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Abstract. Classification is one of the main areas of pattern recognition research, and within it, Support Vector Machine (SVM) is one of the
most popular methods outside of the field of deep learning — and a de facto reference for many Machine Learning approaches. Its performance
is determined by parameter selection, which is usually achieved by a time-consuming grid search cross-validation procedure (GSCV). That
method, however, relies on the availability and quality of labelled examples and thus, when those are limited, can be hindered. To address this
problem, several unsupervised heuristics exist that utilise the characteristics of the dataset to select parameters, rather than relying on class label
information. While an order of magnitude faster, they are scarcely used under the assumption that their results are significantly worse than those
of grid search. To challenge that assumption, we have surveyed several heuristics for SVM parameter selection and tested them against GSCV
on over 30 standard classification datasets. The results demonstrate their high accuracy, with performance in terms of statistical significance
comparable to GSCV, opening up an avenue for reliable label-free model defaults in resource-constrained settings e.g., edge devices or rapid
prototyping.
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1. INTRODUCTION

Classification is one of the most frequently encountered prob-
lems in the field of pattern recognition. It is utilised, among
many other fields, in computer vision [1], document analysis
[2], data science [3] and biometrics [4]. The classification
itself is a broad area that encompasses both traditional ma-
chine learning methods and, more recently, increasingly popu-
lar deep learning models. However, even with the formidable
results achieved by deep learning approaches, e.g., [5], [6], the
classical methods still have a role to play. The high compu-
tational cost, large data volume required and the open-ended
difficulty of finding a combination of a suitable architecture,
hyperparameters and learning algorithm for the deep learning
model is prohibitive for many current applications of pattern
recognition. This situation occurs e.g. for Internet of Things
devices [7], edge computing [8], medical devices [9] or with
limited training labels [10]. Additionally, classical methods —
notably Support Vector Machines — are selected for their ro-
bustness [11] or theoretical consideration [12].

Support Vector Machine (SVM) is a supervised classifica-
tion scheme based on ideas developed by V. N. Vapnik and
A. Ya. Chervonenkis in 1960s [13] and later expanded on in
works such as [14], [15] or [16]. It is based on computing
a hyperplane that optimally separates training examples and
then making classification decisions based on the position of
a point in relation to that hyperplane. The SVM have been
consistently used in various roles — as an independent classi-
fication scheme e.g. [17], [18], [19], part of more complex
engines e.g. [20], [21] or a detection engine e.g. [22], [23].
It has also been employed in unsupervised settings, as seen in
works such as [24] and [25]. This flexibility allows SVM to be
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one of the most frequently used machine learning approaches
in medicine [26], remote sensing [10], threat detection [27],
criminology [28], and is often utilized in photo, text, and time
sequence analysis [29]. In numerous studies, SVM is consis-
tently ranked as one of the top-performing methods [11].

The popularity and versatility of SVM is to a large degree
due to its controllability by the key hyperparameters. The first
is a label error regularization coefficient C, which balances
training error and margin width. It allows to classify non-
linearly separable datasets or preserve margin width at the cost
of misclassification of some training examples. The second
is related to extension with the ‘kernel trick’ to kernel-SVM,
which is much more effective in working with complex data
distributions; it introduces a kernel function value computation
as an extension of a dot-product. Various kernel functions have
been investigated, however, overwhelming majority of applica-
tions use Gaussian radial basis function as it provides best clas-
sification performances on a large range of datasets [30] and
assumes only smoothness of the data, which makes it a natural
choice when knowledge about data is limited [31]. Values of
these hyperparameters are typically found through supervised
search procedures, cross-validation (CV) on the training set
and grid-search through a range of predefined parameters [32].
However, major disadvantage of the CV is the &'(n?) complex-
ity in the number of hyperparameter values to be evaluated,
each requiring training a separate model. This is a burden for
performing pattern recognition in distributed edge computing
devices in Industry 4.0 [8] or optimization of battery usage for
mobile devices with limited connectivity, e.g. in monitoring of
ageing people [9].

An alternative for hyperparameter selection is to derive their
values from a statistical analysis of the data. Those approaches
range from simple ‘rule of thumb’ statistics, e.g. [33], to more
complex approaches involving, e.g. cluster assumptions and
graph distances between datapoints [34]. Through these ap-
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proaches, the values of C and y can be estimated based on
the structure of the entire available dataset, in an unsupervised
manner — without the requirement of labels. This is especially
useful for applications that acquire a large amount of data with
limited supervision, e.g. IoT devices [7]. Additionally, this es-
timation is a one-pass computation, which is much less inten-
sive than cross-validation, allowing for greater applicability,
e.g., in IoT/edge/medical supervision devices. Unsupervised
estimation avoids the issues of optimising parameters on the
same set as the one used for training, which can lead to over-
fitting [14]. It is known that in some cases, e.g., where classes
indeed conform to the cluster assumption and Gaussian dis-
tribution [35], optimal or nearly optimal parameter values can
be analytically derived from the data without knowledge of the
class labels. This approach is also helpful when training data is
very limited and may poorly reflect the true class distributions
— a situation typically encountered in semi-supervised hyper-
spectral classification, e.g., cite romaszewski2016semi. The
robustness of this approach has led unsupervised heuristics to
be a default parameter setting in SVM programming libraries,
e.g. scikit-learn [36].

In this survey, we benchmark unsupervised heuristics-based
hyperparameter estimation for an SVM classifier (UH-SVM)
against an SVM tuned via grid-search cross-validation (GSCV-
SVM).

1. We evaluate a large set of unsupervised heuristics on a com-
prehensive collection of balanced and imbalanced datasets.
While numerous works investigate individual heuristics, to
the best of the authors’ knowledge, no work collects them
together and compares them with one another.

2. We show that, without specific prior knowledge of a dataset,
there is a significantly higher chance of a number of
UH-SVM approaches having similar or better accuracy
than GSCV-SVM-in terms of statistical significance of the
results—than having a worse accuracy. Considering the sub-
stantially lower computational cost of UH-SVM with respect
to GSCV-SVM, this, in our opinion, validates the conclusion
of UH-SVM parameter estimation being in many application
cases on par with the grid search.

3. We observe that C-selection heuristics tend to underestimate
the value of that parameter, which leads to lower accuracy in
classification. To illustrate this, we evaluate an extension of
Chapelle’s very effective heuristic that increases the C and
obtains results practically equivalent (in terms of statistical
significance, see Section 3.3) to GSCV.

2. METHODS

In the following section, we will recall both the ideas behind
the Support Vector Machines classifier and the heuristics that
we include in our experiments. In some cases our unified pre-
sentation of them allows us to derive natural generalizations,
e.g. a scaling of [34] in high dimensional datasets or correc-
tion for [37].

2.1. Kernel SVM

A kernel SVM [14] is a classifier based on the principle
of mapping the examples from the input space into a high-
dimensional feature space and then constructing a hyperplane
in this feature space, with the maximum margin of separa-
tion between classes. Let 2~ C R” be a set of data and let
x; € Z',i=1,...,m be the set of labelled examples. Let also
% ={—1,1} be a set of labels. We define a training set as a
set of examples with labels assigned to them,

,?:{(Xi,yi),i:17...,m} X; € & yie@. @))

The SVM assigns an example x € 2" C R” into one of two
classes using a decision function

1

f(x) =sgn ( yioiK(X,X;) +b> . 2
=1

Here, o; > 0 and b are coefficients computed through La-
grangian optimization — maximization of margin, or distance
from hyperplane to classes’ datapoints on the training set.
Training examples x; where the corresponding values of o; # 0
are called support vectors (SV). Since SVM is inherently a bi-
nary classifier, for multi-class problems several classifiers are
combined e.g. using one-against-one method [38].

2.1.1. Kernel functionThe function K : 2" x 2 — R is
called the kernel function and it is used to compute the sim-
ilarity between the classified example x and each training in-
stance x;. It is a generalization of a dot product operation used
in the original linear SVM derivation, i.e. K(x,x;) = (X,X;),
taking advantage of the ‘kernel trick’ [14] — a non-linear map-
ping ¢ : 2~ — 7 to a feature space 77 where the dot product
is computed by evaluating the value K(x,x;) = (¢ (x), ¢(x;)).
The kernel trick allows the SVM to be effectively applied in the
case where classes are not linearly separable in the data space.
A number of positive definite symmetric functions can be used
as kernels, such as polynomial K(x,x;) = ({x,x;) +¢)¥, ¢ >0,
k=1,2,...; Laplace K(x,x;) = exp (M) or Gaussian ra-
dial basis function (RBF):

Ix —xi*
K(x,x;) = exp (_202 ; 3)
where 62 represents the variance of the data and || - || is an

Euclidean distance in 2~ C R”. This kernel has been found
to be versatile and effective for many different kinds of data
[39] and it will be the focus of our research. By substituting
Y= ﬁ, it can be written:

K(x,x;) = exp (—}/||x—xi\|2), @)

where 7y can be viewed as scaling factor, which is one of the
parameters of the SVM classifier.

The parameter Y controls the impact of individual SV as the
kernel distance between two examples decreases with higher
values of y. Therefore, small values of y will result in many SV
influencing the point under test X, producing smooth separating
hyperplanes and simpler models. Very small values will lead
to all SV having a comparable influence, making the classifier
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C=1000, y=0.1, acc. 90.0%

(b) Lower C, larger margin.

C=1000, y=0.0001, acc. 88.2%

(c) Lower C and v, larger margin, deci-
sion boundary ‘pushed away’ from the
more compact class.

(d) Very low v, decision boundary ap-
proaching linear SVM.

C=1000, y=100, acc. 75.7% C=1000, y=1000, acc. 64.3%

(e) High y, decision boundary ap- (f) Very high y, degenerate decision
proaching overfitting. boundary.

Fig. 1. Example SVM behaviour on first two features from the ‘Breast
Cancer Wisconsin Dataset’ (wdbc). Red crosses and blue circles mark
the position of data points from two classes. Solid line presents the de-
cision boundary, dashed lines denote margin ranges. Presented cases
show the example influence of values of C and y parameters, both for
good and bad values.

behave like a linear SVM. Large values of y result in more
complex separating hyperplanes, better fitting the training data.
However, a too high value of ¥ may lead to overfitting (see
Figure 1).

2.1.2. Soft margin In practice, even using a kernel trick, a hy-
perplane that separates classes may not exist. Therefore, SVM
is usually defined as a soft margin classifier by introducing
slack variables to relax constraints of Lagrangian optimisation,
which allows some examples to be misclassified. It introduces
the soft margin parameter C > 0 where 0 < o; < C a constraint
on o; controlling the penalty on misclassified examples and
determining the trade-off between margin maximization and
training error minimization. Large values to the parameter C
will result in small number of support vectors while lowering
this parameter results in larger number of support vectors and
wider margins (see Figure 1).

2.2. Setting the SVM parameters

One of the early discussions about SVM parameters was pro-
vided in [14]. In the chapter 7.8, the authors mentioned the

grid search CV (GSCV) as a common method of SVM param-
eter selection. As an alternative, in order to avoid the CV, the
authors suggested a number of general approaches including
scaling kernel parameters such as the denominator of the RBF
kernel so that the kernel values are in the same range. They
also suggested that the value of the parameters C can be esti-
mated as C o 1 /R? where R is some measure of data variability
such as standard deviation of the examples from their mean, or
the maximum/average distance between examples. Model se-
lection by searching the kernel parameter space was later dis-
cussed in [40], where authors proposed two simple heuristics
based on leave-one-out CV.

Unsupervised heuristics are relatively less discussed than
their supervised counterparts. A simple heuristic that estimates
7Y as an inverse of some aggregate (e.g. a median) of distances
between data points has been proposed in a blog post [33].
In fact, when searching the Internet for a method to choose
kernel parameters in an unsupervised way, this post — which
refers to the idea from a thesis of B. Scholkopf — is a common
find. This heuristics is similar to the ‘sigest’l method [42].
However, even in surveys comparing heuristics for SVM pa-
rameter selection [43] when sigest is considered it is applied
to the training set and complimented with cross-validation for
the value of the C parameter.

Sometimes, unsupervised heuristics supplement more com-
plex methods, e.g. in [34] authors propose a method for pa-
rameter selection inspired by the cluster assumption, based
on graph distances between examples in the feature space; a
heuristic for unsupervised initialisation of SVM parameters is
provided as a starting point of a grid search. Another exam-
ple are initialisation methods used in well-known ML libraries,
e.g. scikit-learn? employs its own implementation of heuristic
for the y parameter [36]. Shark® uses the heuristic from [44]
which can also be used in an unsupervised way [37].

2.2.1. Grid Search Cross Validation As a baseline method
for model selection in this article, Grid Search Cross Valida-
tion (GSCV) [45] is used. This method is based on dividing
the dataset into k parts {py,...,px} and then repeat the exper-
iment using parts {py,...,pr} \ {p;} for training and {p;} for
testing and averaging the results. This method allows to miti-
gate the variance resulting for random train/test set selection.

In case of this research, the additional layer is used for
model selection — called an internal layer. It is designed
to detect the best set of parameters (C,7y) from given grid
¢  R?. Similarly to external layer, each training set .J; =
{p1,---»pi} \ {pi} is divided into ¢ subparts {p},..., p'}, with
{pl,....pt}\ {p!} used for training with given parameters
from grid ¢ and {p]} used for testing (hence Grid Search
Cross Validation). The parameters for {p;} are determined by
the results of this second level of cross validation.

Implemented e.g. in R, see [41]
Zhttps://scikit-learn.org
3http://www.shark-ml.org/
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2.3. Unsupervised heuristics for y

Unsupervised heuristics usually assume that ¥ should be rel-
ative to ‘average’ distance (measured by || - ||?) between the
examples from 2, so that the two extreme situations — no SV
influence or comparable influence of all SV — are avoided. For
example, ¥ can be assigned the inverse of the data variance,
which corresponds e.g. with heuristics described in [36] or
[33]). Intuitively then kernel value between two points is a
function of how large is the distance between two given points
compared to the average distance among the data. Differences
between heuristics can be thus reduced to different interpreta-
tions of what that average distance is.

2.3.1. y heuristics for Gaussian-distributed data Consider-
ing a pair of examples (x;,X;) € & x Z C R" xR" from
Gaussian-distributed data, it has been noted in [35], that the
squared Euclidean distance |x; — x,||> is Chi-squared dis-
tributed with a mean of 2n62, assuming that every data feature
has variance o and mean 0. This observation could be used as
a heuristics to estimate the value of 7y as

1

"~ 2no?’
If we further assume that 62 = 1 , this simplifies to y = 2]7, as
noticed by authors of [46].

This approach relies on an underlying assumption that data
covariance matrix is in the form Cov(X) = /62, which, in turn,
means that in a matrix of examples X € R™*"  every feature
has an equal variance. In practice, data standardisation is used,
which divides each feature by its standard deviation. However,
the standard deviations are estimated on the training set, and on
the test set will produce slightly varying values that are only
approximately equal 01 =~ 0y =~ --- = 0,,. To take that into
account, we use another formula for estimation of the value of

Y as:

Y ®)

1
~ 2Tr(Cov(X))’

where Tr(-) denotes a trace of a matrix. This heuristic is de-
noted in the experiments as covtrace.

14 (6)

2.3.2. Smola’s heuristics A well-known heuristics for com-
puting the initial value of a parameter y was provided by A.
J. Smola in an article on his website [33]. Given examples
(xi,xj) € R" x R", he considered a kernel function in the form

K(xi,xj) = k(A = x]), %

where a scaling factor A of this kernel is to be estimated and
kK : R — RT. The Smola’s kernel form is consistent with the
RBF kernel given by Eq. (4) — it as special case of (7), with
k(x) = exp(—x?) wherex € Rand A = /7.

He proposes to select a subset of (e.g. m = 1000) available
pairs (x;,x;) and to compute their distances. Then, the value of
A can be estimated as the inverse of g quantile (percentile) of
distances where one of three candidates g € {0.1,0.5,0.9} is
selected through cross-validation. The reasoning behind those
values extends the concept of ‘average’ distance: the value of
g = 0.9 corresponds to the high value of a scaling factor which

results in decision boundary that is ‘close’ to SV, ¢ = 0.1 cor-
responds to ‘far’ decision boundary, g = 0.5 aims to balance
its distance as ‘average’ decision boundary. The author argues
that one of these values in likely to be correct i.e. result in
an accurate classifier. Those three g values are included in the
experiments as Smola_10, Smola_50 and Smola_90.

2.3.3. Chapelle & Zien vy heuristics A heuristic for choosing
SVM parameters can be found in [34]. Interestingly, to the
best of our knowledge it is the only method that estimates both
C and 7 in an unsupervised setting (see 2.4.1). The heuristics
take into account the density of examples in the data space.
Authors introduce a generalization of a ‘connectivity’ kernel,
parametrized by p > 0, which in the case of p — 0 defaults to
the Gaussian kernel. This kernel proposition is based on mini-
mal p-path distance ij which, for p — 0 becomes Euclidean
distance i.e. Dfﬁo = |lx; — x| 2.

Authors use the cluster assumption, by assuming that data
points should be considered far from each other when they are
positioned in different clusters. In [34] authors consider three
classifiers: Graph-based, TSVM and LDS. As this approach
introduces additional parameters, which would make cross-
validated estimation difficult, authors propose to estimate pa-
rameters through heuristics. The value of o (Equation 3) is
computed as %-th quantile of ¥ = {ij X xX e R" xR"}
where n, is the number of classes. For Gaussian RBF kernel

this results in
1

2 quantile 1 (9)

ne

Y ®)

Note that we consider only the case p — 0, as only under
this condition heuristics proposed in [34] are comparable with
other heuristics presented in this Section and compatible with
our experiment. However, the authors’ original formulation al-
lows for other values of p. This heuristic, along with the com-
plimentary for the C parameter (see Section 2.4.1) are denoted
in the experiments as Chapelle.

2.3.4. Jaakkola’s and Soares’ heuristics While the original
Jaakkola’s heuristics, described in [44] and [47], was super-
vised, in this article we will focus on its unsupervised version
proposed in [37].

The original heuristics based on median inter-class distance
and is computed as follows: for all training examples x € 2 C
R" we define d’ , (x) as a distance to its closest neighbour from

a different class. Then a set of all nearest neighbour distances
is computed as

2' = {dfm-n(x) X € 3&”}, 9)

and the value of ¢ = median(2").

This approach, however, has been interpreted differently in
[37], which resulted in an unsupervised heuristic based on
what was proposed in [44]. The approach to estimate o is
similar, however, it is calculated without any knowledge about
labels of examples, which means that not inter-class but inter-
vector distances are used. Considering an unlabelled distance
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dpin(x) of an example x to its closest neighbour, the set of all
neighbour distances is computed as

D ={duin(x) : x€ X}, (10)

and the value of 0 = mean(Z). This heuristic is denoted as
Soares.

The use of mean instead of median in an approach proposed
in [37] results in larger values of Y in the case of outliers in
the data space. Therefore, following the reasoning in the orig-
inal manuscript [44], we propose to compute ¢ = median(2),
which in case of the Gaussian RBF kernel results in:

1
2 median(2)’

This heuristic is denoted as Soares_med.

Y an

2.3.5. Gelbart’s heuristics The heuristic used to estimate the
initial value of y in a well-known Python library scikit-learn,
was proposed by Michael Gelbart in [36]*. The scaling factor
of Gaussian RBF kernel is computed as

1

r= nVar(Z")’ (12)
where 2" C R" and Var(.2") is a variance of all elements in
the data set 2. It is easy to see that this heuristic is similar
to the one discussed in Section 2.3.1, based on [35]: provided
that every data feature has variance ¢ and mean O the value
of Gelbart’s heuristics is equal to the one described by Equa-
tion 5. The advantage of this heuristics is its computational
performance, and it has the potential to perform well when the
variance of elements in the data array reflect the variance of
the actual data vectors. This heuristic is denoted in our results
as Gelbart.

2.4. Unsupervised heuristics for C

Unsupervised heuristics for the C parameter are much less
common than for y; in [14], there is a suggestion that param-
eter C o 1/R2, where R is a measure for a range of the data
in feature space and proposes examples of such R as the stan-
dard deviation of the distance between points and their mean
or radius of the smallest sphere containing the data. However,
to the best of our knowledge, the only actual derivation of this
idea was presented in [34], which we discuss below.

2.4.1. Chapelle & Zien C heuristic Given a 7y value (origi-
nally computed as described in Section 2.3.3), [34] calculate
the empirical variance:

m m

1 & 1
S2 — %;K(thi)— WZ ZK(Xi,XJ'),

i=1j=1

13)

which, with K(x;,x;) being the value of RBF kernel (4), under
the same p — 0 assumption as Section 2.3.3, evaluates to

1 m m
a= @Z ZK(xi7xj).

i=1j=1

s =1-a, (14)

“https://github.com/scikit-learn/scikit-learn/issues/
12741

The C parameter value is then estimated as

1
C=-. 15
o (15)
This heuristic is denoted in our experiments as: Chapelle

when used in combination with authors’ 7y heuristic (see Sec-
tion 2.3.3) and +C when used with covtrace heuristic.

2.4.2. Mitigating C underestimation: an improvement to
the Chapelle & Zien heuristic Our observations suggest that
values of parameter C, when dealing with high-dimensional
data such as hyperspectral images, should be higher than esti-
mated with the heuristic proposed in Section 2.4.1. To counter
this we decided to additionally test a modified Chapelle & Zien
heuristics with modified formula 14. Since in formula 14 the
factor a < 1, higher values of C can be achieved by substituting
sf=1-d witha<d < 1.

The value of a in Equation 14 is an average of kernel values
for all data points, which, for the RBF kernel, is a function of
the average distances between the data points. By selecting
a subset of the data points based on values of their distances,
we can arbitrarily raise or lower the value of a. We start by

considering a set of distances between the data points
o ={|xi—xjl| i, j <m;xi,x;€ 27} (16)

Then we define a subset of distances <7’ as % quantile of 7
and we select a relevant set of data points pairs

B = {(i,j) s lxi — x| 642%’}.

This leads to a modified version of the heuristic

1

2

sf=1-d, a':? Z K(x;,x;),
(i,))e#

)

(18)

with ¢ = |%8|. The rationale of using % quantile is that with
increased dimension 7, the proposed condition will restrict the
set of pairs 4 to the distances between close points. This mod-
ified Chapelle’s heuristic is denoted as +MC, when used with
covtrace heuristic for .

Compared with the original Chapelle & Zien heuristic, this
adjustment consistently selected larger C values and, across
our evaluated datasets, yielded accuracy that was practically
equivalent (by definition of [48]) to GSCV (see Section 3.3).

3. EXPERIMENTS

In this section we will present our method for experimental
verification of unsupervised heuristics: the datasets that we use
for tests, experimental procedure and finally our approach to
statistical testing of obtained results.

3.1. Datasets

Experiments were performed using 31 standard classification
datasets obtained from Keel-dataset repository >, described
in [49]. Instances with missing values and features with
zero-variance were removed, therefore the number of exam-
ples/features can differ from their version in the UCI [50]

Shitps://sci2s.ugr.es/keel/category.php?cat=clas
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repository. The datasets were chosen to be diverse in regards to
the number of features and classes and to include imbalanced
cases. In addition, following [51], the chosen set includes both
complex cases where advanced ML models achieve an advan-
tage over simple methods as well as datasets where most mod-
els perform similarly. Reference classification results can be
found in[52] or through OpenML project [53]. The summary
of the datasets used in experiments can be found in Table 1,
along with the Overall Accuracy (OA) results of naive classi-
fier (or zero-rule classifier, OR) that classifies every point as the
member of most frequent class.

Before the experiment, every dataset was preprocessed by
centering the data and scaling it to the unit variance. This oper-
ation was performed using mean and variance values estimated
from the training part of the dataset.

3.2. Choosing SVM parameters for a given dataset

The experiments used either one or two stages of cross-
validation — ‘external’ and ‘internal’ or ‘external’ only — de-
pending on whether the grid search or heuristics were used.
Let the heuristics & € J¢ from the set of tested heuristics ¢
be a function that generates SVM parameters {C, v} based on
a supplied training set .7 i.e. h:.7 — R% We denote by hq
a heuristic which always returns a pair {C,y} = {1,1}, which
are commonly assumed defaults, and thus a reference values
which are not data-dependent. The &g heuristic is denoted in
our experiments as default.

For every training set .7; corresponding with a given i—fold
of the external CV, and for every heuristics 4 € .7 parameters
of the SVM were selected in three ways:

1. by performing a grid-search around the initial parameters /g
and selecting the best model in the internal CV on 7.

2. by applying the heuristics h(.%}),

3. by performing a grid-search around the initial parameters
h(Z;) and selecting the best model in the internal CV on
7.

The range of parameters for GSCV to test is not always
easy to determine as different studies propose different ranges
- in [54] the range {0,0.1,0.3,0.5,0.7} is taken into consider-
ation for C, while for yits {274,273,...24}. Authors of [55]
propose C € {x10» :x € 1,2,...,10,y € {-2,-1,...,2}},v €
{x10? :x€1,2,...,10,y € {—4,-3,...,1}} while in research
conducted in [56] the selected range was {27!7,2716 . 23}
for yand {273,272,...2!7} for C. In [57], the authors decided
to use the grid of 1079, ..., 10 for both C and ¥.

In this research, similar approach was selected, with range
of parameters set as Z = (107,107%,..,10°,..,10%), and the
parameter grid ¢, for the heuristics / generated as

Gy ={riy:re R} x{ric:re #}, (19)
where h(7) = (iy,ic). For the external CV, the number of
folds Kkexternai = 5, for the internal CV the number of folds
kinternal = 3; both were stratified CVs, by which we mean the
approach often used towards unbalanced sets which selects

training and test sets maintaining similar percentage of data-
points from each class®.

For assessing classification performance, the Balanced Ac-
curacy measure [58] (BA) was employed. BA can be expressed
as the mean of classification accuracies in classes i.e. the mean
between a ratio of correctly classified examples to the total
number of examples in every class. Compared to the Overall
Accuracy (OA), which is the ratio between a number of cor-
rectly classified examples to the total number of examples in
dataset, it less sensitive to unbalance in class size.

The final performance of the classifier in an experiment is
the mean BA between external folds. Every experiment was
repeated 10 times and the final values of BA were obtained by
averaging the performance values of individual runs.

3.3. Statistical verification of results

A typical approach to verify statistical significance of results
is to use null hypothesis significance testing (NHST). While
common, the NHST has several disadvantages explained in de-
tail in [48]. Two particular ones are: the fact that point-wise
null hypotheses are usually false, provided that sufficiently
large number of data points is available, as in practice no two
classifiers have perfectly similar accuracy; NHST does not al-
low to reach conclusion when the null hypothesis is rejected,
which limits its usefulness. As an alternative, authors of [48]
propose a new methodology based on Bayesian analysis that
was adapted for analysing our results. This methodology com-
pares classifiers by estimating and querying the posterior dis-
tribution of their mean difference. The methodology intro-
duces the region of practical equivalence (rope) which refers
to the value of mean difference that implies that classifiers are
practically equivalent e.g. when their accuracies differ by less
then 1%. This allows to infer the probability P(classifiery <
classifierg) of the mean difference between classifiers being
practically negative which implies that classifiers is more ac-
curate, as well as the probability of the opposite inequality
and the probability P(classifiers = classifierg) that both clas-
sifiers are practically equivalent with regards to the rope value.
In addition the methodology allows for drawing conclusions
through the simultaneous analysis of multiple data sets and it
has a dedicated, clear visualisation of test results.

Since we perform experiments using multiple datasets, the
approach employing hierarchical models, described in Sec-
tion 4.3.1 of [48] was employed. Following the suggestion
in [48], the value of rope was set to 1%.

3.4. Implementation

SVM implementation was from the scikit-learn library v1.0.2.
Bayesian comparison of classifiers [48] and its visualisation
was performed using baycomp library v. 1.0.27. Matplotlib
and seaborn libraries were used for data visualisation.
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Table 1. Datasets used in the experiment. Balance is the ratio between the size of the smallest and largest class. OA(OR) denotes the accuracy
of a zero-rule, naive classifier that predicts the label of the most frequent class.

Name? Examples Features Classes Balance OA(OR) Notes or full name

appendicitis 106 7 2 0.25 80.2

balance 625 3 0.17 46.1 Balance Scale DS

banana 5300 2 2 0.81 55.2  Balance Shape DS

bands 365 19 2 0.59 63.0 Cylinder Bands

cleveland 297 13 5 0.08 53.9 Heart Disease (Cleveland), multi-class
glass 214 6 0.12 35.5 Glass Identification

haberman 306 3 2 0.36 73.5 Haberman’s Survival
hayes-roth 160 3 0.48 40.6  Hayes-Roth

heart 270 13 2 0.80 55.6  Statlog (Heart)

hepatitis 80 19 2 0.19 83.8

ionosphere 351 33 2 0.56 64.1

iris 150 3 1.00 33.3  Iris plants

led7digit 500 10 0.65 11.4 LED Display Domain
mammographic 830 5 2 0.94 51.4 Mammographic Mass
marketing 6876 13 9 0.40 18.3

monk-2 432 6 2 0.89 52.8  MONK’s Problem 2
movement-libras 360 90 15 1.00 6.7  Libras Movement

newthyroid 215 5 3 0.20 69.8  Thyroid Disease (New Thyroid)
page-blocks 5472 10 5 0.01 89.8  Page Blocks Classification
phoneme 5404 2 0.42 70.7

pima 768 2 0.54 65.1 Pima Indians Diabetes

segment 2310 19 7 1.00 14.3

sonar 208 60 2 0.87 53.4  Sonar, Mines vs. Rocks
spectfheart 267 44 2 0.26 79.4  SPECTF Heart

tae 151 5 3 0.94 344  Teaching Assistant Evaluation
vehicle 846 18 4 0.91 25.8  Vehicle Silhouettes

vowel 990 13 11 1.00 9.1  Connectionist Bench

wdbc 569 30 2 0.59 62.7  Breast Cancer Wisconsin (Diagnostic)
wine 178 13 3 0.68 39.9

wisconsin 683 9 2 0.54 65.0  Breast Cancer Wisconsin (Original)
yeast 1484 8 10 0.01 31.2

4 As the dataset is named in KEEL repository https://sci2s.ugr.es/keel/datasets.php
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Fig. 2. The impact of SVM parameters on its accuracy. Parameter
values are presented in logspace. Accuracy values were obtained from
experiments with 5-fold CV by sampling each pair of parameters from
the 50 x 50 parameter grid. The highest value of accuracy is denoted
as ‘best’. Marked points denote results of unsupervised heuristics from
this paper, with the five heuristics scoring highest marked with colour.

4. RESULTS AND DISCUSSION

Our experiments compared the accuracy of the previously
discussed UH-SVM approaches, to the GSCV-SVM, on the
31 Keel datasets. For each approach, the individual scores
were aggregated into an estimated probability of practical ad-
vantage/disadvantage/equivalence of the heuristics and GSCV
with regards to classifier accuracy. The summary of results for
the Balanced Accuracy (BA) measure® is presented in Table 2.
Since most of the heuristics only estimate the y parameter, and
only two of them estimate the C (Chapelle, MC), we present
results as a combination of every ¥ and C heuristics includ-
ing the ‘default’ value of y =1, C = 1. The advantage or any
disadvantage of any one method corresponds to a sufficiently
large difference between means of accuracies over all datasets,
as described in Section 3.3; their practical equivalence corre-
sponds to sufficiently small difference, with regards to rope
value of 1%.

When no heuristics or only 7y heuristics are used, param-

Swe used implementation provided by https:/scikit-learn.org/

7https://github.com/janezd/baycomp
8For the reference, results of experiments for OA measure are presented in
the Appendix 4.

eters obtained by GSCV result in significantly higher accu-
racy. There’s only a marginal improvement when Chapelle
heusitics is used for selecting a C parameter value. However,
when using the extension that improves C estimation, the MC
heuristics, five of the y heuristics tested obtained the accuracy
very close, or practically equivalent to CV. The combination of
Covtrace+MC resulted in the highest estimated value of this
probability which indicates, that on average this heuristics re-
sults in classification accuracy no worse than GSCV. Visualisa-
tion of results for example heuristics is presented in Figure 3.
The improvement in accuracy arising from the use of the two
heuristics (three, if including the default) for the C parameter
is clearly evident in plots (a—c). Notably, the more effective
the heuristic, the more equivalent are the scores of UH-SVM
and GSCV-SVM. Plot (d) presents similar results for an overall
accuracy (OA) measure compared to the BA in plot (c). The
use of OA measure usually results in slightly higher proba-
bilities of practical equivalence between heuristics and GSCV.
This suggests the class imbalance negatively affects GSCV’s
performance.

The practical equivalence in the accuracy of classifiers
whose parameters were chosen by GSCV and heuristics, is also
visible during the inspection of the parameter values obtained
from heuristics plotted on the graph showing the relationship
between the classifier’s effectiveness and its parameters (es-
timated through a dense grid of parameters). In the selected
representative examples on Figure 2, it can be seen that most
of these points, especially for the best heuristics, are usually
located in areas of high accuracy.

Interestingly, out of Smola heuristics, the result of
Smolasy+MC resulted in the BA value most equivalent to
GSCV. This indicates that the median distance between exam-
ples in the data space is of particular importance when choos-
ing the y parameter.

Comparison of execution time for heuristics and GSCV is
presented in Table 3. The values express a ratio of mean com-
putation time of an experiment with GSCV parameter selection
to experiment with parameters selected with heuristics. The
average time was calculated over ten iterations of the experi-
ment across all datasets. The use of heuristics allows, on av-
erage, to speed up calculations 100-200 times. Differences in
times result not only from calculating the parameter values, but
also from the impact of these values on the classifier — increas-
ing the value of the ¥ and C parameter extends the calculation
time.

To summarise, estimation of both parameters, in particu-
lar with Covtrace+MC heuristics, leads to accuracy practically
equivalent (by definition of [48]) to GSCV (see Figure 3c¢) with
parameters obtained in only ~0.006 of its working time (see
Table 3).

The higher results of Covtrace+MC approach mean that
there is a potential space for improvement in C value esti-
mation, as the conventional and widely used Chapelle& Zien,
modified to estimate higher values of C, not only consistently
improves the results on tested datasets, but also makes them
practically equivalent (as defined in [48]) to GSCV with re-
spect to accuracy. Unsupervised heuristics for SVM param-
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Table 2. Results of experiments — performance of different UH-SVM approaches with respect to GSCV-SVM. The numbers correspond to prob-
abilities computed with the Bayesian analysis with methodology from [48]. Three right columns present probabilities of cross-validation being on
average more/ equivalently / less accurate than heuristics. Results were obtained for the balanced accuracy measure and rope value of 1%. Note
that, with MC heuristic, several of y heuristics achieve results close to GSCV.

C heuristics 7y heuristics P(CV>H) P(CV=H) PCV<H)

default 1.00 0.00 0.00
Gelbart 0.85 0.13 0.02
Smola_10 0.97 0.02 0.01
Smola_50 0.86 0.11 0.03
default Smola_90 0.99 0.00 0.01
Soares 1.00 0.00 0.00
Soares_med  1.00 0.00 0.00
Chapelle 0.98 0.01 0.01
covtrace 0.93 0.06 0.01
default 1.00 0.00 0.00
Gelbart 0.60 0.36 0.04
Smola_10 0.96 0.03 0.01
Smola_50 0.68 0.24 0.08
Chapelle Smola_90 0.84 0.12 0.04
Soares 0.99 0.00 0.01
Soares_med  0.99 0.00 0.01
Chapelle 0.83 0.14 0.03
covtrace 0.55 0.41 0.05
default 1.00 0.00 0.00
Gelbart 0.19 0.76 0.05
Smola_10 0.68 0.28 0.04
Smola_50 0.17 0.81 0.02
MC Smola_90 0.34 0.60 0.07
Soares 0.98 0.00 0.02
Soares_med  0.99 0.00 0.01
Chapelle 0.21 0.76 0.02
covtrace 0.12 0.84 0.03

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



N

www.czasopisma.pan.pl m www journals.pan.pl

Michat Cholewa, Michal Romaszewski, Przemystaw Glomb

plrope) = 0.057 p(rope) = 0.406

P(CV) = 0.928 p(covtrace) = 0.015 P(CV) = 0.545 plcovtrace+Chapelle) = 0.049

(a) Covtrace, BA (b) Covtrace+Chapelle, BA

plrope) = 0.843 plrope) = 0.890

p(CV) = 0.123 p(covtrace+MC) = 0.035 p(CV) = 0.105 p(covtrace+MC) = 0.005

(c) Covtrace+MC, BA (d) Covtrace+MC, OA

Fig. 3. Visualisation of Bayesian analysis of results with methodol-
ogy from [48] for selected cases from Table 2: covtrace+default, cov-
trace+Chapelle, covirace+MC. Vertices of the simplex represent deci-
sions with certainty in favour of: CV (lower left), example heuristics
(lower right) and rope (top); the latter corresponds to practical equiv-
alence of CV and heuristics accuracy. Points represent Monte Carlo
sampling of posterior probabilities in barycentric coordinates. BA de-
notes balanced accuracy, OA denotes overall accuracy. Note the im-
pact of the C heuristics on the equivalence of UH-SVM and GSCV-
SVM.

Table 3. Performance of heuristics as ratio of
CV/heuristics execution time i.e. how many times
heuristics is faster than CV. Times were estimated
from 10 experiments and averaged over all datasets.
Note that in almost all cases the speedup is 100—200

times.
C heuristics

Y heuristics  Default Chapelle MC
default 136.88  106.52 97.91
Gelbart 248.72  182.27 149.33
Smola_10 153.92  136.47 121.71
Smola_50 169.13  149.29 131.29
Smola_90 158.75 149.64 131.19
Soares 132.01 105.50 94.59
Soares_med 125.46  101.45 92.51
Chapelle 163.59  148.40 132.23
covtrace 237.38 188.61 154.86

10

eters are likely effective because the test datasets conform
to the clustering assumption, where data space forms struc-
tures/clusters useful to the classification problem, and data
point distributions reflect class divisions. However, the same
assumption is the basis of training set selection with GSCV. As
datasets deviate from the clustering assumption, the effective-
ness of both approaches decreases, especially when the train-
ing data is limited. GSCV is by no means inferior to the heuris-
tics, especially if supplied with a proper number of labelled
datapoints. In practice, however, the differences are often very
small. Moreover, while it is natural to use GSCV when the
standard approach is preferable (i.e., a small number of exam-
ples, training time is not an issue), in many scenarios (e.g.,
processing on edge IoT devices), the proposed heuristics offer
practically equivalent accuracy in a fraction of the time.

5. CONCLUSIONS

In this study, we evaluated unsupervised heuristics for SVM
parameter selection on over thirty benchmark datasets, com-
paring their performance with GSCV. We have also proposed
a modification to Chapelle & Zien’s heuristics for the C pa-
rameter, as optimisation of both parameters is vital for accu-
rate classifiers. We compared results using methodology based
on Bayesian analysis, described in [48]. Our results indicate
that heuristics are usually practically equivalent to GSCV in
terms of achieved accuracy of the classifier, i.e. obtained accu-
racies differ by less than 1% (see Figure 3c and probabilities
of equivalence in Table 2). Moreover, these heuristics offer
a reduction in computation time, achieving a 100-200 times
speedup (see Table 3). This makes an unsupervised, heuristic
approach to parameter selection a compelling alternative for
GSCYV for rapid SVM calibration.

Additionally, our results presented in Table 4 (Chapelle and
covtrace heuristics) show that estimating C sharply increases
the accuracy of the produced classifier. Choosing larger values
of C shifts the probabilities of the UH approach to practical
equivalence (as defined by [48]) of GSCV.
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