14 

3 × 3 Network Deep Learning Cluster vs CPN-RNN. 

Updates CPN-RNN QoS delay QoS loss QoS bandwidth 

Initialization 0 8 6 7 

CP 001–280 280 9 4 9 

Fig. 11. 4 × 4 Network Final CPN-DL Route. 
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Table 13 

4 × 4 Network Deep Learning Cluster. 

Average Cyber user Cyber packet Cyber nod

Error 6.96E −10 7.34E −10 9.93E −10 

Iterations 58.00 108.00 1017.87 

Fig. 10. 4 × 4 Network QoS 
undamental to take relevant optimum decisions. Three different

trategic Cognitive Packets are chosen (CP 107, CP 228 and CP 341)

or the 4 × 4 network validation, where each one has a different
oal ( Table 15 ). 

e QoS delay QoS loss QoS bandwidth 

9.36E −10 9.23E −10 9.16E −10 

145.29 148.50 133.88 

DL Cluster validation. 
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Table 15 

4 × 4 Network DL Management Cluster Validation. 

Variable Cognitive packet: 107 Cognitive packet: 228 Cognitive packet: 341 

G:1.0 ∗D + 0.0 ∗L + 0.0 ∗B G: 0.5 ∗D + 0.5 ∗L + 0.0 ∗B G: 0.3 ∗D + 0.3 ∗L + 0.3 ∗B 

�= 0.0 �= 0.1 �= 0.0 �= 0.1 �= 0.0 �= 0.1 

Cyber I cmc 5E −11 3.4E −4 5E −11 3.4E −4 5E −11 3.4E −4 

Cyber Y cmc 0.9994 0.9969 0.9994 0.9969 0.9994 0.9969 

QoS-Delay I qmc 0.80 0 0 0.80 0 0 0.40 0 0 0.40 0 0 0.2666 0.2666 

QoS-Loss I qmc 0.0 0 0 0 0.0 0 0 0 0.2875 0.2875 0.1916 0.1916 

QoS-Band I qmc 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.2716 0.2716 

QoS-Delay Y qmc 0.14 4 4 0.14 4 4 0.2523 0.2523 0.3361 0.3361 

QoS-Loss Y qmc 0.9994 0.9994 0.3195 0.3195 0.4132 0.4132 

QoS- Band Y qmc 0.9994 0.9994 0.9994 0.9994 0.3319 0.3319 

CEO I CEOmc 0.10 0 0 0.10 0 0 0.10 0 0 0.10 0 0 0.90 0 0 0.90 0 0 

CEO w CEOmc 
−(c) 0.0 0 0 0 0.9999 0.0 0 0 0 0.9999 0.0 0 0 0 0.9999 

CEO Y CEOmc 0.9994 0.5746 0.9994 0.5746 0.9994 0.1305 

Routing 

Decision 

CPN DL-Delay CPN DL-Delay CPN DL-Band 

Gate-6 Gate-3 Gate-6 Gate-6 Gate-6 Gate-3 

Node 8 Node 5 Node 8 Node 8 Node 8 Node 5 

Table 16 

5 × 5 Network QoS Deep Learning Cluster Validation – Simulation Parameters. 

Cognitive packet Goal QoS metric 

1500 Network Initialization Cognitive Packets 

01–02 1.0 ∗Delay + 0.0 ∗Loss + 0.0 ∗ Bandwidth Initial values 

03–50 1.0 ∗Delay + 0.0 ∗Loss + 0.0 ∗ Bandwidth Final values 

Table 17 

5 × 5 Network Deep Learning Cluster. 

Average Cyber 

user 

Cyber 

packet 

Cyber 

node 

QoS 

delay 

QoS loss QoS 

bandwidth 

Error 7.56E −13 8.60E −13 9.91E −13 9.41E −13 9.30E −13 9.30E −13 

Iterations 62 125 2128.68 221.11 182.40 200.71 

Table 18 

5 × 5 Network Deep Learning Cluster vs CPN-RNN. 

Updates CPN-RNN QoS delay QoS loss QoS bandwidth 

Initialization 0 8 20 7 

CP 01–50 50 1 0 0 
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Table 19 

5 × 5 Network DL Management Cluster Validation. 

Variable Cognitive packet: 34 

G:1.0 ∗D + 0.0 ∗L + 0.0 ∗B 

�= 0.0 �= 0.1 

Cyber I cmc 5.14E −14 3.47E −04 

Cyber Y cmc 0.9994 0.9969 

QoS-Delay I qmc 0.5590 0.5590 

QoS-Loss I qmc 0.0 0 0 0 0.0 0 0 0 

QoS-Band I qmc 0.0 0 0 0 0.0 0 0 0 

QoS-Delay Y qmc 0.1945 0.1945 

QoS-Loss Y qmc 0.9994 0.9994 

QoS-Band Y qmc 0.9994 0.9994 

CEO I CEOmc 0.10 0 0 0.10 0 0 

CEO w CEOmc 
−(c) 0.0 0 0 0 0.9999 

CEO Y CEOmc 0.9994 0.5746 

Routing CPN Gate-8 DL-Delay Gate-4 

Decision Node 10 Node 6 

Table 20 

6 × 6 Network QoS Deep Learning Cluster Validation – Simulation Parameters. 

Cognitive packet Goal QoS metric 

2500 Network Initialization Cognitive Packets 

01–02 1.0 ∗Delay + 0.0 ∗Loss + 0.0 ∗ Bandwidth Initial values 

03–60 1.0 ∗Delay + 0.0 ∗Loss + 0.0 ∗ Bandwidth Final values 
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.6. 5 × 5 node network – QoS DL cluster validation 

The 5 × 5 network is simulated with a continuous 1550 Cogni-

ive Packet stream. The first 1500 packets are used to initialize the

PN network with a single 1.0 ∗Delay Goal after 50 packets whereas

oS metric changes 2 packets after the Goal is selected following

 l = 0.999 ∗T l-1 + 0.01 ∗R ( Table 16 ). 

The Network keep sending Cognitive Packets until the value of

he 1/Reward is lesser than the 1/Threshold. When the new best

oute is discovered; the CPN Threshold adapts gradually to the

riginal value. The average Error and Iteration values for the dif-

erent Deep Learning Clusters are represented on Table 17 . 

Table 18 shows the number of updates for the DL cluster and

he CPN-RNN. 

The CPN-RNN algorithm continuously updates its network

eighs whereas the Delay QoS DL Cluster only updates its route

nce when a better route is found ( Fig. 12 ). 

.7. 5 × 5 node network – DL management cluster validation 

The results provided by the DL management cluster are shown

n Table 19 . 

Fig. 13 shows the final CPN-DL route follows the Optimum

oute in a 5 × 5 Network. 
.8. 6 × 6 node network – QoS DL cluster validation 

The 6 × 6 network is simulated with a continuous 2560 Cogni-

ive Packet stream. The first 2500 packets are used to initialize the

PN network with a single 1.0 ∗Delay Goal after 60 packets whereas

oS metric changes 2 packets after the Goal is selected following

 l = 0.99 ∗T l-1 + 0.01 ∗R ( Table 20 ). 

The number of Cognitive Packets sent to find the best route in-

reases as the network size expands. The average Error and Itera-

ion values for the different Deep Learning Clusters are represented

n Table 21 . 

Table 22 shows the number of updates for the DL cluster and

he CPN-RNN. 

The CPN-RNN algorithm continuously updates its network

eighs whereas on this evaluation; the Deep Learning Clusters

ave already learnt the best route during the network initialization

tage ( Fig. 14 ). 

.9. 6 × 6 node network – DL management cluster validation 

The results provided by the DL management cluster are shown

n Table 23 . 
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Fig. 12. 5 × 5 Network QoS DL Cluster validation. 

Table 21 

6 × 6 Network Deep Learning Cluster. 

Average Cyber user Cyber packet Cyber node QoS delay QoS loss QoS bandwidth 

Error 7.56E −13 8.60E −13 9.92E −13 9.53E −13 9.05E −13 9.44E −13 

Iterations 62 125 1962.36 213.42 193.33 185.27 

Fig. 13. 5 × 5 Network Final CPN-DL Route. 

Table 22 

6 × 6 Network Deep Learning Cluster vs CPN-RNN. 

Updates CPN-RNN QoS delay QoS loss QoS bandwidth 

Initialization 0 12 3 11 

CP 01–60 60 0 0 0 

Table 23 

6 × 6 Network DL Management Cluster Validation. 

Variable Cognitive packet: 51 

G:1.0 ∗D + 0.0 ∗L + 0.0 ∗B 

�= 0.0 �= 0.1 

Cyber I cmc 5.14E −14 3.62E −04 

Cyber Y cmc 0.9994 0.9968 

QoS-Delay I qmc 0.6010 0.6010 

QoS-Loss I qmc 0.0 0 0 0 0.0 0 0 0 

QoS-Band I qmc 0.0 0 0 0 0.0 0 0 0 

QoS-Delay Y qmc 0.1834 0.1834 

QoS-Loss Y qmc 0.9994 0.9994 

QoS- Band Y qmc 0.9994 0.9994 

CEO I CEOmc 0.10 0 0 0.10 0 0 

CEO w CEOmc 
−(c) 0.0 0 0 0 0.9999 

CEO Y CEOmc 0.9994 0.5746 

Routing CPN Gate-10 DL-Delay Gate-5 

Decision Node 12 Node 7 

 

6  

t

Fig. 15 shows the final CPN-DL and the Optimum Route in a

 × 6 Network. There are only two nodes of difference between the

wo routes. 
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Fig. 14. 6 × 6 Network QoS DL Cluster validation. 

Fig. 15. 6 × 6 Network Final CPN-DL Route. 

Table 24 

7 × 7 Network QoS Deep Learning Cluster Validation – Simulation Parame- 

ters. 

Cognitive Packet Goal QoS metric 

3500 Network Initialization Cognitive Packets 

01–02 1.0 ∗Delay + 0.0 ∗Loss + 0.0 ∗ Bandwidth Initial values 

03–60 1.0 ∗Delay + 0.0 ∗Loss + 0.0 ∗ Bandwidth Final values 
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.10. 7 × 7 node network – QoS DL cluster validation 

The 7 × 7 network is simulated with a continuous 3560 Cogni-

ive Packet stream. The first 3500 packets are used to initialize the

PN network with a single 1.0 ∗Delay Goal after 60 packets whereas

oS metric changes 2 packets after the Goal is selected following

 = 0.999 ∗T + 0.01 ∗R ( Table 24 ). 
l l-1 
The Network does not converge to the optimum Goal value due

he node threshold updates. The average Error and Iteration val-

es for the different Deep Learning Clusters are represented on

able 25 . 

Table 26 shows the number of updates for the DL cluster and

he CPN-RNN. 

The Delay and Bandwidth QoS DL clusters update their route

ollowing the QoS network changes ( Fig. 16 ). 

.11. 7 × 7 node network – DL management cluster validation 

The results provided by the DL management cluster are shown

n Tables 27 . 

Fig. 17 shows the final CPN-DL route and the Optimum Route

n a 7 × 7 Network. The difference between paths has widens due

he network size has increased. 

.12. 8 × 8 node network – QoS DL cluster validation 

The 8 × 8 network is simulated with a continuous 4575 Cogni-

ive Packet stream. The first 4500 packets are used to initialize the

PN network with a single 1.0 ∗Delay Goal after 75 packets whereas

oS metric changes 2 packets after the Goal is selected following

 l = 0.999 ∗T l-1 + 0.01 ∗R ( Table 28 ). 

The Reward obtained by the Cognitive Packets follows a down-

ard trend until the network converges with some spikes due the

nal path adaptation from independent node layers. The average

rror and Iteration values for the different Deep Learning Clusters

re represented on Table 29 . 

Table 30 shows the number of updates for the DL cluster and

he CPN-RNN. 
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Table 25 

7 × 7 Network Deep Learning Cluster. 

Average Cyber user Cyber packet Cyber node QoS delay QoS loss QoS bandwidth 

Error 7.56E −13 8.60E −13 9.91E −13 9.39E −13 9.24E −13 9.05E −13 

Iterations 62 125 1821.98 201.37 185.14 176 

Fig. 16. 7 × 7 Network QoS DL Cluster validation. 

Fig. 17. 7 × 7 Network Final CPN-DL Route. 

Table 26 

7 × 7 Network Deep Learning Cluster vs CPN-RNN. 

Updates CPN-RNN QoS delay QoS loss QoS bandwidth 

Initialization 0 18 7 14 

CP 01–60 60 1 0 2 

 

Q
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a

Table 29 

8 × 8 Network Deep Learning Cluster. 

Average Cyber user Cyber packet Cyber nod

Error 7.56E −13 8.60E −13 9.91E −13 

Iterations 62 125 1717.36 
The Bandwidth QoS DL Cluster updates its route following the

oS network changes ( Fig. 18 ). 

.13. 8 × 8 node network – DL management cluster validation 

The results provided by the DL management cluster are shown

n Table 29 . 

Fig. 19 shows the final CPN-DL route and the Optimum Route in

 8 × 8 Network. The CPN-DL route is close to the optimum route. 
e QoS delay QoS loss QoS bandwidth 

9.21E −13 8.82E −13 8.72E −13 

169.50 158.00 169.56 
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Fig. 18. 8 × 8 Network QoS DL Cluster validation. 

Table 27 

7 × 7 Network DL Management Cluster Validation. 

Variable Cognitive packet: 54 

G:1.0 ∗D + 0.0 ∗L + 0.0 ∗B 

�= 0.0 �= 0.1 

Cyber I cmc 5.14E −14 3.62E −04 

Cyber Y cmc 0.9994 0.9968 

QoS-Delay I qmc 0.6630 0.6630 

QoS-Loss I qmc 0.0 0 0 0 0.0 0 0 0 

QoS-Band I qmc 0.0 0 0 0 0.0 0 0 0 

QoS-Delay Y qmc 0.1692 0.1692 

QoS-Loss Y qmc 0.9994 0.9994 

QoS- Band Y qmc 0.9994 0.9994 

CEO I CEOmc 0.10 0 0 0.10 0 0 

CEO w CEOmc 
−(c) 0.0 0 0 0 0.9999 

CEO Y CEOmc 0.9994 0.5746 

Routing CPN Gate-09 DL-Delay Gate-6 

Decision Node 12 Node 8 

Table 28 

8 × 8 Network QoS Deep Learning Cluster Validation – Simulation Parameters. 

Cognitive packet Goal QoS metric 

4500 Network Initialization Cognitive Packets 

01–02 1.0 ∗Delay + 0.0 ∗Loss + 0.0 ∗ Bandwidth Initial values 

03–75 1.0 ∗Delay + 0.0 ∗Loss + 0.0 ∗ Bandwidth Final values 

Table 30 

8 × 8 Network Deep Learning Cluster vs CPN-RNN. 

Updates CPN-RNN QoS delay QoS loss QoS bandwidth 

Initialization 0 10 7 8 

CP 01–75 75 0 0 1 

Fig. 19. 8 × 8 Network Final CPN-DL Route. 
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.14. 9 × 9 node network – QoS DL cluster validation 

The 9 × 9 network is simulated with a continuous 4585 Cogni-

ive Packet stream. The first 4500 packets are used to initialize the

PN network with a single 1.0 ∗Delay Goal after 85 packets whereas

oS metric changes 2 packets after the Goal is selected following

 l = 0.999 ∗T l-1 + 0.01 ∗R ( Tables 31 and 32 ). 

The network increasingly searches the path that optimizes its

eward; even after finding a route that meets the threshold limit.

he average Error and Iteration values for the different Deep Learn-

ng Clusters are represented on Table 33 . 
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Fig. 20. 9 × 9 Network QoS DL Cluster validation. 

Table 31 

8 × 8 Network DL Management Cluster Validation. 

Variable Cognitive packet: 65 

G:1.0 ∗D + 0.0 ∗L + 0.0 ∗B 

�= 0.0 �= 0.1 

Cyber I cmc 5.14E −14 3.62E −04 

Cyber Y cmc 0.9994 0.9968 

QoS-Delay I qmc 0.7450 0.7450 

QoS-Loss I qmc 0.0 0 0 0 0.0 0 0 0 

QoS-Band I qmc 0.0 0 0 0 0.0 0 0 0 

QoS-Delay Y qmc 0.1534 0.1534 

QoS-Loss Y qmc 0.9994 0.9994 

QoS- Band Y qmc 0.9994 0.9994 

CEO I CEOmc 0.10 0 0 0.10 0 0 

CEO w CEOmc 
−(c) 0.0 0 0 0 0.9999 

CEO Y CEOmc 0.9994 0.5746 

Routing CPN Gate-13 DL-Delay Gate-8 

Decision Node 15 Node 10 

 

 

Table 32 

9 × 9 Network QoS Deep Learning Cluster Validation – Simulation Parameters. 

Cognitive packet Goal QoS metric 

4500 Network Initialization Cognitive Packets 

01–02 1.0 ∗Delay + 0.0 ∗Loss + 0.0 ∗ Bandwidth Initial values 

03–85 1.0 ∗Delay + 0.0 ∗Loss + 0.0 ∗ Bandwidth Final values 

Table 34 

9 × 9 Network Deep Learning Cluster vs CPN-RNN. 

Updates CPN-RNN QoS delay QoS loss QoS bandwidth 

Initialization 0 6 8 5 

CP 01–85 85 1 0 2 
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T
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a  

w

Table 34 shows the number of updates for the DL cluster and

the CPN-RNN. 

The Delay and Bandwidth QoS DL Clusters update their route

following the QoS network changes ( Fig. 20 ). 
Table 33 

9 × 9 Network Deep Learning Cluster. 

Average Cyber user Cyber packet Cyber nod

Error 7.56E −13 8.60E −13 9.92E −13 

Iterations 62 125 1874.09 
.15. 9 × 9 node network – DL management cluster validation 

The results provided by the DL management are shown on

able 35 . 

Fig. 21 shows the final CPN-DL route and the Optimum Route

n a 9 × 9 Network. The different between routes does not widen

s the network increases due the decentralized routing protocols

here network nodes are independent. 
e QoS delay QoS loss QoS bandwidth 

9.32E −13 9.40E −13 9.45E −13 

204.57 172.25 170.71 
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Fig. 21. 9 × 9 Network Final CPN-DL Route. 

Table 35 

9 × 9 Network DL Management Cluster Validation . 

Variable Cognitive packet: 74 

G:1.0 ∗D + 0.0 ∗L + 0.0 ∗B 

�= 0.0 �= 0.1 

Cyber I cmc 5.14E − 14 3.62E −04 

Cyber Y cmc 0.9994 0.9968 

QoS-Delay I qmc 0.8510 0.8510 

QoS-Loss I qmc 0.0 0 0 0 0.0 0 0 0 

QoS-Band I qmc 0.0 0 0 0 0.0 0 0 0 

QoS-Delay Y qmc 0.1369 0.1369 

QoS-Loss Y qmc 0.9994 0.9994 

QoS- Band Y qmc 0.9994 0.9994 

CEO I CEOmc 0.10 0 0 0.10 0 0 

CEO w CEOmc 
−(c) 0.0 0 0 0 0.9999 

CEO Y CEOmc 0.9994 0.5746 

Routing CPN Gate-16 DL-Delay Gate-10 

Decision Node 18 Node 12 

Table 36 

10 × 10 Network QoS Deep Learning Cluster Validation – Simulation Parame- 

ters. 

Cognitive packet Goal QoS metric 

4500 Network Initialization Cognitive Packets 

0 01–0 02 1.0 ∗Delay + 0.0 ∗Loss + 0.0 ∗ Bandwidth Initial values 

0 03–10 0 1.0 ∗Delay + 0.0 ∗Loss + 0.0 ∗ Bandwidth Final values 
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Table 37 

10 × 10 Network Deep Learning Cluster. 

Average Cyber 

user 

Cyber 

packet 

Cyber 

node 

QoS 

delay 

QoS loss QoS 

bandwidth 

Error 7.56E −13 8.60E −13 9.91E −13 1.64E −12 9.10E −13 1.39E −12 

Iterations 62 125 1610.43 216 163.25 181.67 

Table 38 

10 × 10 Network Deep Learning Cluster vs CPN-RNN. 

Updates CPN-RNN QoS delay QoS loss QoS bandwidth 

Initialization 0 13 8 11 

CP 0 01–10 0 85 1 0 1 
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.16. 10 × 10 node network – QoS DL cluster validation 

The 10 × 10 network is simulated with a continuous 4600 Cog-

itive Packet stream. The first 4500 packets are used to initialize

he CPN network with a single 1.0 ∗Delay Goal after 100 packets

hereas QoS metric changes 2 packets after the Goal is selected

ollowing T l = 0.999 ∗T l-1 + 0.01 ∗R ( Table 36 ). 

The Reward follows spikes even after meeting the threshold

evel due the adaptation of different network layers. The average

rror and Iteration values for the different Deep Learning Clusters

re represented on Table 37 . 
Table 38 shows the number of updates for the DL cluster and

he CPN-RNN. 

Similar to previous network sizes; the Delay and Bandwidth

oS DL clusters update their route following the QoS network

hanges ( Fig. 22 ). 

.17. 10 × 10 node network – DL management cluster validation 

The results provided by the DL management cluster are shown

n Table 39 . 

Fig. 23 shows the final CPN-DL route and the Optimum Route in

 10 × 10 Network. The CPN-DL Route almost follows the optimum

oute. 

.18. General n × n network validation results 

The 3 × 3, 4 × 4 and 5 × 5 node network routing decisions for

he DL clusters are shown on Table 40 . CP is the number of Cogni-

ive Packets the DL clusters need to adapt to the new route and G

s the final Goal. 

The number of Cognitive Packets required to find the optimum

oute increases as the network expands. The network adaptation

etween different QoS metrics is consistent. 



422 W. Serrano and E. Gelenbe / Neurocomputing 396 (2020) 406–428 

Fig. 22. 10 × 10 Network QoS DL Cluster validation. 

Fig. 23. 10 × 10 Network Final CPN-DL Route. 
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Table 39 

10 × 10 Network DL Management Cluster Validation. 

Variable Cognitive packet: 80 

G:1.0 ∗D + 0.0 ∗L + 0.0 ∗B 

�= 0.0 �= 0.1 

Cyber I cmc 5.14E −14 3.62E −04 

Cyber Y cmc 0.9994 0.9968 

QoS-Delay I qmc 0.9800 0.9800 

QoS-Loss I qmc 0.0 0 0 0 0.0 0 0 0 

QoS-Band I qmc 0.0 0 0 0 0.0 0 0 0 

QoS-Delay Y qmc 0.1211 0.1211 

QoS-Loss Y qmc 0.9994 0.9994 

QoS- Band Y qmc 0.9994 0.9994 

CEO I CEOmc 0.10 0 0 0.10 0 0 

CEO w CEOmc 
−(c) 0.0 0 0 0 0.9999 

CEO Y CEOmc 0.9994 0.5746 

Routing CPN Gate-18 DL-Delay Gate-9 

Decision Node 20 Node 11 

Table 40 

QoS DL Cluster Validation – Overall Results. 

QoS 3 × 3 Network 4 × 4 Network 5 × 5 Network 

1.0 ∗D + 0.0 ∗L + 0.0 ∗B Goal: 130.0 - CP: 8.0 Goal: 300.0 - CP: 25.0 Goal: 580.0 - CP: 31.0 

0.0 ∗D + 1.0 ∗L + 0.0 ∗B Goal: 25.0 - CP: 4.0 Goal: 75.0 - CP: 26.0 Goal: 170.0 - CP: 40.0 

0.0 ∗D + 0.0 ∗L + 1.0 ∗B Goal: 140.0 - CP: 7.0 Goal: 315.0 - CP: 27.0 Goal: 600.0 - CP: 31.0 

0.5 ∗D + 0.5 ∗L + 0.0 ∗B Goal: 140.0 - CP: 7.0 Goal: 315.0 - CP: 25.0 Goal: 405.0 - CP: 25.0 

0.5 ∗D + 0.0 ∗L + 0.5 ∗B Goal: 82.5 - CP: 3.0 Goal: 202.5 - CP: 26.0 Goal: 590.5 - CP: 31.0 

0.0 ∗D + 0.5 ∗L + 0.5 ∗B Goal: 135.0 - CP: 7.0 Goal: 307.5 - CP: 25.0 Goal: 415.5 - CP: 25.0 

0.3 ∗D + 0.3 ∗L + 0.3 ∗B Goal: 87.5 - CP: 6.0 Goal: 210.0 - CP: 26.0 Goal: 475.0 - CP: 32.0 

Fig. 24. n × n network goal. 
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Fig. 25. n × n network goal deviation and number of Cognitive Packets. 

Table 41 

QoS DL Cluster Validation – General Results. 

Network QoS: 1.0 ∗D + 0.0 ∗L + 0.0 ∗B 

Initial goal Final goal Optimum goal Deviation CP packets 

3 × 3 130 130 130 0.0 8 

4 × 4 300 300 300 0.0 25 

5 × 5 580 580 580 0.0 31 

6 × 6 1010 1020 10 0 0 20.0 48 

7 × 7 1610 1650 1590 60.0 51 

8 × 8 2400 2460 2380 80.0 62 

9 × 9 3450 3460 3400 60.0 76 

10 × 10 4780 4760 4680 80.0 84 
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The overall Quality of Service for 1.0 ∗Delay routing decisions for

the DL clusters are shown on Table 41 with the best Goal obtained

by the CPN, the final Goal achieved by the CPN-DL after the QoS

change and the optimum Goal. In addition; the Deviation between

Final and Optimum Goal along the required number of Cognitive

Packets during the QoS adaptation are also shown. 

As the network grows; the Goal therefore also increases along

with the required number of Cognitive Packets to find the opti-

mum route as shown on Fig. 24 . 

Deviation was also expected to increase linearly; however due

to the network decentralization routing algorithm, where decision

layers are independent, its value remains constant against network

sizes as represented on Fig. 25 . It is expected Deviation will con-

verge as the number of nodes increases. 
.19. Node threshold validation 

This section analyses the impact of the parameter α when cal-

ulating the value of the node decision threshold T l = αT l-1 + (1-

) R l . The validation analyses the CPN-DL network stability and

daptability with different values assigned to the parameter α (0.9,

.99, 0.999 and 0.9999) in the 6 × 6 network for the first 100 Cog-

itive Packets. 

With α = 0.9, the Network does not converge to the initial

eward (1010), this leads to Network Depression as it has al-

eady learnt there is a better route (1010) although the final

ath selected is the one that meets the Threshold level (1120).

he convergence is quite fast; with only 31 Cognitive Packets

 Fig. 26 ). 

A larger value of α = 0.99 makes the network to converge to a

etter Goal (1020), although not the optimum Goal value (1010),

owever an increased number of 48 Cognitive Packets is required;

his is reflected as the network anxiety to find a stable route

 Fig. 27 ). 

The network does not converge to the optimum Goal (1010)

ith α = 0.999; instead it requires more Cognitive Packets (81) in-

reasing the network anxiety to find the final Goal route (1020) as

hown on Fig. 28 . 

The network becomes instable with α = 0.9999; it does not con-

erge with 100 Cognitive Packets ( Fig. 29 ). 

We have analyzed the relation between the optimum Goal

oute and the required number of Cognitive Packets to find it.
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Fig. 26. 6 × 6 Network with α = 0.9. 

Fig. 27. 6 × 6 Network with α = 0.99. 
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Fig. 28. 6 × 6 Network with α = 0.999. 

Fig. 29. 6 × 6 Network with α = 0.9999. 
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imilar to human behaviour; the anxiety produced due to the route

nding is in conflict with the depression due to not finding the op-

imum route ( Table 42 ). 

. Conclusions 

This paper has presented a biological inspired learning algo-

ithm: the Random Neural Network with a Deep Learning Clus-

er structure. The CPN-RNN algorithm adapts very fast to variable

oS changes with fast decisions in short term memory; whereas

he Deep Learning algorithm is slow to adapt to QoS changes as it

earns from the CPN algorithm and stores routing information in

ppendix: CPN with Deep Learning Clusters - Neural Schematic 
ong term memory. The CEO management cluster takes the right

outing decisions based on the inputs from the QoS and Cyber DL

anagement clusters. This allows the CPN to use a safe route in

ase of Cyber attack, or a QoS efficient route under normal con-

itions. The model has been validated it using different size net-

orks from small size (3 × 3, 4 × 4), medium size (5 × 5, 6 × 6,

 × 7) to large size (8 × 8, 9 × 9, 10 × 10) with one up to eight de-

ision layers respectively. 

The addition of Deep Learning Clusters specialised in different

unctions (Cyber, QoS, and Management) provides a flexible ap-

roach similar to how our brain operates; Deep Learning Clusters

re able to adapt and be assigned where more routing, comput-

ng and memory resources are required. As equivalent to human

ehaviour, an unstable adaptation of the CPN to QoS changes due

o node reward parameter may lead to CPN “anxiety”; and differ-

nt best routes and QoS metrics from DL and CPN-RNN algorithms

ue node thresholds adaptation may cause CPN “depression” in the

ong term. 
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Table 42 

Node Threshold Validation – Overall Results. 

α Initial goal Final goal Cognitive packets CPN status 

0.9 1010 1120 31 Mayor depressed

0.99 1010 1020 48 Minor depressed 

0.999 1010 1020 81 Minor anxiety 

0.9999 1010 Unstable Unstable Mayor anxiety 
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