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Abstract—We develop an energy-efficient indoor positioning
system based on Artificial Intelligence (AI). In our system,
first, at the positioning layer, a Multi-Layer Perceptron (MLP)
estimates the current indoor position of an IoT device based on
positioning indicators obtained from the anchors. Second, at the
forecasting layer, a pair of MLPs estimate the future positions
of the device based on the past position estimates obtained when
the device woke up as well as the forecast positions of the
device during the sleep periods. Third, the device is awakened
to send a positioning beacon at intervals over which a significant
displacement is predicted to occur by the forecasting layer. Our
results demonstrate that our indoor positioning system saves
significant energy via adaptive sleep cycles whose duration is
determined by the prediction of a significant displacement. This
work establishes a foundation for indoor positioning that utilizes
AI-based positioning and trajectory forecasting.

Index Terms—Indoor positioning, energy-efficient, machine
learning, artificial intelligence, forecasting

I. INTRODUCTION

Indoor positioning is one of the key challenges that face the
development of Internet of Things (IoT) systems. While ac-
curate position information can be obtained when IoT devices
send positioning beacons to the network at frequent intervals,
this leads to significant transmit energy consumption, which
drains the limited battery supply of an IoT device [1], [2].
As a result, it is imperative that indoor positioning systems
that balance the need for accurate positioning and low energy
consumption be designed in next-generation networks that will
serve a multitude of battery-limited IoT devices [3].

The algorithm that appears in this work was funded by TÜBİTAK (The
Scientific and Technological Research Council of Turkey) under Project
#1139B411901515 as part of the 2209-B program, where the industry sponsor
was SADELABS (SADE Teknoloji, Inc.), Izmir, Turkey.

Our main goal in this paper is to develop a novel energy-
efficient indoor positioning system based on Artificial Intel-
ligence (AI). While the trade-off between indoor positioning
accuracy and transmit energy consumption of IoT devices is
well-known and systems that adapt the sleep cycle duration to
conserve energy have been designed, to the best of the authors’
knowledge, this is the first work that uses AI-based estimation
for the current position in tandem with AI-based forecasting
of the future trajectory of an IoT device in order to determine
the sleep cycle duration.

In our system, first, at the positioning layer, a Multi-Layer
Perceptron (MLP) estimates the current indoor position of
an IoT device based on positioning indicators obtained from
the anchors. Second, at the forecasting layer, a pair of MLPs
estimate the future positions of the device based on the past
position estimates obtained when the device woke up as well
as the forecast positions of the device during the sleep periods.
Third, the device is awakened to send a positioning beacon at
intervals over which a significant displacement is predicted to
occur by the forecasting layer.

Our results show that our indoor positioning system saves
significant energy via adaptive sleep cycles whose duration
is determined by the prediction of a significant displacement.
Furthermore, even though our design uses the past forecast
positions (which themselves contain potential forecasting er-
rors) during the sleep cycles of the device when the position
estimate is not available to the network, we demonstrate that
the forecasting error converges. That is, even though there is
error propagation that results from the use of past forecasts
in forming future forecasts, our system is able to achieve a
stable and reasonable value of the forecasting error during its
dynamic operation.



The rest of this paper is organized as follows: In Section II,
we describe the relationship of this work to the state of the
art in this area. In Section III, we state the assumptions that
underlie our work. In Section IV, we describe our system
design. In Section V, we discuss our results. In Section VI,
we state our conclusions.

II. RELATIONSHIP TO THE STATE OF THE ART

In this section, we contrast our work against the state
of the art, which we describe in three categories: (1) the
past works that predict the trajectories of pedestrians and the
mobile devices; (2) the past algorithms that reduce the average
transmit power of a mobile device; (3) the past works that
have examined the relationship between energy savings and
positioning accuracy.

In the first category, the future trajectories of the mobile
devices or the pedestrians have been predicted by applying
pattern recognition algorithms: In [4], [5], the future trajec-
tories of the pedestrians are forecast by machine learning
models based on past positions of the pedestrians. The future
trajectories of the pedestrians are adjusted in advance in order
to avoid the collisions between them. In [6], by applying
the Long Short Term Memory (LSTM) model, the pedestrian
trajectories are forecast based on both the influence of social
neighborhoods and scene layouts. In [7], the future trajectories
of the different traffic agents, such as vehicles, bicycles,
pedestrians, are forecast via an LSTM model. The forecast
trajectories are utilized to help the navigation decisions of
autonomous vehicles. In contrast with these articles, which do
not use trajectory prediction for saving energy, the focus of
our work is the determination of future trajectory of a device
to save energy in indoor positioning.

In the second category, Reference [1] introduces a system
called SmartDC, which predicts mobility patterns based on
adaptive duty cycling; however, this reference aims to maxi-
mize the positioning accuracy under a given energy constraint.
Reference [8] proposes SenseTrack, which is a location track-
ing service that adjusts the GPS sampling time of the mobile
devices by utilizing the information from an accelerator and an
orientation sensor in order to reduce the energy consumption
of the mobile devices. In [9], an active sampling algorithm
is introduced to reduce the energy consumption of mobile
devices. This algorithm utilizes a sleep mechanism that has
a random back-off time, which avoids invalid sampling. Ref-
erence [10] proposes a peer-to-peer navigation (ppNav) system
that navigates the users to their destination points via tracking.
It warns the users of potential deviation based on previous
users’ traces. In addition, the ppNav algorithm is only utilized
during the navigation in order to increase the battery life of
the navigation devices carried by users. In [3], a combination
of the battery saving algorithm and WiFi fingerprinting is
proposed. Since, the mobile device scans based on human
activity, energy consumption of the mobile device is reduced.
In contrast with these articles, which do not utilize AI-based
forecasting, our system forecasts the future trajectory of the

mobile device in order to reduce the energy consumption of
the device.

In the third category, we compare our work against past
works that address both energy savings and positioning accu-
racy. Reference [11] develops a positioning system that utilizes
an accelerometer, which detects when the mobile device moves
and uses this to reduce the energy consumption of the mobile
device. Reference [2] proposes a system called by EnTracked,
which schedules position updates in order to minimize the
energy consumption and optimize the positioning accuracy.
Reference [12] develops an energy-efficient positioning system
called by EnLoc, which optimizes the positioning accuracy for
a given energy budget. By identifying the trade-off between
energy efficiency and accuracy, Enloc computes the probability
map of the user’s mobility patterns and predicts the mobility
patterns of the mobile devices based on this probability map
in order to achieve high positioning accuracy. In contrast with
these articles, we do not utilize any sensor measurements but
rather forecast the future trajectory of the mobile IoT device.

III. ASSUMPTIONS

We assume that there exists a “deployment region”, denoted
by R, over which the mobile device has been deployed. We
assume that there is a set of M indoor positioning anchors,
denoted by M. Each anchor in M has a fixed position in R.

In this paper, we focus on a single IoT device (“device”
for short) whose position we aim to determine. We assume
that this device transmits a signal, called a beacon, to all of
the anchors in M in each slot.1 We assume that whenever
each anchor receives a beacon from the device, it decodes the
beacon in order to recover a positioning indicator, such as the
Angle of Arrival (AoA) information or the Received Signal
Strength Indicator (RSSI).2

We assume that there is a gateway G to which all of
the anchors are connected. We assume that G requires L
successive beacons from the mobile device in order to compute
the an estimate of the position of the device based on these
beacons. We assume that there is a downlink channel from
G to the device that is available whenever the device does
not sleep. In addition, we define a “position measurement
duration”, denoted by T , for the device as the time interval
during which the L beacons from the device are collected.

IV. SYSTEM DESIGN AND THE POSITIONING INTERVAL
BASED ON DISPLACEMENT (PID) ALGORITHM

In this section, we describe our energy-efficient positioning
system. Fig. 1 displays the block diagram of our system
for a single mobile IoT device.3 We have separated the
block diagram into two main blocks (enclosed by dashed

1We assume that collision-free scheduling of the beacons across multiple
frequency bands from all of the devices has been achieved at all of the anchors.
We do not address multiple IoT devices in this work.

2Our system design works for any such positioning indicator.
3A replica of this system exists for each device in an actual system that

has multiple IoT devices. Note that the indoor positioning system of each
device is treated individually; there is no interaction between the positioning
problems of multiple devices.



Fig. 1. System design

black lines), namely the positioning and the energy savings
operations.

In the block for positioning operations, the device transmits
its successive L beacons to all of the anchors inM. When each
anchor in M receives these successive beacons, it decodes
each beacon and recovers the positioning indicator in that
beacon. In Fig. 1, the following modules are located in the
gateway G: Positioning Artificial Intelligence (P-AI) layer;
Forecasting Artificial Intelligence (F-AI) Layer and the Node
Manager. The positioning indicators are collected from each
anchor in M by the gateway G. Then, G utilizes these
indicators in the P-AI layer in Fig. 1 to compute the position
estimate x[k] of the mobile device for each k, where k indexes
the successive position measurement durations, each of which
lasts T seconds.

In the block for energy savings operations in Fig. 1, the
input to the F-AI layer is comprised of the current position
estimate produced by the P-AI layer as well as the accumulated
past forecasts that have been formed by the F-AI layer itself.
Whenever a past position estimate is not available from the
P-AI layer (when the device is asleep), the past positions are
filled in by the past forecasts.

We assume that the F-AI layer takes a window of the past U
such values in order to estimate a window of V future values
of the position of the device, as shown in Fig. 1. Note that
the output of the F-AI layer is a two-dimensional vector that
consists of the forecast 2D positions of the device, denoted by
x̂[k + v]v∈{1,...V }.

We call the duration for which the device sleeps the “sleep
period” (which is variable in our design). We denote the nth
sleep period by by T

(n)
s , where we take n = 0 as the index

of the current sleep period, n < 0 indexes the past and n > 0
indexes the future sleep periods, counting from the current
one. Furthermore, we let T (n)

c denote “positioning interval” of
the IoT device, which is the duration between the successive
wake-ups of that device.4 Thus, T

(n)
c = T + T

(n)
s ; that is,

4Recall that the device wakes up to send a series of beacons and then goes
to sleep. In addition, note that the positioning interval is of variable length in
our design.

the positioning interval is comprised of the ON period of the
device during which the device sends beacons and the sleep
period of that device.

We now state a novel algorithm, which we call the “Po-
sitioning Interval Based on Displacement” (PID) Algorithm.
This algorithm is executed by gateway G. We divide the region
R into sub-regions, each of which is called a “cell”. In our
design, each cell is a square; the cells tessellate the deployment
region. We let c[k+v] denote the cell in which the device falls
at discrete time k+v, where k is the current discrete time and
each discrete time slot is of duration T .

Whenever the F-AI layer forecasts x̂[k + v]v∈{1,...V }, the
Node Manager assigns the forecast positions of the device to
the cells in which these positions fall. We let ĉ[k+v]v∈{1,...V }
denote the vector of cells in which the forecast positions fall,
up to V , which denotes the maximum value of the step-
ahead forecast. Then, the Node Manager examines the vector
ĉ[k + v]v∈{1,...V } and finds the discrete time v∗ at which
the device is predicted to cross over from its current cell to
an adjacent cell. The node manager sets the sleep duration
T

(n)
s to Tv∗; that is, the device is put to sleep until the time

that it is predicted to change cells.5 Then, the Node Manager
communicates to the device the value of T

(n)
c (i.e. when the

device needs to wake up next) based on this value of T (n)
s .

Fig. 2 and Fig. 3 illustrate the PID algorithm. In Fig. 2,
we show the sleep period T

(n)
s and the positioning interval

T
(n)
c of the IoT device for 6 such past periods. In this

figure, each vertical bar represents a transmitted beacon in
a sequence of L beacons.6 We see that the device sleeps for a
potentially variable duration in each period. Fig. 3 shows that
for the same results in Fig. 2, the future forecast positions
are computed based on the past vector of a combination of
estimated positions (for those times when the beacons arrived)
as well as the past forecast positions that fill in the slots when
no such estimates are available.7

5The value of V must be selected large enough such that the first cross-over
occurs by the V th step-ahead forecast.

6Only a subset of these beacons are shown in the figure. The beacons do
not necessarily have irregular spacing.

7Recall that the duration of each slot is T .



Fig. 2. Illustration of successive positioning intervals and sleep periods

Fig. 3. Illustration of the formation of forecasts by the F-AI layer

V. RESULTS

A. Experimental Methodology

1) Experimental Setup: We shall demonstrate our results
under a Bluetooth Low Energy (BLE) positioning system;
however, we emphasize the design that we have presented in
this paper is general and can be applied to other underlying
positioning technologies.

Fig. 4. Experimental setup

The setup of our positioning system is shown in Fig. 4. In
this figure, the 4 × 4 m region enclosed by the red lines is the
deployment region. Note that there are some obstacles in this
area in addition to heavy reflections off the floor. Hence, this
represents a challenging environment for AoA positioning.

Our setup consists of two anchors, a single mobile IoT
device, and a computer that emulates the gateway. The anchors
are located in two distinct corners of the deployment region.
Each anchor is 1.95 meters above the ground. In Fig. 4,
we assume that the origin of the deployment region is the

corner closest to the viewer; the coordinates of the first
anchor are (0, 4, 1.95) and those of the second anchor are
(4, 0, 1.95), all in meters. In addition, we have designed the
gateway modules in Python (Version 3.6) in the computer. In
this setup, Texas Instruments AoA BoosterPack (BOOSTXL-
AoA) and the CC2640R2F evaluation board were used. The
evaluation board is utilized as the transmitter of the mobile
IoT device, and the combination of the (BOOSTXL-AoA) and
CC2640R2F serve as an anchor. In addition, the cell size is
chosen to be 1 m by 1 m, since the average positioning error
was found to be 1.09 meters.

First, the device connects to the two anchors and starts to
broadcast successive beacons on the Bluetooth uplink channels
every 100 ms. Then, each anchor computes its AoA and RSSI
values and the BLE channels are utilized for communication
between the anchors and the device.8 They are then read
via Python in the computer via serial port communication.
The number L of successive beacons that are required by
the gateway is set to 10. When the computer receives 10
beacons, the 2D positions of the device are computed by P-AI
layer. Thus, the parameter T is 1 s, during which the gateway
computes one position estimate of the device.

2) Data Collection Methodology: We collected the data
on our deployment region in order to train the P-AI and
the F-AI layers. Data were collected by moving the mobile
device within the deployment region. While collecting data,
the device was carried by a pedestrian, and it was kept
approximately 1 meter above the ground as the pedestrian

8By default, the average transmit power consumption of the device is 48.75
µW.



moved in the deployment region.
A total of 76800 samples were collected. We have separated

our data set into the two disjoint sets, which are used for
the training and the test stages of the P-AI and F-AI layers.
Each sample in our data set is comprised of the AoA and
RSSI values, channel information for each anchor, dimensions
of the deployment region, and the 3D coordinates of each
anchor. The AoA values, RSSI values, channel information
and dimensions of the deployment region are as follows: AoA1
and AoA2 denote the AoA that reaches the first and second
anchors, respectively, from the mobile IoT device. Its units
are degrees, and the range is between -100° and 100°. RSSI1
and RSSI2 denote the received signal strength indicator (RSSI)
value measured by the first and second anchors, respectively.
Its unit is decibel (dB). Channel1 and Channel2 denote the
BLE channels used by the first and second anchors, respec-
tively, in order to communicate with the mobile IoT device.
In our setup, channels 37, 38 and 39 were used, which are the
advertising channels of BLE.

3) Positioning Methodology Based on Machine Learning:
We now describe a machine learning model that is utilized in
the P-AI layer in our system. We use a Multi-Layer Perceptron
(MLP) model in order to estimate the current position of the
device based on the beacons received in a duration of T . In the
MLP model, there are five layers: one input layer, three hidden
layers and one output layer. The input layer has 8 neurons, the
hidden layers have 32, 32 and 10 neurons, respectively, and
the output layer has 2 neurons (one for each of the x and y
coordinates).9

Fig. 5. Heatmap of the correlation coefficients of the features

In order to increase the performance of position estimation,
we have applied feature selection on the input variables of the
MLP model. We have examined the correlations of 16 distinct
features and have chosen the features that have the highest

9A randomly generated collection of MLP models were tested in order to
determine the number of layers and the number of neurons in each layer. We
found the local optimal MLP architecture for our data set.

magnitudes of correlation with the desired outputs for the
position estimate. Fig. 5 shows the heatmap of the correlation
coefficients of 16 distinct features as well as those of the
desired outputs. The features that have the highest magnitudes
of correlation with the desired outputs are as follows: The AoA
values for each anchor, the RSSI values for each anchor, the
communication channels for each anchor, and the dimensions
of the deployment region.

The model parameters are selected as follows: The activa-
tion function of each neuron in the MLP is chosen as Rectified
Linear Unit Function (ReLU). Adam (Adaptive Movement) is
utilized as the optimizer. The number of epochs and the batch
size parameters are chosen as 250 and 20 respectively. The
loss function is chosen as Mean Squared Error Loss (MSE). In
addition, 10-fold cross-validation is applied during the training
of the data set.

4) Forecasting Methodology Based on Machine Learning:
In this section, we describe our F-AI layer forecasting model.
The x and y coordinates are separately forecast by two distinct
MLP models. In each model, there are two layers, namely the
input and the output layers, whose number of neurons are
20 and 10 respectively. The input and output of each MLP
model are the past positions and the forecast future positions,
respectively. In addition, the parameters of both of these MLP
models are the same as those used in the P-AI layer above.

B. Performance Evaluation

In this section, we present the performance evaluation of
our system and our PID algorithm.

Fig. 6. The average transmit power consumption of the device during the
demonstration

Fig. 6 shows the average transmit power consumption of
the device during our demonstration. In this figure, we see
that from t = 0 to t = 20, the average power consumption
remains constant. On that interval, the device consumes an
average transmit power of 48.75 µW while sending beacons
to the anchors in order to collect a sequence of 20 positioning
indicators that are required by the P-AI layer. Subsequently,
the F-AI layer is able to start forecasting the future positions of
the device at t = 20 s. From t = 20 to t = 500 s, the average
transmit power consumption decreases to 6.62 µW due to the



increase in the positioning interval of the device and keeps
decreasing after t = 500. This result shows that our system
reduces the average transmit power consumption of the device
as the system evolves from a cold start towards steady-state
operation.

Fig. 7. The actual and estimated trajectories of the device
Fig. 7 demonstrates the position estimation performance at

the output of the P-AI layer for consecutive positions in the
deployment region. In this figure, the red line represents the
path that consists of the consecutive estimated positions, and
the blue line represents the path that consists of the consecutive
actual positions. The results in this figure shows that the
proposed system achieves relatively high accuracy for indoor
positioning while significantly reducing the average transmit
power consumption (as shown in Fig. 6).

Fig. 8. The average forecasting error so far at the output of the F-AI layer
during our demonstration

In Fig. 8, we show the forecasting performance of the F-
AI layer based on average forecasting error. Since F-AI layer
waits for the 20 positions of the device which are estimated by
P-AI layer before it begins to forecast future positions, from
t = 20 to t = 300 s, the average forecasting error increases.
The reason is that the device sleeps between successive wake-
ups. During these sleep periods, since the estimates of the
current position are not available, the past positions are filled
in by the past forecasts, which causes error propagation and

thus increases the average forecasting error. However, we see
that the average forecasting error converges to 1.09 meters in
steady state. That is, despite this error propagation, the system
settles down to a steady-state average forecasting error, whose
magnitude is very reasonable for a BLE indoor positioning
system based on AoA.

VI. CONCLUSION

We have designed a novel energy-efficient indoor posi-
tioning system and the “Positioning Interval based on Dis-
placement” (PID) algorithm that adaptively selects the sleep
duration of a mobile IoT device based on forecasts of the
future trajectory of the device. Since our algorithm wakes
up the device in order to receive positioning beacons only
when a significant displacement is predicted to have occurred,
the mobile IoT device saves significant energy via adaptive
sleep cycles. Our experimental demonstration uses Multi-
Layer Perceptron (MLP) models for both position estimation
as well as position forecasting in two distinct layers in our
system design. In our future work, we plan to demonstrate the
effectiveness of our design under other underlying positioning
technologies besides Bluetooth Low Energy (BLE).
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