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Abstract—Internet connected IoT devices have often been
particularly vulnerable to Botnet attacks of the Mirai family
in recent years. Thus we develop an attack detection scheme for
Mirai Botnets, using the Auto-Associative Dense Random Neural
Network that has recently been successful for other attacks such
as the SYN attack. The resulting method is trained with normal
traffic and tested with attack traffic, and shown to result in
high accuracy detection of attacks with low false alarms. The
approach is compared on the same data set with two other
common Machine learning methods (Lasso and KNN) and shown
to have higher accuracy, and much lower computation times than
KNN and slightly higher (but comparable) computation times
with respect to Lasso.

Index Terms—Mirai Botnet Attacks, Attack Detection, Auto-
Associative Dense Random Neural Networks, Machine Learning

I. INTRODUCTION

The need to use large numbers of low cost and low
maintenance devices for the IoT created vulnerabilities which
dramatically manifested themselves in 2016, when a massive
distributed denial of service (DDoS) attack took down large
numbers of web sites including Spotify, Twitter, Reddit, Net-
flix, through the DNS service for domain name management
[1], [2]. It also created malicious accesses from IP addresses
numbering tens of millions, towards servers of some leading
cyber-security companies [3].

Known as the Mirai (“future” in Japanese) Botnet, this
form of DDoS attack sends TCP SYN requests to a large
number of IP addresses, and if the victim responds it then
uses the weak login credentials of many IoT devices based on
default usernames and passwords initially set in the factories
that produce the IoT devices, when these credentials are not
changed after installation and connection to the Internet. If
the attacker is successful, it installs malware at its victims; it
blocks the victim’s ports that used for updates and generates
traffic to overwhelm other servers and devices with nonsense
requests, also leading to threats and protection rackets [4], [5].
However Botnets can also target other critival infrastructures
including smart vehicles [6] as well as the core Internet
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itself and its data collection capabilities which are critical for
managing the Internet in real-time [7].

If the attack is detected at a device,a rapid change of
password and reboot would be needed, but the reboot itself
can be hampered if the malware has blocked the victims ports
that are used for maintenance and updates.

Different forms of Mirai such as “Satori” have been known
to infect mainstream network routers, while the “Okiru” ver-
sion has aimed at infecting popular processors for embedded
systems such as PowerPC, MIPS, ARM, x86, PowerPC, and
Linux devices such as the popular Argonaut RISC Core
processor (ARC), all of which have literally been shipped
at many billions of devices per year. Other variants such as
“Masuda” and “Wicked” also have targeted routers, while
many versions of Mirai have been observed to attack IoT
devices, and machines equipped with the Linux operating
system. and Android based mobile phones [8].

Thus detailed studies to understand the characteristics have
been conducted on these attacks [9], [10], recent work has
studied the characteristics of their attack traffic [11], [12] and
blockchain has been suggested [13] to protect IoT devices
against Botnets.

In this paper we develop a Mirai Botnet attack detection
technique based on machine learning (ML) with a sspecific
the Random Neural Network (RNN) architecture [14]–[16],
called a Dense RNN [17] which uses tight clusters of spiking
neuronal cells for deep learning. Such techniques have been
previously used with success to detect SYN attacks [18]. Ear-
lier work for video quality evaluation [19] and network design
[20] have shown the effectiveness of the conventional RNN
model [21] to address problems in communication systems.
There has also been other work [22] where the RNN has been
used to optimize IoT systems for home climate control. An
extensions of the RNN has also successfully been used for
modeling adaptation in Gene Regulatory Networks [23].

In [24] it was shown that the Dense RNN with an auto-
associative learning algorithm provides more accurate SYN
attack detection than some other lML models. Thus in this
paper we also use the Dense RNNs for deep learning in
auto-associative mode, and compare the outcome to several
other ML techniques both for detection accuracy and speed –
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including the learning and detection computation times.

II. AUTO-ASSOCIATIVE DENSE RANDOM NEURAL
NETWORK FOR ATTACK DETECTION

In this section we describe the attack detector which is based
on the Auto-Associative Dense Random Neural Network (AA-
Dense RNN-AD), whose architecture is shown in Figure 1.
It is composed of three modules, namely Metric Extraction,
Auto-Associative Dense RNN (AA-Dense RNN), and the
Attack Decision Maker.

First, via a Metric Extraction Module we extract the relevqnt
metrics of the attack packets in order to capture the footprints
of Botnet attacks. Figure 1, shows the metrics xik for the packet
k. These metrics are determined in-advance, and the Metric
Extraction Module only extracts them from the data packets
of IoT traffic; i.e., this module does not select the metrics.

1) Selecting the Metrics: Recall that Mirai is a type of
attack that spreads to IoT devices over the network. In addi-
tion, every device infected by Mirai generates additional traffic
to cause a massive DDoS in the network and infect even
more nodes, so that the resulting traffic pattern of infected
devices, including the inter-transmission time characteristics.
Thus, we intuitively know that, when a device is affected by
the Mirai attack, it will increase the total size of the traffic to
overload the network by generating more packets. Accordingly
we select the candidates for the important metrics of MIRAI
Botnet traffic as follows:
• Metric 1: The total size of the last K transmitted packets,
• Metric 2: The average inter-transmission times of the

packets over the last K packets, (The inter-transmission
time is the length of time separating the transmission of a
packet from the transmission of the previous packet from
same source.)

• Metric 3: Total number of packets that are transmitted
in a time window with a duration of T .

We analyze the importance of each of the candidate metrics in
Section III-C in order to determine an importance coefficient
for each of these candidate metrics with respect to the effect
on the detection of Mirai attacks.

A. Auto-Associative Dense RNN (AA-Dense RNN) Model

Next, we will describe an auto-associative network con-
structed via the Dense RNN model, which we call the AA-
Dense RNN.

The Dense RNN model was introduced in [17], [25] as a
mathematical model for neural networks with soma-to-soma
interactions. In addition to the usual interactions between
axons and dendrites, this model allows a direct soma-to-soma
connectivity, so that firing at a given soma (i.e. neuron cell)
can have three effects: induced direct firing at a neighbouring
neuron, plus excitation and inhibition of any other cell in the
network via excitatory and inhibitory weights. In the Dense
RNN the soma-to-soma interactions are represented by the
probability p that any other cell in the network fires when
a given cell fires, that represents random saccades of cells
which fire in unison. The Dense RNN that has been used

so far also assumes that the internal structure of the network
is homogenous, i.e. all the cells have the same connectivity.
However this particular constraint can be relaxed if needed.

B. Clusters of Identical and Densely Connected Cells

Let us now consider the construction of a cluster that
contains n identically connected cells, each of which has firing
rate r, and receives external inhibitory and excitatory arrivals
of spikes denoted by λ− and λ+, respectively. Since all the
cells are identical, the state of each cell is denoted by q. We
also assume that the total firing rate of each cell is r. Each cell
also receives an inhibitory input from some cell u which does
not belong to the network, and whose activation probability is
qu. Thus for any cell in our network we will have an inhibitory
weight incoming w−u > 0 from the external cell u to this
particular cell.

The dense network itself has no excitatory or inhibitory
weights, but whenever a cell i fires, it triggers the firing of
any other cell j at random with probability p

n−1 due to the
soma to soma interactions, and creates a cascade of cells that
fire until either a non-excited cell is reached so it cannot fire,
or a cell in the chain sends an excitatory spike to another cell
which does not fire. Since all the cells behave in a statistically
identical manner, the probability q that a cell is excited satisfies
the equation:

q =
λ+ + rq(n− 1)

∑∞
y=0[p(n−2)n−1 ]y (1−p)

n−1

r + λ− + quw
−
u + rq(n− 1)

∑∞
y=0[ qp(n−2)n−1 ]y p

n−1

(1)

which reduces to:

q =
λ+ + rq(n−1)(1−p)

n−1−qp(n−2)

r + λ− + quw
−
u + rqp(n−1)

n−1−qp(n−2)

, (2)

which is a second degree polynomial in q. Since q is a
probability, only its positive root(s) which are less than one
are of interest.

When n is large, the expression (2) simplifies to:

q2pλ− q[λ+ p(λ+ + r)] + λ+ = 0, (3)

where λ = λ− + quw
−
u .

C. Sructure of the Dense RNN used in this Work

We define the Dense RNN model by its inputs, outputs
and its internal architecture. As shown in Figure 1, the input
of the Dense RNN is the collection of the extracted metrics
{xik−1}i∈{1,...,l} related to the transmission of packet k−1, and
its output is the collection of the “normally expected metrics”
{x̂ik}i∈{1,...,l} for the transmission of the following packet
k. Note that l denotes the total number of metrics that are
collected for the analysis.

Let X denote the input matrix whose entry (k, i) is xik, and
X̂ denote the output matrix whose entry (k, i) is x̂ik. Moreover,
we let Om denote the output vector of layer m and Wm denote
the connection weight matrix between the layer m and layer
m+ 1 for m ∈ {0, . . . , L}, where m = 0 is the input layer of
the Dense RNN.



Fig. 1. Architecture of the Dense RNN based attack detector with its three modules: Metric Extraction from Traffic Packets, AA-Dense RNN and Attack
Decision Maker.

Each hidden layer m ∈ {1, . . . , L} of the Dense RNN
contains l Random Neural Network cell clusters each of
whose probability of activation is denoted by ζ(x) which
is the positive root obtained from the expression (??) with
x = qu.w

−
u .

Accordingly, for the given input matrix X , the forward pass
of the Dense RNN is computed as:

O0 = min (X, 1), (4)
Ol = ζ(Ol−1Wl−1) ∀l ∈ {1, . . . , L}, (5)
X̂ = OLWL, (6)

where ζ(·) is a term-by-term activation function for vectors or
matrices.

The connection weights of the Dense RNN are computed
with an efficient training procedure which is developed in [17]
that combines unsupervised and supervised learning. In order
to create the auto-associative memory, we train the Dense
RNN by using “only” the data of benign IoT traffic, and in
Section III-G we show that the training time of the Dense RNN
is low and competitive with the computational time associated
with simpler models,

D. The Attack Decision Maker

Finally, the Attack Decision Maker module aims to give the
final attack decision for the current data packet based on the
actual and the predicted metrics of the packet. To this end, in
this module, we calculate the absolute difference between the
actual and the predicted value (which is the expected value
for the normal traffic) of each metric and apply threshold on
the difference as

dik = |xik − x̂ik| ∀i ∈ {1, . . . , I} (7)

yk = 1
[ ∑
i∈{1,...,I}

αi.d
i
k ≥ Θ

]
(8)

where Θ is a threshold for the binary decision. Note that,
clearly, the small values of Θ cause the false positive alarms
while the large values of that cause false negative alarms.
In addition, αi is an coefficient for the attack decision with
respect to the Metric i, and

∑
i∈{1,...,I} αi = 1. Furthermore,

1
[
Ξ
]

= 1 if Ξ is a true statement and 1
[
Ξ
]

= 0 otherwise.

III. EXPERIMENTAL RESULTS

In order to evaluate the performance of our attack detection
method, we use the Mirai botnet attack data from the publicly
available Kitsune dataset [26], [27]. This dataset contains
764, 137 packet transmissions including both normal and at-
tack traffic. We use only 70 % of the normal traffic packets for
training and all of the packets (both normal and attack traffic)
for the test of the attack detector.

A. Parameters of the AA-Dense RNN

To implement the AA-Dense RNN, we use a two-layer
Dense RNN (i.e. L = 2), with nl = I ∀l ∈ {1, . . . , L},
where I = 3, and recall that I is the total number of metrics
that are being used. In addition, we set p = 0.05, r = 0.001
and λ+ = λ− = 0.1. Moreover, we set K = 500 packets and
T = 100secs in the Metric Extraction module.

B. Comparison with other Techniques

We first selected the Simple Threshold method as the
simplest benchmark for attack detection. In this method, we
basically use (8) by replacing dik with xik. In order to achieve
the best performance of this method, we search for the best
value of Θ on the test set which includes both normal and
attack traffic.



1) Least Absolute Shrinkage and Selector Operator
(Lasso): We selected the Lasso as the linear model that
replaces the AA-Dense RNN in the proposed method in
Figure 1. To this end, we create an auto-associative memory
based on Lasso by training it on 70 % of the normal traffic. For
the implementation of Lasso, we use the scikit-learn library
[28] with “alpha = 0.1”.

2) K-Nearest Neighbours Regressor (KNN): We use KNN
to replace the AA-Dense RNN module in Figure 1. Similar
with other methods, we trained KNN on 70 % of the normal
traffic. In addition, for the implementation of this model, we
use the scikit-learn library with “n neighbours = I”.

C. Importance Analysis of the Metric Candidates to Deter-
mine the Value of the αis.

We now aim to analyze how important each feature candi-
date for the detection of Mirai botnet attacks in the considered
dataset. To this end, we first perform the following analysis:

1) Pearson Correlation: For each Metric i, we compute
Pearson correlation coefficient [29] between that metric and
the attack label. This coefficient measures the strength and
the direction of the linear relationship between the considered
metric and the attack label. Since we desire to measure only
the importance of Metric i for the detection of attack, we need
only the strength of the relationship so we let ρi denote the
absolute value of the coefficient for Metric i.

2) ANOVA: We compute the other coefficients as the F-
ratios [30] that are calculated via the Analysis of Variance
(ANOVA) method. The value of the F-ratio corresponding to
Metric i measures the statistical significance of that metric for
the decision of attack. We let fi denote the normalized F-ratio
for Metric i in the range [0, 1].

After we compute the coefficients via each of the Pearson
correlation coefficient and ANOVA, we calculate the impor-
tance coefficients of the metrics as

αi =
ρi + fi∑

i∈{1,...,I} (ρi + fi)
∀i ∈ {1, . . . , I}. (9)

In Figure 2, we present the value of αi as well as the values
of ρi and fi for each Metric i, i ∈ {1, 2, 3}. In this figure, we
see that the importance of each of Metrics 1 and 3 is higher
than that of the Metric 2 with respect to each of αi, ρi and
fi. In addition, the values of α1, ρ1 are close to those of α3,
ρ3 although there is a significant gap between f1 and f3.

D. Performance Evaluation of AA-Dense RNN with respect to
the Selection of Metrics

In Figure 3, we show the performance of the proposed attack
detection method with the selection of different metrics, as
well as the combination of all metrics, and see that AA-Dense
RNN achieves the highest accuracy at 99.84% when we use
the weighted combination of Metric 1, Metric 2, and Metric
3, as we do for the performance evaluations in the rest of this
paper.

The high detection performance result shows that the AA-
Dense RNN is able to classify normal and malicious traffic
although it has been trained with only normal traffic.

Fig. 2. Pearson correlation coefficient ρi, normalized by coefficient ANOVA
fi and importance coefficent αi for each Metric i, i ∈ {1, 2, 3}.

Moreover, our results show that the accuracy of the AA-
Dense RNN is more than 95% under the selection of any
metric. In addition, we observe a close relationship between
the importance coefficients of metrics in Figure 2 and the
performance of the AA-Dense RNN detector in Figure 3.

Fig. 3. Performance of the AA-Dense RNN under each of Metric 1, Metric
2, Metric 3, and the αi weighted combination of all metrics.

the

E. Selection of the Value of Threshold Θ

We now analyze the performance of the AA-Dense RNN
with respect to the value of threshold Θ. Figure 4 presents the
True Positive and True Negative percentages with respect to
the increasing value of Θ from 0 to 0.5 with 0.01 increments.

In Figure 4, we see that the AA-Dense RNN detector is
highly robust with respect to Θ ∈ [0.01, 0.25]. Thus, in the
practical usage of the proposed method, we may select any
value of Θ in the range [0.01, 0.25] without a significant
performance loss. In addition, in this range the AA-Dense
RNN is fair in detecting both attack and normal traffic, and it
achieves high performance for both.

F. Comparison of the AA-Dense RNN’s Performance with
KNN and Lasso

Let us now In this compare the attack detection performance
of the AA-Dense RNN with the Simple Thresholding, Lasso,



TABLE I
COMPARISON OF ATTACK DETECTION METHODS WITH RESPECT TO ACCURACY AS WELL AS EACH OF THE TRUE POSITIVE,

FALSE NEGATIVE, TRUE NEGATIVE AND FALSE POSITIVE PERCENTAGES

Attack Detection

Methods
Accuracy True Positive False Negative True Negative False Positive

AA-Dense RNN 99.84 99.82 0.18 99.98 0.02

KNN 99.79 99.79 0.21 99.75 0.25

Lasso 99.78 99.75 0.25 99.95 0.05

Simple Thresholding 93.18 93.09 6.94 93.63 6.37

Fig. 4. True Postive and True Negative percentages of the AA-Dense RNN
for the increasing value of Θ.

and KNN methods, where both the Lasso and KNN are trained
as auto-associative memories.

In Table I, we present the comparison of the detection
methods with respect to each of the accuracy and percentages
of true positive, false negative, true negative and false positive.
The detection methods in this table are placed in descending
order with respect to their accuracy. ur results show that
AA-Dense RNN attack detection significantly outperforms
the other methods with respect to accuracy. In addition, we
see that this auto-associative network achieves much higher
accuracy than Simple Thresholding. We see that the AA-
Dense RNN achieves 99.82% true positive and 99.98% true
negative acuracy, higher than the other methods. Among all
the methods, the Lasso obtains the true negative percentage
closest to the AA-Dense RNN, and significantly higher than
KNN and Simple Thresholding.

G. Computation Time

We now compare the AA-Dense RNN with KNN and Lasso
with respect to the training and execution times, both being
measured on a workstation with 32 Gb RAM and an AMD
3.7 GHz (Ryzen 7 3700X) processor.

Figure 5 shows the training time of each of the AA-
Dense RNN, KNN, and Lasso models, where the training is
performed for 70 % of the normal traffic (83138 samples).
While the attack detector may be trained offline in real-life

Fig. 5. Training times of the different attack detection methods.

usage, the training time is not a major issue as long as it
is acceptable. In the sae figure we see that the training time
of the AA-Dense RNN is less than 0.1 sec which is highly
acceptable. In addition, the training time of the AA-Dense
RNN is significantly less than that of KNN; however, it is
higher than that of the Lasso method.

Fig. 6. Execution times of the different attack detection methods.

Figure 6 shows the execution time of each of the AA-Dense
RNN, KNN, and Lasso models for the classification, evaluated
per single traffic packet. We see that the execution time of the
AA-Dense RNN detector is around 0.5 µ secs. While that of
all other methods is less than 10 µ secs, the KNN’s execution



time is quite high, and LASSO’s execution time is the shortest.
This shows that the AA-Dense RNN and LASSO detectors are
suitable for use in real-time attack detection.

IV. CONCLUSIONS AND FUTURE WORK

IoT devices are often rapidly installed with known factory
parameters, that attract Mirai-type Botnet attacks. Therefore
we have introduced an attack detection scheme for the IoT
using the Auto-Associative Dense Random Neural Network
(AA-Dense RNN) for Mirai-like Botnets.

The approach has the added advantage that it is trained with
normal traffic to detect attack traffic, and it compares favorably
with two known ML techniques: the Least Absolute Shrinkage
and Selector Operator (Lasso) and the K-Nearest Neighbours
(KNN), as well as with a simple thresholding technique.

Our experimental results on a publicly available dataset con-
taining 764, 137 packet transmissions, show that the method
introduced in this paper achieves 99.84% accuracy with
99.82% true positive and 99.98% true negative rates, which is
much better than KNN detection and better than Lasso. Both
the AA-Dense RNN and Lasso have training and testing times
that are shorter than KNN.

The computation times and accuracies of AA-Dense RNN
and Lasso are well within the needs of real-time on-the-fly
lightweight attack detection, with AA-Dense RNN being best
for accuracy and Lasso being best for computation times.

Future work will further evaluate the performance of the
proposed attack detector on other available Botnet datasets,
and extend the design to detect different attacks with a single
AA-Dense RNN detector that is trained on benign traffic.
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