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Quantum neural networks to simulate many-body quantum systems
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We conduct experimental simulations of many-body quantum systems using a hybrid classical-quantum
algorithm. In our setup, the wave function of the transverse field quantum Ising model is represented by a
restricted Boltzmann machine. This neural network is then trained using variational Monte Carlo assisted by
a D-wave quantum sampler to find the ground-state energy. Our results clearly demonstrate that already the
first generation of quantum computers can be harnessed to tackle nontrivial problems concerning physics of
many-body quantum systems.
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I. INTRODUCTION

Building a universal quantum computer is a holy grail of
modern sciences [1]. Such a machine offers necessary capa-
bilities allowing one to simulate highly entangled quantum
systems [2,3]. In contrast, a universal Turing machine [4]
realizing classical computation can only simulate slightly
entangled quantum states [5].

Although quantum supremacy is yet to be demon-
strated [6], many important properties of quantum systems
can be captured by artificial intelligence [7] and neural net-
works, in particular [8,9]. The so-called quantum neural states
provide a novel ansatz to represent the wave function of a
many-body quantum system [10,11]. Such neural networks
can be taught using various techniques—most notably the
variational Monte Carlo [12–14]. In general, however, sam-
pling the state space, which is the key ingredient of all Monte
Carlo methods, cannot be executed efficiently by any classical
algorithm [15,16]. Hence, there exist natural limitations to
any classical algorithm that aims to teach the network about
quantum systems.

It is well known that these limitations can be broken by har-
nessing the power of a quantum sampler [17,18]. It is needless
to say that the existing annealers are far from perfect [19–21].
Nevertheless, they can be turned into quantum samplers rather
easily. This provides an ideal playground for testing a new
generation of hybrid classical-quantum algorithms [22].

In this paper, we investigate to what extent such algo-
rithms can run on the existing hardware [23]. Our purpose is
to demonstrate that already the first generation of quantum
computers can, in fact, assist in simulations of simple yet
nontrivial many-body quantum systems. A similar conceptual
idea has been applied very recently to investigate quantum
phase transition in many-body systems [24,25], risk anal-
ysis [26], and quantum circuits diagonalizing small quan-
tum Hamiltonians [27,28]. In our setup, however, the wave
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function of the transverse quantum Ising model is represented
by a restricted Boltzmann machine [29]. This neural network
is then trained in an unsupervised manner to find the ground-
state energy. The learning process is assisted by a D-wave
chip as explained below.

II. PRELIMINARIES

A. Quantum neural states

We begin by writing a many-body quantum state |ψ〉 using
restricted Boltzmann machine (RBM) as a wave-function
ansatz [29,30],

|�〉 =
∑

v

�(v)|v〉, �(v) =
∑

h

e−φ(v,h). (1)

Here v = (v1, . . . , vN ) is a collection of physical degrees of
freedom called visible neurons,

φ(v, h) = a · v + b · h + h · W · v, (2)

and h = (h1, . . . , hM ) are hidden neurons, see Fig. 2. This
network is fully specified by the weights a, b, W which are
determined during the learning stage. Surprisingly, M = αN

for moderate α, say <4, is often sufficient to accurately cal-
culate the ground-state properties of many important physical
systems [29].

Our objective here is to train the quantum neural state using
a D-wave annealer to find the ground-state energy E of the
transverse field quantum Ising model [31–33],

H = −h
∑

i

τ̂ x
i −

∑
〈i,j〉

τ̂ z
i τ̂ z

j . (3)

Above, 〈i, j 〉 denotes nearest neighbors and τ x
i , τ x

i are the
standard Pauli spin operators [34]. Periodic boundary condi-
tions are assumed. We consider both one-dimensional (1D)
and two-dimensional (2D) lattices. In the former case, the
ground-state energy can be calculated exactly [35]. In the
latter, we use density-matrix renormalization-group algo-
rithm [36,37] to obtain its sufficient approximation that will
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FIG. 1. D-wave processor specification. (a) An example of the
chimera architecture comprising a 2 × 2 grid consisting of clusters
(units cells) of eight qubits each. (b) A typical annealing schedule
where the annealing time reads τ .

serve as a reference value. This allows us to assess the
robustness of our method and at the same time benchmark the
annealer [38]. To perform a quantum sampling we use both
the newest 2000Q chip and its predecessor DW2X [39].

Henceforward, we also assume that all weights a, b, W are
real. Thus, instead of Eq. (1), one can use the following ansatz
to represent the ground state of the Ising model (3):

�(v) =
√∑

h

e−φ(v,h) =
√

�(v). (4)

As before, φ(v, h) is given by Eq. (2). This way, the quantum
probability distribution,

ρ(v) = |�(v)|2∑
v′

|�(v′)|2
(5)

can be represented by a RBM and as such can be sampled
using a quantum annealer. This is the key insight into all
conceptual ideas we outline in this article.

B. Adiabatic quantum computing

During quantum annealing a many-body system is to be
evolved from the ground state of a problem Hamiltonian
H0 to the ground state of a final Hamiltonian H(τ ) that
encodes the solution for the problem of interest [40–42]. The
dynamics of a D-wave chip is governed by the time-dependent
Hamiltonian [17,43],

H(t )/h = −g(t )
∑
i∈V

σ̂ x
i − �(t )H0,

(6)
H0 =

∑
i∈V

Biσ̂
z
i +

∑
(i,j )∈E

Jij σ̂
z
i σ̂ z

j ,

where σ̂ x
i and σ̂ z

i are the Pauli spin operators. Here, H0 is
defined on a chimera graph G = (V, E ) [44], see Fig. 1(a).
Dimensionless couplers Jij and biases Bi can be controlled by
the users but only within a predefined range. For example, on
the 2000Q device we have |Jij | � 1 and |Bi | � 2.

Presumably, the Hamiltonian H(t ) varies slowly whereas
�(t ) is changed from initial �(0) ≈ 0 to large final �(τ ),

whereas g(t ) varies from large initial g(0) to final g(τ ) ≈ 0
[cf. Fig. 1(b)]. As a result, under optimal conditions, the sys-
tem remains in its ground state. Thus, the desired solution—
encoded in eigenvalues σi of σ̂ z

i —can be extracted through
a measurement of the final state. It is worth emphasizing
that with D-wave annealers one can only carry a suitable
measurement in the computational z basis (| ↑〉, | ↓〉). This
essentially excludes any possibility to measure the ground-
state energy of the transverse Ising model (3) directly, even
if measurements for intermediate values of � and g were
available.

Furthermore, since no real hardware is completely iso-
lated from its environment, the outcome of such experiment
will be distributed according to some temperature-dependent
probability distribution p(σ ) [45]. Relaxing the annealer to
the equilibrium, one can approximate p(σ ) by the classical
Boltzmann distribution [46],

p(σ ) ∼ e−βEτ (σ ), (7)

where the energy function reads

Eτ (σ ) = −
∑
i∈V

Biσi −
∑

(i,j )∈E
Jijσiσj . (8)

The time to complete the annealing cycle is denoted by τ . The
effective inverse temperature β = h �(τ ∗)βchip/kB is affected
by many factors, including the specific values of the control
parameters Jij and Bi [47]. Here, τ ∗ � τ is the so-called
freeze-out time, and 1/βchip denotes the chip’s operational
temperature [48]. Note, β is a priori unknown, and it can
only be determined on a case-by-case basis [49]. In this
paper, however, we do not attempt to estimate the function
β(Jij , Bi, τ

∗). We rather try to modify the sampling algorithm
to account for its possible variation with the values of the
parameters.

In an annealer with the sufficient connectivity between
qubits, there would be a one-to-one mapping between the set
of σi and the two sets of visible and hidden neurons σ =
[v, h]. Accordingly, every nonzero Jij would be identified
with Wij/β between the visible and the hidden neuron and
the biases B = [a, b]/β. In practice,

Jij = Wij/βx, (9)

where βx is an estimation of the inverse temperature β.

III. UNSUPERVISED LEARNING

A. Variational Monte Carlo

Training neural networks can be tedious. Moreover, due
to their topology, RBMs may be highly susceptible to small
changes in the variational parameters. Their adjustments can
further propagate throughout the network causing even larger
changes in the wave function. To mitigate these problems we
use a stochastic reconfiguration, a method that is widely used
in the variational Monte Carlo [12]. At each iteration, the
network weights w = [a, b, W ] are refined according to

wk+1 = wk − γk xk, S(k)xk = F(k), (10)

where a non-negative definite covariance matrix reads

Sij = 〈〈D∗
i Dj 〉〉ρ − 〈〈D∗

i 〉〉〈〈Dj 〉〉ρ, (11)
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FIG. 2. Restricted Boltzmann machine embedded on a D wave.
(a) Graphical representation of the neural network (2) with eight
visible and eight hidden neurons. (b) The same network embedded
on the chimera graph G = (E,V ) of size 2 × 2 × 8. Strong ferro-
magnetic couplings (thick lines) “glue” qubits in different unit cells
to represent single neurons.

and the so-called forces are given by

Fj = 〈〈ED∗
j 〉〉ρ − 〈〈E〉〉ρ〈〈D∗

j 〉〉ρ. (12)

Double brackets 〈〈·〉〉ρ indicate averages with respect to the
distribution in Eq. (5), γk is the learning rate. Finally,

Di = 1

�(v)

∂

∂wi

�(v), Eloc = 〈v|H |�〉
�(v)

(13)

denote the gradients and local energy, respectively [29].

B. Sampling

Usually, the importance sampling is performed using the
Metropolis-Hastings algorithm [50]. In this paper, we employ
the newest generations of D-wave samplers to calculate co-
variance matrix (11) and forces (12) at each iteration [51].
The remaining part of the algorithm is executed on a classical
processing unit: CPU or GPU [52].

To this end, we first rewrite the ansatz (4) as

�(v) = ea·v/2

⎡
⎣ M∏

j=1

2 cosh(bj + W j · v)

⎤
⎦

1/2

, (14)

where we explicitly traced out hidden variables. This is pos-
sible due to the lack of intralayer interactions between hidden
neurons [cf. Fig. 2(b)]. Now, all derivatives in Eq. (13) can be
expressed using visible neurons only [29],

1

�(v)

∂

∂p
�(v) = 1

2
×

⎧⎨
⎩

vi, p = ai,

tanh(θj ), p = bj ,

vi tanh(θj ), p = Wij ,

(15)

where we introduced θj = bj + W j · v. Similarly, the local
energy can be simplified to take the form

Eloc = −h
∑

i

�(v̄i )

�(v)
−

∑
〈i,j〉

vivj , (16)

where v̄i denotes a vector v with ith spin flipped and � is
given by Eq. (14). Finally, to compute 〈〈·〉〉ρ using samples

gathered from a quantum annealer, we note that

〈〈f 〉〉ρ =
∑

v

ρ(v)f (v) ≈
∑
v,h

p(v, h)f (v)

=
∑

σ

p(σ )f (σ ) ≈ 1

Ns

Ns∑
i=1

f (σ i ), (17)

where the bare output of the D-wave annealer σ = [v, h]
encodes both hidden and visible neurons. Here, Ns is the
number of samples. The first approximation is true under a
proper embedding as long as p(v, h) is close to the Boltzmann
distribution. The second one holds for sufficiently large Ns (in
practice Ns ∼ 104) provided that all samples σ i are distributed
according to p(σ i ). Note, one quantum annealing corresponds
to one sample. This means that gathering samples requires
running the annealer over and over again. However, in practice
this is executed in “chunks,” and it is very fast (microsecond to
millisecond depending on the annealing time τ ) and efficient.

A possible advantage of using a D-wave computer is that it
can sample both visible and hidden neurons simultaneously. In
principle, this allows to calculate the gradients directly using
the ansatz in Eq. (4) even try to extend it to deep Boltzmann
machine [53]. We leave this for future investigations.

C. Embedding RBM on a D-wave

Unfortunately, a RBM cannot be directly placed on the
D-wave chip due to limited (sparse) connectivity between
qubits [46]. However, this problem can be circumvented using
suitable embedding [54]. The idea is to emulate a single
neuron using available (local) connections between physical
qubits on the chip. To this end, a strong ferromagnetic cou-
plings is set between the latter qubits. We stress that even a
proper embedding can break during the annealing. However,
for small enough RBM’s weights the frequency at which they
do break should not be too high (in practice ∼0.2). In that
case, the majority vote or a similar method can be invoked to
correct the sample [55].

Figure 2(b) shows a chimera graph with four unit cells.
Each unit cell has eight qubits—with full connectivity be-
tween the horizontal and the vertical ones and can represent as
many neurons. In order to construct, for instance, a RBM with
eight visible and eight hidden neurons, four unit cells with
suitable qubits glued together are necessary. That amounts to
32 physical qubits. In this embedding, all qubits connected
vertically (horizontally) represent a visible (hidden) neurons
[54]. Consequently, the maximum number of neurons that
the chimera graph Cn, consisting of n × n × 8 qubits, can
represent is Lmax = 8n. For example, all 2048 qubits on the
2000Q chips can be utilized to build, e.g., a RBM with 64
visible and 64 hidden neurons.

IV. RESULTS

For the sake of simplicity and without loss of generality,
we only consider RBMs with the same number of hidden and
visible neurons, i.e., M = N (α = 1). A classical Metropolis-
Hastings sampling technique has no problems finding the
ground state. The relative error of the solution δE = |(E −
Eexact )/Eexact| is on the order of 10−4, see Fig. 3(a). The same
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FIG. 3. The ground-state energy per spin E for the transverse
field quantum Ising model (3) in 1D obtained for different system
sizes. The dashed lines indicate the exact values. Sampling was
carried out using Monte Carlo with γ = 0.2 in panels (a) and tensor
networks algorithm with γ = 0.05 in (b). They serve as a reference
point for the results in Fig. 4. In panels (c), we show the influence of
incorrect inverse temperature estimation x = β/βx on the results.

conclusion is reached using a more sophisticated sampling
technique based on tensor networks algorithms, see Fig. 3(b).
To that end we used a simpler—matrix product state-based—
variant of the procedures described in Ref. [56].

We collect the results which were obtained running the
hybrid algorithm in Fig. 4. For sampling, we used two gener-
ations of D-wave annealers: 2000Q and DW2X. As one can
see in Fig. 4, both of them were capable of finding the correct
ground-state energy. The solutions reached are, nonetheless,
less accurate with δE on the order of 10−3–10−2. This can be
expected from the real physical device which is prone to errors
[39]. One can also expect those results to improve with each
new generation of quantum computers.

There are many factors that can contribute to the errors and
limited precision [39]. To mitigate some of them, the D-wave
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FIG. 4. The ground-state energy per spin E for the transverse
field quantum Ising models (3) in 1D and 2D. The dashed lines
indicate the exact values. Sampling was executed using D-wave
annealers: 2000Q in (a) and (b) and DW2X in (c). δE shows the
relative energy error reached. We set h = 0.5 for the 1D system
in panels (a) and (c), and h = 0.5, 1, and 3.044 � hc for the 2D
system in (b), where τ = 20. The annealing time τ is measured in
microseconds. Besides, α = 1, γ = 0.2, and Ns = 104.

solver offers postprocessing optimization options. The idea is
to bring p(σ ) to the Boltzmann distribution (8) as close as
possible, ideally at some predefined inverse temperature β.
However, in our minimalistic approach we did not use any
of those options. Instead, we allowed the algorithm to change
the initial inverse temperature so that it could converge to the
correct solution, see Fig. 5. To that end we randomly increased
or decreased the effective temperature βx when the energy
between subsequent iterations was growing. Given the lack of
any comprehensive theory explaining how D-wave annealers
work, this approach seems optimal for the current purpose.
The idea can be further motivated by numerical simulations.
Figure 3(c) shows the robustness of the algorithm against
the variability of βx. Surprisingly, the correct solution can
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FIG. 5. The inverse temperature βx estimated during the learning
stage. See Fig. 4 for comparison and the text for a discussion.

still be reached despite incorrect estimations of the inverse
temperature.

V. CONCLUDING REMARKS

In this article, we argued that, despite their limited capa-
bilities, the existing annealers can be harnessed to simulate
many-body quantum systems. In our simple model a restricted
Boltzmann machine was used to represent the wave function

of the transverse field quantum Ising model. Next, we show
how this neural network can be trained with the help of a D-
wave annealer to find the ground-state energy. The maximum
system sizes that we were able to embed were restricted
to L = 64 (requiring 2048 qubits) for the 2000Q chip and
L = 24 (requiring ∼800 qubits) for its predecessor DW2X.
This approach is nonetheless fully scalable.

As a final note, we stress that a neural network trained
with an imperfect quantum annealer should, to some extent,
reflect on the errors that are generated during the annealing
[39]. This means that w found by a faulty quantum sampler
will not produce correct results with a different sampler. This,
on the other hand, allows one to test and possibly calibrate
quantum annealers against errors.
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