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Abstract—A significant challenge of IoT networks is to offer
Quality of Service (QoS) and meet deadline requirements when
packets from a massive number of IoT devices are forwarded to
an IoT gateway. Many IoT devices tend to report their data to
their wired or wireless network gateways at closely correlated
instants of time, leading to congestion known as the Massive
Access Problem (MAP), which increases the probability that the
IoT data will not meet its required deadlines. Since IoT data loses
much of its value if it arrives to destination beyond a required
deadline, MAP has been extensively studied in the literature.
Thus we first take a queueing theoretic view of the problem, and
also use a Diffusion Approximation to gain insight into the IoT
traffic statistics that affect MAP. Then we introduce the Quasi-
Deterministic Transmission Policy (QDTP) which significantly
alleviates MAP when the average traffic rate grows beyond a
given level and substantially reduces the probability that IoT
data deadlines are missed. The results are validated using real
IoT data which has been placed in IP packets for transmission.

Index Terms—Internet of Things (IoT), Scheduling, Massive
Access Problem, Queueing Theory, Quasi-Deterministic Trans-
mission Policy, Diffusion Approximations

I. INTRODUCTION

Sensors for health applications, monitoring of areas which
are of difficult access such as remote areas or large civil
engineering structures, and geophysical characteristics [1]–[4]
are among the numerous motivations for the development of
sensor networks, giving rise to the Internet of Things (IoT)
where the number of connected devices is rapidly increasing
with the needs of autonomous systems, smart cities and smart
vehicles [5], [6]. This increase in connectivity results in
high traffic rates, causing congestion at the Physical Random
Access Channels (PRACH) that service these systems [7], [8]
which is known as the Massive Access Problem (MAP). When
IoT data is used to control a complex distributed system, the
needs for synchronization of the data to present a coherent
view of the system can lead to further constraints regarding
packet delays [9].
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MAP was addressed in early research [10]–[12] through
adaptive routing to reduce congestion in networks with mul-
tiple paths and gateways, and via information theoretic tech-
niques to reduce the amount of traffic that is sent [13]. More
recent work [7], [8], [14]–[29] commonly assumes that IoT
traffic arrives at random, leading to solutions to MAP that
include Access Class Barring (ACB) [8], [14], [16], [23]–
[26], Cognitive Machine-to-Machine (M2M) communication
[17], [19], game theory [18], clustering of devices [20], [27],
data rate adaptation [21], Spread-spectrum, Non-Orthogonal
Multiple Access (NOMA) [22], Interference Cancellation
(SIC) [7], the use of CSMA/CA or slotted-ALOHA [15],
[28] and collision awareness [29]. Other work [30]–[35] has
suggested proactive network solutions for MAP, which can
include techniques such as adaptive traffic ofloading to storage
areas or less congested gateways [36].

On the other hand it was empirically shown that the IoT
traffic at the MAC-layer is predictable via specific machine-
learning techniques that can help to identify distinct IoT
traffic classes in [37]. Thus in [38], the predictability of IoT
traffic is used to address the MAP in a “predictive network”
framework with a Joint Forecasting-Scheduling (JFS) system
that allocates the time slots of a single frequency channel
for IoT devices based on a forecast of traffic generation. In
[39] a Multi-Scale Algorithm is suggested to improve the
performance of the JFS system while [40] has suggested the
extension of JFS for multi-frequency channels. The results of
this work has shown that predictive networks, in particular
JFS, are promising for the solution to the MAP and that
the lightweight scheduling heuristics are crucial since optimal
schedules are difficult to achieve in practice due to their high
computational requirements.

In recent work [41] we show that, for any given and fixed
IoT packet traffic rate, the statistics of the actual instants at
which IoT packets are sent has a significant impact on the
number of packets which are received before the packets’
deadlines expire. We showed that “smoothing” the traffic by
setting the individual packet transmission times in a uniformly



distributed manner will considerably improve the system’s
performance. We used queueing analysis to select the random-
ization instants, and to predict which packets would not meet
their deadlines and should be eliminated before transmission
to improve the chances that other packets meet their deadlines.

In the present paper, we seek the optimum instants of
packet transmission which will maximize the probability that
deadlines are met. Since exact analytical solutions for queue-
ing systems with general arrival and service processes are
not readily available, we first use Diffusion Approximations
[42], [43] to compute the probability that an IoT packet will
meet its deadline. Based on this analysis we show that the
probability that the packet does not meet its deadline is an
increasing function of the Squared Coefficient of Variation
(SCV) of the interarrival times. Thus we observe that for
any given fixed average arrival rate, and any service time
distribution of the IoT data, the best possible schedule (in
the sense of minimizing the IoT date that misses its deadline)
is deterministic, with data being sent at fixed time intervals
whose value is identical to the inverse of the arrival rate.

However such a deterministic schedule cannot be applied
exactly: indeed, at low traffic rates deterministic schedules
may unnecessarily delay some of the data, while not pro-
viding any significant improvement in the amount of data
that misses its deadline. Thus in the sequel we develop a
Quasi-Deterministic Transmission Policy (QDTP) which is
used when traffic rates are moderate or high, and is turned
off for low traffic rates.

DAs also provide us with mathematically based insight
with regard to the randomization result obtained earlier in
[41], since the uniformly distributed randomization reduces
the SCV of the interarrival times for the publicly available
empirical data set which is in the range 1.6 to 2.18, down
to approximately 0.33. Furthermore the QDTP results in an
SCV close to zero, hence it also minimizes the probability of
missing deadlines.

The rest of this paper is organized as follows. Section II
describes the problem we wish to solve, while Section III
introduces the diffusion process based analysis and introduces
our main result concerning the Quasi-Deterministic Transmis-
sion Policy which aims to reduce the probability that deadlines
are not respected. Section IV details the QDTP and evaluates
it on the experimental data that we use from [44]. Finally
section V summarizes our main conclusions and suggests
further research.

II. THE PROBABILITY OF MEETING DEADLINES

We model the channel that offers access to the IoT gateway
as a single server queue with a service time that is related the
length of each individual IoT packet that is being sent, with
queuing theory techniques that are widely used [45]–[49].

Each IoT device that uses this gateway forwards packets
structured from data in the form of “bursts” of multiple bits
seen in the data set [44]. These bits would normally be
packetized in some form, for instance basrd on the relatively
recent LoRa-WAN standard which is used for IoT devices

[50]. However we simplify matters and assume that the
packetizations is based on IP packets with 21−Byte headers,
which is not too different from LoRa-WAN, followed by
payload bytes that contain the IoT device bit Bursts. The
data transmission times are then selected in a manner that is
compatible with the measurements reported in [50] were and
effective data transmission rate in free space of 5400 bits/sec
was measured; beyond that rate, it was found that bit error
rates became significant. Based on the measured average
packet length of 22.47 Bytes, we see that the average packet
transmission time would be 33.33 msec, which will be used
in the sequel.

The IoT traffic data set [44] that we have used contains the
traffic patterns of 10, 000 IoT devices, whose traffic generation
patterns belong to one of the following classes: Fixed Bit
Aperiodic, Fixed Bit Periodic, Variable Bit Aperiodic and
Variable Bit Periodic. For a device j which sends a burst
of Bits at time aj,n, the deadline beyond which the burst is
of “no value” is denoted by ∆j,n > 0; thus the bits must
arrive at the gateway and be served and transferred out of the
gateway by time aj,n+∆j,n. The evaluations we will conduct
are based on different fixed values of the deadline.

In turn, the gateway will then process the successive packets
to extract the required information, or to pass on the packet
to some other system such as a Cloud server.

Let a1 ≥ 0, a2 ≥ a1, .. an+1 ≥ an, ... be the successive
transmission times to the gateway of data packets by the
various IoT devices that are connected, which is the First-
In-First-Out ordered set of all data transmission instants from
all IoT devices {aj,n}.

On the other hand S1, S2, .. Sn, ... are the successive
durations of occupancy of the channel to the gateway by these
successive packets which we call the “service times”, so that
in the numerical examples considered later in the paper we
will take E[Sn] = 0.33 msec. Each packet will also have a
deadline that is denoted ∆n ≥ 0 for the n − th packet and
which we discuss below.

The waiting Wn experienced by the n − th packet is
the delay that separates its arrival instant from its departure
instant, and it is given by the well known Lindley’s recursive
equation [45], [48]:

Wn+1 = [Wn + Sn − an+1 + an]+ , n = 0, 1, 2, ... (1)

where we take a0 = 0 and [X]+ = 0 when X < 0, and
[X]+ = X if X ≥ 0. The response time Rn experienced by
the n− th packet is then defined as:

Rn = Wn + Sn, (2)

i.e. the waiting time plus its service time. Note that A(t)
the number of arrivals by time t and the arrival rate of
packets (when the arrival rate does not vary with time and
the corresponding limit exists) are defined as:

A(t) =

∞∑
n=1

1[an ≤ t], λ = lim
t→∞

A(t)

t
. (3)



When the arrival instants {an}n≥0 constitute a random pro-
cess, and the {Sn}n≥0 are random variables, we define the
probability Πn that the n− th packet misses its deadline, i.e.:

Πn = Prob[Rn > ∆n], and Π = lim
n→∞

Πn, (4)

which is the probability that by the time a packet exits the
gateway, its deadline has expired. Note that the “clock instant”
when the n− th packet’s deadline expires is an + ∆n.

In the sequel we will assume that the transmission channel
characteristics are fixed, and that all packet transmission times
are proportional to their sizes and are drawn from the same
distribution, so that the service times are samples of the same
random variable S with mean value E[S] = 0.33 ms. On the
other hand, we will assume that the arrival rate of IoT packets
λ depends on the number of active IoT devices in the system,
which we denote by M .

The problem we now address is how to take appropriate
scheduling decisions for each value of the workload λ, and
in particular we will consider how to optimize the instants
at which the packets are actually transmitted, which we
call tn, so as to minimize Π. Note that tn ≥ an, while an
is the instant at which the IoT device data is available for
transmission.

Thus in effect, the simple scheduling algorithm we describe,
which we call Quasi-Deterministic Traffic Policy (QDTP),
will transform each an into a new value tn, and Wn will
be transformed into W ∗n where:

W ∗n+1 = [W ∗n + Sn − (tn+1 − tn)]+, (5)

so that the new response time becomes:

R∗n = [tn − an] +W ∗n + Sn , (6)

since we need to include the delay introduced by the QDTP
algorithm itself into the response time of the n−th packet that
is being sent. Note that the new probability that the deadline
is not met, also becomes:

Π∗n = Prob[R∗n > ∆n], and Π∗ = lim
n→∞

Π∗n, (7)

A. Interarrival and Service Time Statistics

In the sequel we will assume that the channel characteristics
between the IoT devices and the gateway are fixed, and that
all packets are drawn from the same population having given
packet length characteristics. Thus we assume that all Sn
are independent random variables with the same probability
distribution (i.e. they are i.i.d. or independent and identically
distributed), with given mean E[S] and SCV:

C2
B =

E[S2]

(E[S])2
− 1. (8)

We also assume that we will operate under variable load λ
(the arrival rate) but under stable conditions, i.e. λE[S] < 1.

For a given λ = (E[an+1−an])−1, we will assume that we
restrict ourselves to the i.i.d. case but we have the freedom

of choosing the probability distribution function that best fits
our needs to minimize Π, and we define:

C2
A =

E[(an+1 − an)2]

(E[an+1 − an])2
− 1. (9)

In fact, our analysis will show that by setting C2
A as small as

possible, we can minimize Π.
1) An Example of IoT Data Statistics: To illustrate some

of the statistics obtained from real IoT date available from
the Open Source Repository [44], in Figure 1 we show the
distribution of the amount of data in Bits from data Bursts
emanating from the IoT devices in the data set. We observe
that the average number of Bits per Burst is 6.8167 and the
SCV of the number of Bits per Burst is 1.9506. There are
only 2000 Bursts with more than 50 Bits per Burst. For those
Bursts with less than 50 Bits, the average number of Bits per
Burst is 6.778 and the SCV of the number of Bits per Burst
is 1.7633.

Fig. 1. The histogram of the number of Bits transmitted per Burst, by the
set of IoT devices, obtained from the Open Source Data Set [44].

In Figure 2, we have used the same data set, but assumed
that each burst from an IoT device is sent in the form of an IP
packet with a 21−Byte header, and that the Bits belonging
to the burst are stored in 8 − Bit Bytes inside each packet,
so that we exhibit the histogram of the length of the packets
in Bytes.

In this data set, only 2000 packets are longer than 30 −
Bytes. We note that the overall average packet length is
22.4744−Bytes with an SCV of 0.0031. If we only consider
just those packets whose length is less than 30−Bytes the
statistics are hardly different, since the average packet length
is 22.4695 − Bytes with an SCV of 0.0028 and the amount
of payload data transmitted per burst is on average around
12−Bits.

In the numerical examples of the next Sections III and IV,
we normalize the average arrival rate λ based on the LoRa-
WAN bit-rate mentioned at the beginning of Section II, so that
the average packet length of 22.4744 Bytes is transmitted in
33.33 msec, and the maximum traffic rate λ = 1 corresponds
to 30 packets/sec



Fig. 2. The histogram of the number of Bytes transmitted per packet by the
set of IoT devices, obtained from the Open Source Data Set [44], where we
have assumed that the Bursts have been forwarded in the form of IP packets.

III. USING THE DIFFUSION APPROXIMATION

While the probability density of the response time in steady-
state:

FR(t) = lim
n→∞

Prob[Rn ≤ t], (10)

is known in the case when at least one of the interarrival
or service times are exponential (G/M/1, M/G/1 systems)
[48], there is no easy way to obtain it exactly for both
arbitrary interarrival and service time distributions. Therefore,
we will use a diffusion approximation [51], [52] to determine
the probability FR(∆) that the response time of the station
is shorter than the deadline ∆, where we assume that the
deadline is identical for all the IoT packets:

Π = lim
n→∞

Π = 1− FR(∆) . (11)

In the diffusion approximation, the number of customers
N(t) in a single server queue is modeled by the diffusion
process X(t) on the interval [0,+∞) with probability density
function f(x, t;x0) which approximates the queue length
probability p(n, t;x0) for the initial condition x0 at t = 0. In
steady state, when f(x) = limt→∞ f(x, t;x0) the diffusion
model yields [51]:

f(x) =


λp0
−β (1− ezx), for 0 < x ≤ 1
λp0
−β (e−z − 1)ezx, for x ≥ 1, z = 2β

α ,

when β < 0, so that p0 = 1− λ
µ .

(12)

where:

λ =
1

E[an+1 − an]
, µ =

1

E[Sn]
, (13)

β = λ− µ, α = λC2
A + µC2

B . (14)

Note that p0 is obtained by the relation p0 +
∫∞

0
f(x)dx = 1,

and its value is also known from queueing theory. On the basis

of (12) we can also calculate the mean number of customers
in the system:

E[N ] ≈
∫ ∞

0

xf(x)dx

≈ λp0

−β
[

∫ 1

0

x(1− ezx)dx+

∫ ∞
1

x(e−z − 1)ezxdx],

≈ λp0

−β
[0.5− 1

z
] =

[
0.5 +

C2
A%+ C2

B

2(1− %)

]
%. (15)

Finally, using Little’s law, the mean response time in steady-
state can also be obtained:

E[R] =
E[N ]

λ
. (16)

We note that E[R] is monotone increasing in C2
A and C2

B but
we need the probability distribution function of R to determine
the probability of respecting the deadline. Therefore, we
compute the response time with the use of the diffusion
process [43]. It is can be obtained as a first passage time,
since the time X(t) needs to travel from the point x = x0,
corresponding to the queue length at the moment when a new
packet joins it, to the first following instant when x = 0 when
the packet has left the queue.

The probability density function γx0,0(t) of the distribution
of first passage time from x = x0 to x = 0, i.e. probability
density that the process hits x = 0 the barrier at time t after
starting at x = x0 for time t = 0, is given by [46]:

γx0,0(t) =
x0√

2παt3
e−

(x0+βt)2

2αt .

For an arrival that finds the diffusion at level x0 on arrival,
this is simply the probabiity density function of the response
time, because when this customer’s service is complete it will
leave the queue in the empty state, and the diffusion at level
x = 0. Considering that the customer arrives when the system
is at steady-state, the density of x0 is simply f(x0), i.e. the
stationary distribution of the diffusion process given in the
expression (12).

We therefore obtain the probability density function of the
response time as:

fR(t) =

∫ ∞
0

x√
2παt3

e−
(x+βt)2

2αt f(x)dx, (17)

and the probability that the deadline is missed is simply:

Π = 1−
∫ ∆

0

fR(τ)dτ. (18)

In order to illustrate these results, we provide two figures
that show how Π varies with C2

A, λ and ∆. Both Figures 3 and
4 also show, for comparison purposes, the actual values of the
SCV of inter-arrival times C2

A of the real data set [44] with
vertical bars, marked as ranging from approximately 1.6 to
2.18. The vertical bar for 0.33 which is close to the the value
for the randomization policy of arrival instants developed in a
recent paper [41], which reduces the value of C2

A by selecting
the instants at which data is sent from individual devices using



a uniform distribution over a deterministic interval of length
∆− E[R], when E[R] ≤ ∆.

In Figure 3, we show the probability of missing the deadline
(y-axis) in logarithmic scale (to the base ten) for a given value
of ∆, different values of λ, and with C2

A varying over a wide
range. Here the average service rate and the SCV of service
time are both fixed to 1. We see that as C2

A and λ increase,
Π increases significantly.

Similar results are shown in Figure 4 for different values of
∆ and a fixed value of λ, and C2

A varying over a wide range,
showing that as ∆ decreases and C2

A increases, Π increases
significantly.

In Figure 5, we detail the probability of missing the deadline
for the real data set of [44], plotted against the number of IoT
devices M being used. For each value of M , we also give the
arrival rate λ normalized against the measured average bit rate
from the M sources and the corresponding real values of the
SCV of interarrival times C2

A. We see that the value of M or
of the corresponding λ has the principal effect in determining
the measured fraction Π of the data transfers which do not
meet the deadline.

Fig. 3. The probability of missing the deadline (y-axis) in logarithmic scale
(to the base ten), estimated using the diffusion approximation, increases
significantly as C2

A and λ increase, for a fixed value of ∆. The average
service rate µ and the SCV of service time C2

B are both fixed to 1.

IV. QUASI-DETERMINISTIC TRANSMISSION POLICY
(QDTP)

For 0 ≤ a1 ≤ a2 ≤ ... an ≤ an+1 ≤ ... , the list of
successive Burst dates of all the IoT devices, and λ the overall
average arrival rate of the bursts, let tn ≥ an, n = 1, 2, ...
be the instants at which the Bursts are actually sent from
the IoT devices, and define the deterministic quantity D =
1
λ , which is identical to the average inter-arrival time. The
“Quasi-Deterministic Transmission Policy” (QDTP) which is
meant to reduce the value of C2

A and hence reduce Π the
probability of missing deadlines, is defined as follows:

1) Set n = 1,
2) Send Packet 1 at t1 = a1,
3) Set n← n+ 1,

Fig. 4. The probability of missing the deadline (y-axis) in logarithmic
scale (to the base ten), estimated with the diffusion approximation, increases
significantly as C2

A increases and the the deadline ∆ measured in slots
decreases, for a fixed but high value of the arrival rate λ = 0.8. The average
service rate µ and the SCV of service time C2

B are both fixed to 1.

Fig. 5. The probability of missing the deadline (y-axis) in logarithmic
scale (to the base ten) estimated with the diffusion approximation, using the
traffic statistics of the real data set of [44], is plotted against the number
of IoT devices M (x-axis) that are being used. Note that each value of
M corresponds to specific measured values of λ and C2

A shown along the
x− axis. The corresponding arrival rate λ normalized against the measured
average bit rate from sources is also shown. The real values of the SCV of
interarrival times C2

A are also indicated.

4) If an ≤ tn−1 +D, Send Packet n at tn = an−1 +D,
5) Else if an > tn−1 +D, Send Packet n at an.
6) Go to (3).

To implement QDTP in practice, we would need to know
λ in advance, which is possible when we have a fixed set
of IoT devices, each of which sends data at pre-determined
instants. Also, we either need the receiver to know the Packet
generation times in advance, and to request all the senders
to send their Packets at the instants defined by the QDTP,
or the senders can know in advance their sequence number
n, “listen” to the successive sending instants and apply the
QDTP to determine when they need to send their own data.



Thus the communication channel would need to be two-way
or the individual IoT devices should also have the ability to
sense the channel.

To evaluate the effectiveness of QDTP, we first conducted
measurements of the SCV of interarrival times for the data set
[44], both for the raw IoT data from [44], and for the same
data using QDTP, for a varying number of active IoT devices
M as shown in Figure 6. We see that QDTP substantially
reduces the SCV C2

A for all values of M .
Then in Figure 7, we show the relative frequency (empirical

probability) of missing the deadline – for a very small value
of the deadline ∆ = 2 – for both the raw data set of [44]
and for the case where the QDTP is used with the same data
set. QDTP obviously succeeds in considerably reducing the
probability that the deadline is missed. Finally, in Figure 8
the data set in [44] with varying numbers M of active IoT
devices, and different values of ∆, is used. We see that for all
values of ∆ above 2, QDTP reduces the empirically measured
Π to practically zero. However when the heuristic is not used,
Π tends to one as M increases beyond a few hundred devices.

Fig. 6. Measurements of the SCV of interarrival times, both for the raw IoT
data from [44], and for the same data using QDTP, for a varying number
of active IoT devices M . We observe that QDTP has substantially reduced
the empirically measured SCV C2

A, reducing it to zero for all the distinct
numbers of devices M in the data set of [44].

V. CONCLUSIONS

The MAP is one of the biggest challenges for the future
of IoT networks and occurs when large numbers of devices
access a single channel to reach their gateway, causing conges-
tion at the entry points and leading to deadlines being missed
for the data sent from IoT devices. In order to address this
problem, predictive network designs have been used, where
scheduling modifies priorities between devices and select the
instants at which IoT packets are transmitted.

In this paper, we use insight from queueing theory and
Diffusion Approximations to design the QDTP scheduling
heuristic that improves the scalability of IoT networks. Using a
real data set of outputs from a large number of IoT devices, we
have examined the relevant statistics and used them to study

Fig. 7. This figure shows the consequence of the results detailed in Figure
6 for the empirically measured probability of missing the deadline (y-axis).
log10 Π is shown for both the raw data set of [44] and for the case where
the QDTP is used with the same data set, with a very small value of the
deadline ∆ = 2. We see that QDTP succeeds in considerably reducing the
probability that the deadline is missed for all values of M .

Fig. 8. Here we extend the experimental results in Figure 7 using the data
set [44] and varying numbers M of active IoT devices. We compare the
logarithm to the base 10 of the (empirically measured) probability Π that the
deadline is missed for different values of the deadline ∆. We see that for
all values of ∆ that are shown above 2, the QDTP reduces Π to practically
zero, while when the heuristic is not used then Π tends to one as M increases
beyond a few hundred devices.

the effect of the interarrival time statistics on the probability
that the IoT packets meet (or do not meet) their deadlines.

The performance of QDTP has then been evaluated ex-
tensively using the data set in [44] for a widely varying
range of numbers M of IoT devices, resulting in widely
varying average arrival rates and many different deadline
values. In particular, we have compared the performance of
QDTP against the case where the original packet transmission
dates (found in the experimental data set) are used.

These evaluations which use real data have demonstrated
that QDTP can provide a very large reduction in the empiri-
cally measured fraction of packets that miss their deadlines.

Future work will combine QDTP with priority policies



to attempt to obtain further improvements in IoT network
performance, resulting in further alleviation of the MAP
problem.

Furthermore, since queueing systems with deterministic
arrivals have been studied by different authors [53]–[55] we
expect that the insight provided by our work may lead to
further useful interactions between classical queueing theory
and the study and optimization of the Internet of Things.
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