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Abstract
Despite the acknowledged importance of quantitative security assessment in secure soft-
ware development, current literature still lacks an efficient model for measuring inter-
nal software security risk. To this end, in this paper, we introduce a hierarchical security 
assessment model (SAM), able to assess the internal security level of software products 
based on low-level indicators, i.e., security-relevant static analysis alerts and software met-
rics. The model, following the guidelines of ISO/IEC 25010, and based on a set of thresh-
olds and weights, systematically aggregates these low-level indicators in order to produce 
a high-level security score that reflects the internal security level of the analyzed software. 
The proposed model is practical, since it is fully automated and operationalized in the 
form of a standalone tool and as part of a broader Computer-Aided Software Engineering 
(CASE) platform. In order to enhance its reliability, the thresholds of the model were cali-
brated based on a repository of 100 popular software applications retrieved from Maven 
Repository. Furthermore, its weights were elicited in a way to chiefly reflect the knowledge 
expressed by the Common Weakness Enumeration (CWE), through a novel weights elicita-
tion approach grounded on popular decision-making techniques. The proposed model was 
evaluated on a large repository of 150 open-source software applications retrieved from 
GitHub and 1200 classes retrieved from the OWASP Benchmark. The results of the experi-
ments revealed the capacity of the proposed model to reliably assess internal security at 
both product level and class level of granularity, with sufficient discretion power. They also 
provide preliminary evidence for the ability of the model to be used as the basis for vulner-
ability prediction. To the best of our knowledge, this is the first fully automated, operation-
alized and sufficiently evaluated security assessment model in the modern literature.
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1 Introduction

Measuring software security is very important for secure software development, since it 
actually quantifies the success of the applied security policies (Hahn et al., 2018; Rindell, et 
al. 2019), such as Microsoft’s SDL (Howard, 2003; Howard and Lipner, 2006). In addition, 
it is a common belief that “you cannot control something you cannot measure” (DeMarco, 
1986). Although mature and mutually accepted measurements of external security exist 
(e.g., the Attack Surface Metric (Manadhata and Wing, 2011; Hahn et al., 2018)), current 
literature still lacks a commonly accepted approach for evaluating the internal security risk 
of software products1  (Ansar  et al., 2018; Sentilles  et al., 2018; Morrison et  al., 2018). 
Different metrics and assessment methodologies able to measure a specific security aspect 
(Chowdhury et al., 2008; Alshammari et al., 2009; Shin et al., 2014), or the complete secu-
rity level of software products (Lai, 2010; Alshammari et al., 2011; Medeiros et al., 2018; 
Dayanandan, 2018) exist, but they are either unreliable since they are based on arbitrary 
and subjective parameters, or they are not operationalized and thus they cannot be used 
in practice. In addition, the vast majority of the existing approaches lack thorough empiri-
cal evaluation, which also hinders their reliability (Verendel, 2009; Sentilles et al., 2018; 
Ansar et al., 2018; Morrison et al., 2018).

Software security assessment is commonly treated as a subfield of software quality eval-
uation (Munaiah et al., 2017). However, although a large number of quality models have 
been proposed for evaluating specific quality attributes, like Maintainability (Heitlager, et 
al. 2007; Bakota et al., 2011; Baggen et al., 2012; di Base et al., 2019) and Reliability (Jin 
& Jin, 2014; Khurshid et al., 2019), limited contributions exist regarding Software Secu-
rity. This can be explained by the fact that only recently Software Security was officially 
recognized as one of the main quality attributes of software products with the publication 
of the ISO/IEC 25010 (ISO, 2011) international standard on software quality. This opens 
a new area of research in software quality evaluation, i.e., for investigating whether well-
established principles of quality assessment can be leveraged (or extended) for building 
reliable security assessment models (Basso et al., 2019).

The main objective of a security assessment model is to provide a quantifiable expres-
sion of software security by combining several heterogeneous security metrics (Verendel, 
2009). Static analysis alerts and software metrics constitute valuable sources of security 
information, and therefore promising candidates for the construction of security assess-
ment models. In fact, static analysis, a testing approach that allows the identification of  
software bugs without requiring code execution (Chess & McGraw, 2004), has been  
found effective in uncovering vulnerabilities (McGraw, 2006; Nunes et al., 2019), whereas 
several studies have highlighted the ability of software metrics (e.g., complexity) to indi-
cate the existence of vulnerabilities in software products (e.g., (Shin et al., 2011; Medeiros  
et al., 2017)). Thus, an interesting topic is to investigate how these low-level metrics can 
be aggregated in a meaningful way, in order to produce a high-level score that reflects 
the overall security of software products (e.g., (Zafar et al., 2015; Medeiros et al., 2018;  
Dayanandan and Kalimuthu, 2018)).

To this end, in this paper, we introduce a hierarchical security assessment model (SAM) 
that allows the evaluation of the internal security of software products written in Java, 
based on static analysis alerts and software metrics. The model, following the guidelines of 

1 It should be noted that the term software security is used to describe the internal security of software 
products, while the external security is often termed as application security (McGraw, 2006).
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ISO/IEC 25010 (ISO, 2011), decomposes the notion of security into a set of security char-
acteristics (e.g.,Confidentiality), which are further decomposed into a set of more tangible 
security properties (e.g., Encapsulation) that are directly quantifiable from the source code 
through low-level measures (i.e., static analysis alerts and software metrics). The model 
starts from the calculation of these low-level measures and, based on a set of thresholds 
and weights, systematically aggregates them, in order to produce a single security score, 
i.e., the Security Index, that reflects the security level of the analyzed software.

The proposed model is highly practical, since it is operationalized, both as a standalone 
tool (Online, 2020) and as part of the SDK4ED Platform (see Section 4), and fully auto-
mated, and therefore it can be used regularly during the overall development cycle. In addi-
tion, its design parameters (i.e., thresholds and weights) were carefully elicited in order to 
avoid subjective information as much as possible2. More specifically, the thresholds were 
calibrated based on a benchmark repository of 100 Java applications retrieved from Maven 
Repository3. The weights of the model were elicited in a way to chiefly reflect the knowl-
edge expressed by the Common Weakness Enumeration (CWE)4, through a novel approach 
that is based on popular decision-making techniques. The proposed model was evaluated 
through a set of experiments based on 150 real-world Java applications retrieved from 
GitHub and 1200 test cases retrieved from the OWASP Benchmark5. To the best of our 
knowledge, this is the first fully automated and operationalized security assessment model 
that can be found in the related literature, whereas it is the only model that was built and 
evaluated on such a large volume of empirical data (i.e., 250 real-world software applica-
tions, comprising approximately 20 million lines of code). To facilitate the readability of 
the present paper, a roadmap of our work regarding the model construction and evaluation 
is depicted in Fig. 1.

In brief, the major contributions of the present paper can be summarized as follows: (1) 
a hierarchical security assessment model that allows the evaluation of the internal security 
level of software products; (2) a novel approach for the calculation of the weights of hier-
archical models that reflect the well-established knowledge expressed by CWE; and (3) an 
extensive evaluation of the ability of the proposed model to reflect the internal security of 
software products through a number of experiments on empirical data.

At this point, it should be noted that the main research goal of the present paper is to 
investigate whether well-established concepts from the field of software quality evaluation 
can be leveraged for building models that can reliably assess software security. To this 
end, a carefully curated SAM for programs written in Java programming languages was 
derived and used as a proof-of-concept through extensive experimentation. However, since 
no single model is able to satisfy all the user and project needs (Siavvas et  al., 2017b; 
Wagner et al., 2015), in the rest of the paper, we put specific emphasis on demonstrating 
in detail the internal structure and characteristics of the proposed model, as well as the 
steps that were followed for its construction, so that interested researchers or practitioners 
can build similar models that better meet their needs (i.e., types of software, programming 
languages, supported issues, etc.). To further facilitate this process, a similar model that 

2 With the term subjective information we refer to information that is defined based on the subjective opin-
ions (i.e., judgments) of a limited number of individuals (i.e., usually the authors of the models) based on 
their security expertise, and not based on widely accepted sources of security information (e.g., interna-
tional standards, security knowledge bases, etc.).
3 https:// mvnre posit ory. com/
4 https:// cwe. mitre. org/
5 https:// owasp. org/ www- proje ct- bench mark/
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was built as part of the SDK4ED Project for analyzing software products written in C/C++ 
programming language is also described in the Appendix section of the paper.

The rest of the paper is organized as follows: Section 2 presents the related work in the 
field of software security assessment. Section 3 introduces our model and describes its der-
ivation steps. Section 4 presents the implementation of the model and its integration in a 
broader CASE platform. Section 5 reports the results of our experimental evaluation. Sec-
tion 7 concludes the paper and discusses ideas for future work. Finally, a similar security 
model for evaluating the security level of software projects written in C and C++ program-
ming languages is described in the Appendix section of the present paper.

2  Related work

This section provides related work in the field of software security assessment. Emphasis 
is given on the main open issues of the field, as well as on the major contributions of the 
present work.

2.1  Existing software security assessment approaches

The attack surface is the most complete and commonly accepted measure for quantify-
ing the security level of software products that has been proposed in the literature until 
today. It was originally introduced by (Howard et al., 2005), who also proposed a method 
for its quantification called Relative Attack Surface Quotient (RASQ)  (Howard, 2007). It 
was made fully operationalized by (Manadhata & Wing, 2011), through the proposal of 
the Attack Surface Metric (ASM), which constitutes the de facto metric for its calculation. 
According to their approach, the attack surface of a software product is defined based on 
the resources that are used in attacks (i.e., entry/exit points, channels, and data), along with 
their possibility of being exploited, which is expressed by their damage potential-effort 
(DP-E). This information is summarized into a single value, which corresponds to the 
attack surface of the application.

The main shortcoming of the attack surface metric that remains unresolved until today 
is that it neglects the innate characteristics of the software products that are known to influ-
ence their security (e.g., vulnerabilities). In fact, it is an external security measure that 
quantifies only the attackability of a software product, i.e., the likelihood of vulnerability 

Fig. 1  The roadmap of the present paper. The work consists of two important steps, namely Model Con-
struction and Model Evaluation. Model Construction is responsible for the definition of the model structure, 
as well as for the calculation of the main parameters of the proposed model (i.e., weights and thresholds). 
The Model Evaluation is responsible for evaluating the ability of the model to provide reliable security 
assessments at both product  and class levels
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exploitation. Although several improvements of the ASM  have been proposed over the 
years with the purpose to also consider the underlying security countermeasures (e.g., 
(Hatzivasilis  et al., 2016; Hahn  et al., 2018)) and the internal structure of the analyzed 
software (e.g., (Munaiah & Meenley, 2016)), the attack surface is still independent of the 
number of vulnerabilities that a software product contains (Theisen et al., 2018). Hence, to 
enhance the completeness of security assessment, attack surface metrics should be used in 
conjunction with measurements that take into account the internal characteristics of soft-
ware products (Manadhata & Wing, 2011), such as (i) security-relevant software metrics, 
and (ii) vulnerability-based security measurements.

The ability of common software metrics to indicate security risks in software products 
has been widely studied in the literature (Siavvas et al., 2018a). (Shin & Williams, 2008) 
were the first to observe the ability of complexity metrics to indicate the existence of vul-
nerabilities in software components. In particular, they found that a statistically significant 
albeit weak correlation exists between software metrics and the existence of vulnerabilities 
in the Mozilla codebase. Similarly, (Chowdhury & Zulkernine, 2010) revealed the capac-
ity of common coupling, cohesion, and complexity (CCC) metrics to discriminate between 
vulnerable and clean software components. These observations are supported by the results 
of a large number of follow-up empirical studies, which also proposed numerous software 
metrics-based vulnerability prediction models (Chowdhury  & Zulkernine, 2011; Shin 
et al., 2011; Moshtari et al., 2013; Moshtari, & Sami 2016; Stuckman et al., 2017; Siavvas  
et al., 2017b; Ferenc et al., 2019; Jimenez et al., 2019). All these studies, which were based 
on different datasets, observed that a weak but statistically significant correlation exists 
between the software metrics and the existence of vulnerabilities, whereas they also pro-
duced metric-based vulnerability prediction models of satisfactory accuracy. In addition to 
this, recent studies have shown that the combination of different software metrics lead to 
better vulnerability predictors, and, thus, it may render a meaningful approach for enhanc-
ing security assessment (Medeiros et al., 2017; Zhang et al., 2019).

Apart from common software metrics, a small number of custom security metrics can 
be found in the related literature. For instance, (Chowdhury et al., 2008) proposed 3 code-
level security measurements, namelystall ratio (SR), coupling code propagation (CCP), 
and critical element ratio (CER), which are able to quantify specific quality properties 
of code fragments that have an obvious impact on software security. Similarly, (Alsham-
mari et al., 2009) proposed a set of 7 design-level metrics for quantifying the security level 
(i.e., confidentiality) of object-oriented classes, from the viewpoint of potential informa-
tion loss. The same authors proposed a new set of measures for assessing information-
flow security of object-oriented designs (Alshammari  et al., 2010). (Abdulrazeg  et al., 
2012) introduced a set of security metrics, promising to quantify and improve the misuse 
case model. (Shin et al., 2014) proposed an authenticity metric for measuring the degree 
to which an Android application is overprivileged, based on information retrieved from 
static code analysis. However, none of these metrics is operationalized in the form of a 
tool, while they are custom metrics that have not been extensively evaluated for their abil-
ity to reflect security concerns (Ansar et al., 2018).

As far as the vulnerability-based measurements are concerned, the vulnerability density 
metric is the most representative measure of this category. It was introduced by (Alhazmi 
et al., 2007) as a way to assess the overall security level of software products based on their 
reported vulnerabilities. It is defined as the ratio of the total number of the reported vulner-
abilities that a product contains to the product size expressed in thousand lines of code. 
The static analysis vulnerability density (SAVD) (Walden et al., 2009) is an alteration of the 
original vulnerability density metric that is calculated based on the security-related static 
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analysis alerts of a software product, instead of its reported vulnerabilities. It is used in the 
literature as a security indicator (e.g., (Walden & Doyle, 2012; Siavvas et al., 2017b; Siavvas  
et al., 2019b)), while it has been also used as the basis for the construction of vulnerability 
predictors (e.g., (Tang et al., 2015)).

The main problem of existing internal security metrics is that they are unable to reliably 
assess the overall security level of software products, since they quantify only a specific 
facet of software security (e.g., (Chowdhury et al., 2008; Alshammari et al., 2009; Shin et 
al., 2014)), or they attempt to evaluate the overall security based on limited information 
(e.g., (Alhazmi et al., 2007)). Hence, there is a need for a sophisticated approach, i.e., a 
security model, able to combine low-level security metrics in order to provide a reliable 
indicator of software security (Verendel, 2009). As already mentioned, security models can 
be derived based on quality models, due to the fact that software security was recently 
recognized as one of the main software quality characteristics, with the issuing of ISO/
IEC 25010 (ISO, 2011) international standard on software quality. It should be noted that 
in a recent empirical study, (Basso et al., 2019) highlighted the ability of traditional quality 
models to quantify trustworthiness attributes, and mainly security.

To this end, and in order to expand the notions originally proposed for software quality 
evaluation into the security realm, a small number of security models have already been pro-
posed. For instance, (Lai, 2010) proposed a security model that calculates the overall security  
of software products based on a set of custom statically and dynamically collected metrics. 
In fact, the overall score is the weighted average of the normalized metric values. Similarly,  
(Alshammari et al., 2011) proposed a hierarchical model for assessing the security (in fact,  
the confidentiality) of object-oriented programs from class-level custom metrics that quantify  
the potential flow of classified data between classes (that were proposed by (Alshammari et 
al., 2009; Alshammari et al., 2010)). Despite their usefulness, the reliability of these models  
is hindered since their design parameters are arbitrarily selected (i.e., not selected based on a  
formal model like ISO/IEC 25010), and they are also based on custom metrics that have not  
been sufficiently studied for their ability to indicate security risks. Moreover, the weights of  
the aggregation schemes were selected subjectively (i.e., based on their authors’ judgments)  
and not based on any recognized source of information.

In an attempt for more reliable security assessment, (Xu  et al., 2013) and (Colombo 
et  al., 2012) proposed hierarchical models for measuring the security level of software 
products based on ISO/IEC 25010. According to their approach, software security is 
decomposed into a set of security characteristics as defined by ISO/IEC 25010, which are 
further decomposed into a set of more tangible properties. In both models, these proper-
ties need to be evaluated manually through code inspection by a group of experts. This 
comprises a major shortcoming, since they are not automated, and therefore they cannot 
be applied regularly during the development cycle. They are also characterized by subjec-
tivity, since the low-level properties are assessed based on expert judgments (i.e., by their 
authors based on their security expertise).

Recently, several models have been proposed for measuring software security based 
exclusively on object-oriented (OO) metrics. For example, (Medeiros  et al., 2018) pro-
posed a  Trustworthiness Assessment Model, in which the security of a software system 
is measured by taking the weighted average of the normalized values of a selected set of 
OO metrics. The final set of metrics, along with their associated weights, were determined 
based on their ability to predict software vulnerabilities, as reported by a previous empiri-
cal study (Medeiros et  al., 2017). In another recent work, (Dayanandan  & Kalimuthu, 
2018) proposed a hierarchical model for assessing software security at architectural level, 
based exclusively on OO metrics retrieved from the QMOOD metric suite (Bansiya & 
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Davis, 2002). Similarly to the works of (Xu et al., 2013) and (Colombo et al., 2012), ISO/
IEC 25010 was used for the definition of the model structure, whereas its parameters (i.e., 
weights) were defined based exclusively on expert judgments.

However, the reliability of these models is hindered since they are based exclusively on  
OO metrics, which were found to be only weak indicators of vulnerabilities (Shin & Williams,  
2008; Chowdhury  & Zulkernine, 2011; Shin et  al., 2011; Siavvas et  al., 2017; Siavvas 
et al., 2017b; Moshtari et al., 2013; Moshtari & Sami, 2016; Stuckman et al., 2017; Ferenc  
et al., 2019; Jimenez et al., 2019; Zhang et al., 2019). In addition, their parameters (i.e., 
thresholds, weights, etc.) were selected either based on very limited (Medeiros et al., 2018) 
or subjective information defined by their authors (Dayanandan & Kalimuthu, 2018) (i.e., 
expert judgments). They also lack sufficient evaluation, as both of them were evaluated 
through simple case studies that were based on a single product (i.e., Mozilla Firefox). 
Finally, they lack practical implementation, which prevents their actual usage and further 
evaluation.

Several theoretical guidelines for approaching the problem of software security assess-
ment have been also proposed. For instance, (Zafar et al., 2015) proposed a way for con-
structing hierarchical security assessment models based on the Dromey’s quality model 
(Dromey, 1995). In fact, they attempted to extend Dromey’s notions that were initially 
proposed for software quality, into the security realm. Although they provided a formal 
description of how low-level security properties can be mapped to high-level security 
attributes, they did not propose an operationalized assessment model that can be used in 
practice. Also, (Medeiros  et al., 2017) proposed a general theoretical methodology for 
assessing the trustworthiness (including security) of cloud-based web services, based on 
the adoption of multi-criteria decision-making techniques. However, they provide only a 
theoretical conceptualization of their overall idea, without providing specific details about 
their proposed assessment approach (e.g., model structure, potential metrics, etc.).

Recently, probably due to the lack of well-accepted security metrics, several researchers 
have started examining the feasibility of quantifying software security indirectly through 
the notion of Technical Debt (TD)6. More specifically, guidelines on how the concept of 
TD can be extended to support software security have been provided (Rindell et al., 2019; 
Rindell & Holvitie,  2019), whereas ways for prioritizing security bugs as technical debt 
items (i.e., quality issues) have already been proposed (Izurieta  et al., 2018; Izurieta  & 
Prouty, 2019). In addition, (Siavvas et al., 2019b) provided preliminary empirical evidence 
for the relationship between TD and software security, indicating that TD may potentially 
be used as an indicator of software security issues. However, TD needs to overcome impor-
tant challenges before becoming a reliable measure of software security, since existing TD 
models address security risks inadequately, or not at all (Rindell & Holvitie, 2019).

2.2  Comparison and proposed advances

From the above analysis, it is clear that current literature lacks an effective model for meas-
uring the internal security risk of software products. This can be explained by the fact that 
the field of software security evaluation is a relatively new area of research, which has 
recently started gaining attention due to the overall shift of the software industry towards 
secure software development (Sentilles  et al., 2018; Mohammed et  al., 2016). In fact, 

6 Technical Debt is a notion inspired by the financial debt that is widely used in the software industry for 
assessing software quality (Cunningham, 1993).
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according to our analysis, although a small number of security models have been proposed 
(Lai, 2010; Alshammari et al., 2011; Xu et al., 2013; Colombo et al., 2012; Zafar et al., 
2015; Medeiros et al., 2018; Dayanandan & Kalimuthu, 2018), none of them has managed 
to achieve sufficient level of practicality and reliability.

This observation is supported by several recently published surveys (Ansar et al., 2018; 
Sentilles et al., 2018; Morrison et al., 2018), which highlight the lack of a well-accepted met-
ric, model, or technique for quantifying software security. According to their findings, exist-
ing solutions are not reliable, since they are based on unreliable information and they lack  
sufficient empirical evaluation, whereas they are also impractical since they lack actual 
implementation.

A qualitative comparison of existing models is considered valuable for the reader, in 
order to gain a better understanding of their strengths and weaknesses, as well as of the 
main contributions of the present work. To realize this comparison, a set of criteria (i.e., 
characteristics) need to be defined, which will act as the main axes of the comparison. To 
this end, we defined five criteria that we consider important for characterizing the practi-
cality and reliability of a given model (and against which we would like the models to be 
compared), which are listed below:

– High-level overview: The model provides quantitative values that measure inher-
ent security properties of software products. These quantitative values (i.e., scores) 
can reflect (measure) the overall internal software security and/or important security 
requirements, such as Confidentiality, Integrity, and Availability.

– Operationalization: The model is operationalized, i.e., implemented in the form of a 
tool, and not only a theoretical conceptualization.

– Automation: The model is fully automated, and therefore it can be used regularly dur-
ing the overall development process, without significantly affecting the developers’ 
workflows.

– Standardization: The model encapsulates formal concepts that are expressed by inter-
national standards (e.g., ISO/IEC 25010).

– Objectivity: The model provides sufficiently objective security assessments, consider-
ing minor (to no) subjective information (i.e., information defined by the authors and 
not by well-accepted sources). In fact, it avoids being based on: (i) custom metrics, 
(ii) expert judgments, and (iii) arbitrary values or assumptions. In case that subjective 
information is considered by the model, evaluation of its impact on the model’s objec-
tivity is provided.

The first three criteria are related to the practicality of a given security model, whereas the 
latter two are related to its reliability.

The qualitative comparison of the existing models based on the aforementioned crite-
ria is presented in Table 1. It should be noted that our approach was inspired by similar 
approaches that are used in the literature for comparing different models, techniques, or 
systems (e.g., (Heitlager et al., 2007) and (Li et al., 2018)).

As can be seen in Table 1, none of the existing models manages to encompass all of 
the defined characteristics. An interesting observation is that none of the existing models 
is operationalized in the form of a tool, and thus they cannot be used in practice for indus-
trial purposes or further research. Another interesting observation is that none of them 
is sufficiently reliable. In fact, these models are usually based on subjective information, 
such as expert judgments (in fact, author judgments) and arbitrarily selected parameters, 
while they also lack sufficient empirical evaluation. Their evaluation is based on simple 
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case studies conducted on a limited number of software applications, avoiding comparisons 
with existing security evaluation approaches. Although these case studies are effective in 
demonstrating the usefulness of the proposed models, they do not provide sufficient evi-
dence for their correctness. The lack of empirical evaluation is the main shortcoming of the 
vast majority of existing security metrics (Verendel, 2009; Sentilles et al., 2018; Morrison 
et al., 2018; Ansar at al., 2018).

As discussed in detail in the rest of the paper, the proposed security model manages to  
encompass all of the defined characteristics. In brief, the model is highly practical, since it is  
operationalized in the form of a standalone tool (Online, 2020) and is fully automated, allow-
ing its regular application during the overall development cycle. It is also sufficiently reliable  
(compared to its counterparts), since it is based on information retrieved from commonly 
accepted sources (e.g., ISO/IEC 25010 and CWE), while it was also built and evaluated on a 
large volume of empirical data (i.e., 250 software applications, comprising approximately 20  
million lines of code). It should be noted that, for reasons of completeness, the model consid-
ers minor subjective information (i.e., expert judgments), which was not found to influence  
the overall assessment, and which can be completely eliminated (see Section 5.5).

At this point, some clarifications with respect to the concepts of vulnerability detection, 
vulnerability prediction, and security assessment are considered necessary to familiarize 
the reader with the content of the present paper. These concepts are actually three individ-
ual research directions in the broader field of software security, which often complement 
each other.

In particular, vulnerability detection focuses on building techniques and mechanisms able 
to detect actual vulnerabilities that reside in software programs (McGraw, 2008; Felderer et 
al., 2016; Mohammed et al., 2016). Such techniques include static analysis, penetration test-
ing, fuzzing, etc., each one demonstrating its strengths and weaknesses (Howard & Lipner, 
2006; Felderer et al., 2016). The research in the area of security assessment focuses on build-
ing techniques and models that are able to evaluate the security level of a software product,  
normally based on the results produced by vulnerability detection mechanisms (Verendel, 
2009; Basso et  al., 2019). For instance, a software product can be considered relatively 
secure, if no vulnerabilities can be detected. Finally, the research in the field of vulnerabil-
ity prediction focuses on predicting software artefacts that are likely to contain vulnerabili-
ties (Jimenez et al., 2016; Shin et al., 2011; Siavvas et al., 2018a; Scandariato et al., 2014).  
This information is very useful for the developers and project managers, for prioritizing their  
testing and fortification efforts, as limited test resources can be allocated to high-risk areas. 
For instance, more extensive vulnerability detection mechanisms can be applied to these 
vulnerability-prone components, increasing the probability of identifying actual vulnerabil-
ities (Jimenez et al., 2016; Shin et al., 2011; Siavvas et al., 2018a; Scandariato et al., 2014;  

Table 1  Comparison between 
existing security models and the 
proposed Security Assessment 
Model (SAM)

[1]: (Lai, 2010); [2]: (Alshammari, et al. 2011); [3]: (Medeiros et al.,  
2018); [4]: (Xu et al., 2013); [5]: (Colombo et al., 2012); [6]: (Zafar et al.,  
2015); [7]: (Dayanandan & Kalimuthu, 2018)

Requirements [1] [2] [3] [4] [5] [6] [7] SAM

High-level overview ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Operationalization ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓
Automation ✓ ✓ ✓ ✕ ✕ ✕ ✓ ✓
Standardization ✕ ✕ ✕ ✓ ✓ ✓ ✓ ✓
Objectivity ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓
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Chowdhury & Zulkernine, 2011; Zhang et al., 2019). Therefore, from the above descrip-
tion, it is eminent that, although these concepts are treated as independent areas of research, 
they actually complement each other, and they are usually combined.

3  Security assessment model

In this section, we describe in detail the proposed security assessment model. More specifi-
cally, we initially present the internal structure of the proposed SAM, along with the main 
steps that are executed for assessing the security level of software products. Subsequently, 
we describe in detail how the model was constructed, providing sufficient justification for 
each option. This enhances the transparency of the proposed model and enables the con-
struction of similar security models. The novel approach that was used for the calculation 
of a reliable set of weights that reflect the well-established information provided by CWE 
is also presented (see Section 3.2.2).

It should be noted that the model was constructed based chiefly on the features provided 
by the Quality Assessment Tool Chain (QATCH) (Siavvas, 2017a), which is a recently pro-
posed quality model derivation framework that allows the production of quality models 
that encapsulate novel concepts of software quality assessment. Therefore, the proposed 
SAM is based on state-of-the-art software quality evaluation principles. In fact, the pivotal 
characteristics of QATCH that make it suitable for the construction of the proposed secu-
rity assessment model are listed below:

– It allows the derivation of hierarchical quality models that their structure complies with 
the ISO/IEC 25010 international standard.

– The produced quality models are based on static analysis alerts and software metrics, 
rendering the overall evaluation fully automated.

– It provides state-of-the-art techniques for threshold derivation and weights elicitation, 
allowing the production of more reliable models.

As it will be shown later, the platform was slightly extended, in order to consider security-
specific concepts, and, thus, to support the production of security assessment models. It 
should be noted that, similarly to machine learning algorithms, the mechanisms provided 
by QATCH are meant only for “training” (i.e., calibrating) the proposed model. As a result, 
the actual reliability of the produced model depends on the specific information that is used 
for its construction.

3.1  Model description

3.1.1  General structure

The general structure of the proposed model is illustrated in Fig. 2. As it is shown in Fig. 2, 
the model has a hierarchical structure. It comprises four layers: (i) the layer of measures, 
(ii) the layer of properties, (iii) the layer of characteristics, and (iv) the layer of the overall 
security. In brief, the model starts with the calculation of a set of low-level security meas-
ures (i.e., static analysis alerts and software metrics) from the source code and uses their 
values along with a set of thresholds, in order to assign ratings (i.e., scores) to a group 
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of higher-level properties (e.g., Complexity). These ratings are then aggregated using a 
weighted average scheme in order to calculate the ratings of a set of security characteristics 
(e.g., Confidentiality). Finally, these ratings are averaged, in order to calculate the overall 
security score of the software product under analysis. The score resides in the [0,1] inter-
val. In fact, the proposed security model aggregates the low-level security indicators in a 
sophisticated way, in order to obtain a single security score, i.e., the Security Index, which 
reflects the internal security level of the analyzed software product. The final security score 
provides a better understanding of the product’s security level to developers and project 
managers, compared to the individual low-level measures.

The overall structure of the proposed model is in line with the guidelines that are pro-
vided by the ISO/IEC 25010 international standard, for the construction of quality models 
in general. According to ISO/IEC 25010, the complex notion of software quality should be 
hierarchically decomposed into a set of quality characteristics (e.g., Security), which can 
be further decomposed into a set of quality sub-characteristics (e.g., Confidentiality and 
Integrity). Although these attributes are more tangible compared to the complete notion of 
quality, they cannot be measured directly from the source code of a software product, and, 
thus, they should be quantified indirectly through a set of low-level properties that can be 
directly quantified from source code.

In fact, ISO/IEC 25010 is a quality definition model (Wagner, 2013) that acts as a 
blueprint for the derivation of quality assessment models. Thus, the proposed SAM is an 
instantiation of the ISO/IEC 25010 quality model, which allows the quantification of the 
quality attribute of Software Security. This enhances its reliability, since it is based on con-
cepts proposed by an international standard, instead of subjective beliefs. Similar attempts 
have been conducted for other quality attributes, like Maintainability (e.g., (Heitlager et al., 
2007)).

Apart from reasons of compliance with ISO/IEC 25010, the model was selected to have  
a hierarchical structure, since hierarchical decomposition allows the reduction of complex  
problems (notions) into simpler ones that are easier to understand and manage (Saaty, 2008). 
This is the main reason why hierarchical decomposition is commonly used for decision 

Security

Security
Characteristic 1

Security
Characteristic 2

Security
Characteristic N...

Security Property 1 Security Property 2 Security Property M

Measure 1 Measure 2 Measure M

Source Code

...

Security Layer

Characteristics
Layer

Properties
Layer

Measures
Layer

Fig. 2  The overall structure of the proposed security assessment model (SAM) 

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



 Software Quality Journal

1 3

making, as well as for the construction of both quality (Wagner et  al., 2015) and secu-
rity models (Alshammari et al., 2011; Xu et al., 2013; Colombo et al., 2012; Dayanandan  
& Kalimuthu, 2018). In addition, the hierarchical structure allows developers and project 
managers to view the assessment results at different levels of abstraction, providing more 
fine-grained evaluation and thus enabling root-cause analysis (Heitlager et al., 2007).

3.1.2  Specific structure

As described in the previous section the model has a hierarchical structure. More specifi-
cally, the proposed SAM consists of three security characteristics, namely Confidentiality, 
Integrity, and Availability (see Table 2). The reasoning behind the selection of these char-
acteristics is that they constitute fundamental and well-established security objectives (i.e., 
requirements) of software systems (Andress, 2014), recognized by numerous international 
standards as the core information security attributes, e.g., (NIST, 2018; ISO, 2013), which 
together form the CIA triad of information security (Andress, 2014). In fact, these three 
security attributes are considered the principal components for building secure systems 
(Whitman  & Mattord, 2011; Mumtaz  et al., 2018). Another reason for their selection is 
that they can be assessed based on information retrieved from the application source code 
through static analysis. For instance, most of the available static code analyzers are able to 
detect security issues that infringe the security attributes of Confidentiality, Integrity, and 
Availability, as can be seen by the entries of common weaknesses that are available on the 
Common Weakness Enumeration (CWE) knowledge base.

It should be noted that additional security attributes were considered for the construc-
tion of the model (with the purpose to complement the CIA triad), however, they were 
excluded either because they could not be assessed through static analysis (e.g., Authen-
ticity), or because the derivation of a reliable set of weights was impossible (e.g., Non-
repudiation), due to limited information available (see Section 3.2.2). Although this deci-
sion can be considered subjective, as it was deliberately made by the authors of the model, 
deciding to keep those security characteristics inside the model, would add more subjec-
tivity and would affect the correctness of the produced model, since arbitrary decisions 
would have to be made regarding their quantification through static analysis and the selec-
tion of their weights. More specifically, we would need to state that specific characteristics, 
e.g., Authenticity, can be quantified through completely irrelevant alert-based properties, 
whereas for those characteristics that our weights elicitation approach could not produce a 
reliable set of weights (due to lack of reliable information on well-established knowledge 

Table 2  The Security Characteristics of the proposed security assessment model. The overall concept of 
Software Security is hierarchically decomposed into three security characteristics, namely Confidentiality, 
Integrity, and Availability, which are widely known as the CIA triad (Andress, 2014). The definitions were 
retrieved from the ISO/IEC 25010 (ISO, 2011) international standard

Characteristic Description

Confidentiality The degree to which the software product ensures that data are accessible only to those 
that are authorized to have access (ISO, 2011).

Integrity The degree to which a software product, system, or component prevents unauthorized 
modification of sensitive data (ISO, 2011).

Availability The degree to which a system, product, or component is operational and accessible when 
required for use (ISO, 2011).
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bases), we would need to assign weights based on our intuition and expertise. This would 
infringe the reliability and the correctness of the produced model. After all, as already men-
tioned, the selected security characteristics (i.e., Confidentiality, Integrity, and Availability) 
are considered in the literature as the main security requirements of information systems in 
general (NIST, 2018; ISO, 2013), which are often termed as the CIA triad (Andress, 2014). 
Hence, focusing on characteristics for which we are confident that there is reliable informa-
tion expressed by well-accepted sources, is better than extending our model for covering 
more cases, with the risk of infringing its correctness and its reliability.

The model also consists of 11 security properties. These properties are evaluated (i.e., 
quantified) through code-level measures, which are either (i) security-relevant software 
metrics, or (ii) densities of security-specific static analysis alerts. As can be seen in Fig. 2, 
each property is quantified by a single code-level measure, meaning that there is an “1-1” 
relationship between measures and properties. Hence, the model defines two types of prop-
erties, which are determined by the type of the measures that are used for their evaluation, 
i.e., (i) metrics-based properties and (ii) alert-based properties (which are also called vul-
nerability categories).

In particular, the model comprises four metrics-based properties, namely Complexity, 
Cohesion, Coupling, and Encapsulation, which are quantified through the software metrics 
of WMC, LCOM, CBO, and MOA. These metrics were retrieved from the well-known suits 
of (Chidamber & Kemerer, 1994) and QMOOD (Bansiya & Davis, 2002), and calculated 
through the CKJM Extended7 software metrics tool, which is integrated in the QATCH 
(Siavvas, 2017a) platform. CKJM Extended is an open source tool able to calculate a wide 
range of metrics (including those proposed by (Chidamber & Kemerer, 1994) and (Bansiya 
& Davis, 2002)), by processing Java files. The aforementioned metrics-based properties 
and their corresponding metrics are described in Table 3.

The reasoning behind the selection of these metrics-based properties is that there is suf-
ficient empirical evidence in the literature for the ability of software metrics to predict the 
existence of security vulnerabilities in software products. In particular, a large number of 
empirical studies have shown that software metrics are related to the existence of software 
vulnerabilities in a statistically significant manner (albeit with weak strength) and that they 
are capable of accurately predicting the existence of vulnerabilities in software components 
(e.g., (Shin & Williams, 2008; Chowdhury & Zulkernine, 2010; Chowdhury & Zulkernine,  
2011; Shin et  al., 2011; Moshtari et  al., 2013; Moshtari  & Sami, 2016)). However, 
instead of being based on the generalizability of these results, in a recent empirical study  
(Siavvas et al., 2017b), which was based on the code base that was used for the calibration 
of the present model (see Section 3.2.1), we verified the capacity of the software metrics to 
indicate the existence of security issues in the selected products. This study provides strong 
evidence for the inclusion of software metrics in the model.

As illustrated in Table 3, each metric-based property (i.e., metric type) is measured by a  
single software metric. The reasoning behind our decision to assign one metric as the rep-
resentative metric for the quantification of each metric-based property was to avoid mak-
ing the produced security model complex. The selection of the representative metrics was 
based mainly on evidence that could be found in the related literature. In fact, the CKJM  
Extended tool offers a variety of software metrics for each one of the selected metric types. 
During the construction of the security model, we examined all the metrics that the CKJM 
Extended tool offers, and for each metric type (i.e., metric-based property) we chose the 

7 http:// gromit. iiar. pwr. wroc. pl/p_ inf/ ckjm/
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one that we could find significant evidence in the literature regarding its ability to indi-
cate the existence of vulnerabilities in software. In fact, sufficient evidence exists in the 
related literature for the relationship of WMC, CBO, and LCOM to software security (i.e., 
the existence of vulnerabilities) (Shin  & Williams, 2008b; Chowdhury  & Zulkernine, 
2011; Shin et  al., 2011; Medeiros  et al., 2017; Moshtari et  al., 2013; Moshtari & Sami, 
2016; Stuckman et al., 2017; Ferenc et al., 2019; Jimenez et al., 2019; Zhang et al., 2019), 
whereas a previous empirical study that we conducted on the same dataset that was used 
for the calibration of the proposed security model revealed that MOA is the encapsulation 
metric that demonstrates the closest correlation to software security (at least for the given 
dataset) (Siavvas et al., 2017b). Since the rest of the metrics that the CKJM Extended tool 
offers have not been studied (or extensively studied) in the literature for their relevance to 
software security, we decided not to include them in the model, in order to prevent putting  
under question the correctness and reliability of the proposed model. It should be noted 
that, similarly to (Baggen et al., 2012), our final selection was also influenced by the var-
iability of the values of the different metrics that were calculated based on the selected 
benchmark repository (see Section 3.2.1). In fact, metrics with very small variability were 
excluded, as they would probably lead to unreliable set of thresholds (see Section 3.2.1).

The model also contains 7 alert-based properties, namely Null Pointer, Assignment, 
Exception Handling, Resource Handling, Logging, Misused Functionality, and Synchroni-
zation. Each one of these groups contains weaknesses that may lead to similar vulnerabili-
ties, and therefore they are also termed as vulnerability categories.

These vulnerability categories were constructed by properly grouping the secu-
rity-related rules of the PMD8 static code analyzer. PMD, which is also integrated in 
the QATCH framework, is an open-source static code analyzer that is included by both 
OWASP9 and NIST10 in their lists of recommended static analysis tools that can be used 

Table 3  The software metrics-based properties of the proposed security assessment model, along with the 
specific metrics that are used for their quantification. These metrics are retrieved from the (Chidamber & 
Kemerer, 1994) and (Bansiya & Davis, 2002) metric suits (also known as CK and QMOOD suits respec-
tively), while they are quantified using the CKJM Extended tool

Property Description Metric

Complexity The level of the logical 
complexity of the soft-
ware product.

WMC (Weighted Methods per Class): The total number of 
methods that a class contains weighted by their complex-
ity values.

Cohesion The degree to which a soft-
ware product satisfies the 
separation of concerns 
principle.

LCOM (Lack of Cohesion in Methods): The number of 
methods pairs in a class that are not interrelated through 
the sharing of some of the class’ fields.

Coupling The level of independence 
between the modules of 
the software product.

CBO (Coupling Between Objects): The total number of 
classes coupled to a given class.

Encapsulation The degree to which the 
software product avoids 
user-defined information.

MOA (Measure of Aggregation): This metric is a count of 
the number of data declarations that are user-defined.

8 https:// pmd. github. io/
9 https:// www. owasp. org/
10 https:// www. nist. gov/
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for detecting common vulnerabilities. In brief, PMD searches in the source code for viola-
tions of specific rules that correspond to best coding practices. If a violation is found, an 
alert is produced, which is added in a broader evaluation report.

Despite its ability to detect issues with security implications, PMD does not provide any 
ready-made security-specific groups of rulesets, nor information regarding the security rel-
evance of its rules. For this purpose, we manually identified the security-relevant rules and 
grouped them into vulnerability categories. To ensure correct definition of the vulnerability 
categories we used information from the Common Weakness Enumeration (CWE), which 
is a commonly accepted dictionary of common coding and design issues that may affect 
software security.

In particular, a mapping between PMD rules and CWE entries was performed, in order 
to facilitate the construction of the vulnerability categories. In fact, the initial set of 233 
rules for Java programming language, which are provided by the PMD version that is used 
by the QATCH platform, were inspected with respect to their security relevance. For each 
one of these rules, we manually searched in the CWE database to find a relevant entry. In 
Table 4 we provide some representative examples of our mapping. It should be noted that 
our mapping is in line with the one provided by CodeSonar11, while we also cover some 
additional rules. Those rules that could not be mapped to a security-relevant CWE entry 
were excluded from the final set of rules. This process led us to a set of 138 PMD rules 
with security implications, which were grouped into the aforementioned seven vulnerabil-
ity categories (i.e., alert-based properties), based on their relevance. A description of these 
categories is provided in Table 5, along with the most representative CWE ID that better 
describes each group.

The detailed list of PMD rules that belong to each vulnerability category, along with 
their mapping to the CWE entries is provided at (Online, 2020), which includes supporting 
material of this paper. This mapping was also required for the derivation of the model’s 
weights through a novel approach that is described in Section 3.2.2. A similar approach 
for defining both quality- and security-related weakness categories was adopted in a recent 
empirical study (Siavvas et al., 2017b).

At this point, it should be noted that the reasoning behind the selection of a single static 
code analyzer for quantifying the alert-based properties is that we wanted the produced 
security model to be less complex and highly practical. Although integrating multiple 
static code analyzers would allow the model to detect additional types of security issues, it 
would also lead to a significant increase in the information (both actionable and unaction-
able) reported to the user. Actually, despite the fact that static analysis tools are known for  

Table 4  Mapping between PMD rules and CWE entries - Representative Examples

PMD Rule CWE Entry

AvoidCatchingGenericException CWE-396: Declaration of Catch for Generic Exception
AvoidPrintStackTrace CWE-209: Information Exposure Through an Error Message
CloseResource CWE-400: Uncontrolled Resource Consumption
AvoidReassigningParameters CWE-485: Insufficient Encapsulation
DontCallThreadRun CWE-572: Call to Thread run() instead of start()
NullAssignement CWE-476: NULL Pointer Dereference

11 https:// www. gramm atech. com/ produ cts/ codes onar
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their effectiveness in detecting vulnerabilities early enough in the software development 
lifecycle (SDLC) (McGraw, 2006; Chess & McGraw, 2004; Mohammed et al., 2016), they 
are underused in practice (Johnson  et al., 2013; Bholanath, 2016). The main reason for 
their limited adoption is the overwhelming information that they produce, which are long 
lists of raw warnings (i.e., alerts) (Johnson et al., 2013). These warnings need to be man-
ually examined to determine whether they correspond to actual bugs that require imme-
diate corrective actions (i.e., actionable alerts (Heckman & Williams, 2009)) or they are  
just false positives (i.e., unactionable alerts). This process is normally called triaging (Walden  
& Doyle, 2012), and it is a highly time-consuming and effort-demanding process. The 
large number of unactionable alerts (i.e., false positives), discourages developers from 
using them in practice. Therefore, aggregating multiple static code analyzers, would also 
aggregate their reports, i.e., both their actual issues and the false positives, discouraging 
developers from using the proposed model in practice. Of course, the reader, following the 

Table 5  The alert-based properties (i.e., vulnerability categories) of the proposed security assessment 
model. The most representative CWE entry that better describes each property is also provided

Vulnerability Cat-
egory

Description CWE

Null Pointer Contains rules that are able to detect issues regarding 
null pointer dereference. A NULL Pointer derefer-
ence typically leads to system crash.

CWE-476: NULL Pointer 
Dereference

Assignment Contains rules that are able to detect variable assign-
ment and declaration issues with security implica-
tions (e.g., local variables that are not declared final 
can be used as entry points by the attackers).

CWE-668: Exposure of 
Resource to Wrong 
Sphere

Exception Handling Contains rules that check for improper exception 
handling. Improper exception handling may lead to 
system crash or disclosure of system information to 
the users.

CWE-388: Error Han-
dling, CWE-199: Infor-
mation Manag. Errors

Resource Handling Contains rules that check for improper management of 
system resources (e.g., memory, connections etc.). 
Improper resource handling may lead to degradation 
of service or even denial of service.

CWE-399: Resource 
Management Errors

Logging Contains rules that check for incorrect usage of log-
ging functionality. Incorrect logging may lead to 
omission of important incidents, while misplaced 
logging commands (e.g., inside loops) may increase 
the program tardiness.

CWE-778: Insufficient 
Logging

Adjustability Contains rules that check the existence of hard-coded 
security sensitive information. These hard-coded 
values may become available to attackers if the code 
is ever disclosed.

CWE-547: Use of Hard-
coded, Security-relevant 
Constants

Misused Functionality Contains rules that check for misused functions that 
are provided by the programming language or widely 
used APIs.

CWE-227: Improper Ful-
fillment of API Contract 
(’API Abuse’)

Synchronization Contains rules that check for synchronization (i.e., 
timing) issues. Improper synchronization may lead 
to important problems like deadlocks and race condi-
tions, which may cause severe security breaches, 
such as denial of service or unauthorized access 
respectively.

CWE-662: Improper 
Synchronization
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approach presented in this paper, can build similar models, utilizing multiple static code 
analyzers, if deemed necessary.

It should be noted that, apart from reasons of model automation, since the proposed 
SAM focuses on the coding phase of the overall SDLC, static analysis was the most suit-
able mechanism on which it should be based for assessing code-level security. As already 
mentioned, most of the vulnerabilities that reside in software stem from a small number 
of common programming errors that are introduced by the developers during the coding 
(i.e., implementation) phase of the overall SDLC (Krsul, 1998; Howard et al., 2010; Chess 
& McGraw, 2004; Mohammed et al., 2016). For instance, well-known security breaches 
like Equifax Breach (Luszcz, 2018) and Heartbleed (Carvalho et  al., 2014) were caused 
by simple implementation errors. Static analysis is considered one of the most effec-
tive techniques for detecting such code-level security-related errors, early enough in the  
overall SDLC, when their correction is relatively cheap and easy (Chess and McGraw, 
2004; McGraw, 2006; Mohammed et  al., 2016), and therefore it should be applied dur-
ing the coding phase of the overall software development. This belief is expressed by 
several experts in the field of software security (e.g., (Chess & McGraw, 2004; Chess &  
McGraw, 2004)), while almost all the well-established secure software development life-
cycles (SSDLCs), including the well-known Microsoft’s SDL (Howard, 2003; Howard & 
Lipner, 2006), OWASP’s OpenSAAM12, and Cigital’s Touchpoints (McGraw, 2006), pro-
pose the adoption of static analysis as the main mechanism for adding security during the 
coding (i.e., implementation phase) of the SDLC. In addition, static analysis is a security 
activity commonly adopted by major technology firms like Google, Microsoft, Adobe and 
Intel, as reported by the BSIMM13 initiative.

However, one of the main shortcomings of static analysis is that it produces false posi-
tives, i.e., alerts that do not correspond to actual issues (Johnson et al., 2013). Although 
the false positives produced by static analysis is not expected to affect the overall assess-
ment performed by the model, as it is based on the concept of benchmarking, it can affect 
its practicality. In brief, they could lead to large lists of alerts that need to be examined by 
the developers in order to verify which of them are actionable and require to be fixed and 
which do not. This process, which is known as triaging (Walden & Doyle, 2012; Ruthruff, 
2008), is highly time consuming and effort demanding, and is known to be the main rea-
son that static analysis tools are underused in practice (Johnson et al., 2013). Hence, since 
the produced model is based on static analysis, the practicality of static analysis actually 
affects the practicality of the produced model.

Hence, similarly to (Walden  et al., 2009), we decided to examine the false positive 
rate of the selected static code analyzer (i.e., the PMD tool), in order to ensure that it is 
bounded within manageable levels. However, the number of static analysis alerts that were 
produced for each one of the software products of the selected benchmark, as well as the 
fact that these products were not developed by us, made it impractical to manually verify 
whether each vulnerability was false positive or not, especially in a reliable way. Instead, 
similarly to (Walden et al., 2009), we examined two individual projects. In particular, in 
order to ensure the correctness of the analysis and the reliability of the observations, we 
selected two software projects that were developed within the context of the SDK4ED EU 
Project, for which their developers were reachable. For these two software projects, the 
PMD tool reported 149 issues, 23 of them were false positives. Hence, the estimated false 

12 https:// www. opens amm. org/
13 https:// www. bsimm. com/
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positive rate for the PMD analyzer was found to be 15.4%. According to our opinion, this 
false positive rate can be considered tolerable, and it is not expected to affect the practical-
ity of our proposed SAM.

3.1.3  Security evaluation

The purpose of the security assessment model is to aggregate the code-level measures in 
a meaningful way, in order to calculate a high-level security score that reflects the internal 
security level of the software product under evaluation. This security score, which is called 
Security Index (SI), receives a continuous value that resides in the [0,1] interval. Values 
closer to 0 indicate low security, while values closer to 1 indicate better level of security.

Similarly to other quality models (e.g., (Wagner et al., 2015; Heitlager et al., 2007; Siav-
vas et al., 2017b)), the overall assessment is performed in two sequential steps. The first 
step is responsible for the evaluation of the model properties, from the system-level values 
of their associated measures. The outcome of this evaluation is the assignment of a rat-
ing (i.e., score) to each one of the model properties. The second step is responsible for 
the evaluation of the model’s characteristics from the properties ratings. This step is also 
responsible for the calculation of the overall Security Index of the product from the ratings 
of the defined security characteristics. The security assessment procedure that is employed 
by the model is briefly presented in what follows.

Initially, the model receives as input the source code of the software product that 
requires security assessment. Subsequently, it executes static analysis in order to detect 
potential security issues (i.e., static analysis alerts) that belong to the 7 vulnerability cat-
egories defined in Table 5. It also calculates the absolute values of the four software met-
rics defined in Table 3. These measures cannot be used directly for the evaluation of the 
model properties, since they are in a raw and low-level format. More specifically, a list of 
static analysis alerts is produced for each one of the 7 vulnerability categories of the model, 
while the selected metrics are calculated at class level (for each class of the analyzed prod-
uct). Hence, appropriate aggregation and normalization should be applied, in order to bring 
these measures at system level, and therefore enable the evaluation of the model properties.

In order to bring the software metrics at system level, the aggregation and normalization 
scheme proposed by (Wagner et al., 2012) for common quality models is employed. More 
specifically, the system-level value of a software metric is the aggregation of its class-level 
values weighted by the lines of code of each class, divided by the total lines of code of the 
system under analysis. This normalization and aggregation approach is commonly used by 
other quality models as well, such as those proposed by (Deissenboeck et al., 2009) and 
(Wagner et al., 2015).

As far as the vulnerability categories (i.e., alert-based properties) are concerned, QATCH  
has been extended, in order to support the calculation of the static analysis-vulnerability 
density metric (SAVD)  (Walden and Doyle, 2012; Walden et al., 2009). As mentioned in 
Section 2.1, the SAVD is the total number of security-specific static analysis alerts reported 
by a static code analyzer for a specific software product, per thousand lines of code. For 
each one of the defined vulnerability categories, an individual SAVD is calculated, which is 
given by the following formula:

where:

(1)SAVDi = 1000
Ni

LOC
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SAVDi : the SAVD of the ith vulnerability category
Ni : the total number of static analysis alerts that belong to the i-th vulnerability category
LOC : the total lines of code of the software product

Therefore, although SAVD is normally used as an indicator of the overall security level 
of software products, in the present study we use SAVD for assessing specific vulnerability 
categories. This allows more fine-grained security assessment, since the “proneness” of the 
analyzed software product to specific types of vulnerabilities is evaluated and considered 
during the overall assessment. We also used a similar approach in another empirical study 
(Siavvas et al., 2017b). The SAVD is already at system level, since the value is divided by 
the lines of code of the overall product.

The system-level values of these measures are used for evaluating the security prop-
erties of the model. As already mentioned, there is an “1-1” relationship between meas-
ures and properties, meaning that each property is quantified (i.e., evaluated) by a single 
measure (see Fig.  2). In particular, the system-level value of a specific measure is used 
for assigning a rating (i.e., score) to its corresponding property, which resides in the [0,1] 
interval and reflects how well this security property is satisfied by the system. The concept 
of utility function, which was originally proposed by (Wagner et al., 2012), is used for map-
ping measure values to property ratings.

Each security property has a utility function. A utility function has a partially linear 
form, and assigns a score between 0 and 1 to the property, based on the system-level value 
of its corresponding measure, and a set of measure-specific thresholds (i.e., tl , tm , tu ). More 
specifically, the utility function of a property P is described by the following formula:

In the above formula, s corresponds to the system-level (i.e., normalized) value of the 
code-level measure that is associated to the corresponding property P. For better understand-
ing, the main structure of the utility function is presented in Fig. 3. It should be noted that the 
main reasoning behind the selection of this structure of utility functionis that it has been also 
used by well-known quality models (e.g., (Wagner et al., 2015; Wagner et al., 2012)).

The next step of the overall assessment is the evaluation of the model characteristics. 
The security characteristics of the model are evaluated indirectly from the ratings of the 
model properties, based on the impact that they have on them. As can be seen in Fig. 2, 
each property has an impact on each one of the model characteristics. The ratings of the 
security characteristics are calculated by taking the weighted average of the ratings of the 
model properties. The weights constitute a quantitative expression of the impact that the 
model properties have on its characteristics. The weights of the proposed model were cal-
culated based on the novel approach presented in Section 3.2.2, so as to chiefly reflect the 
knowledge expressed by CWE.

Finally, the Security Index (SI) of the software product under evaluation is calculated, 
based on the ratings of the model characteristics. The three security characteristics of the 
model, i.e., Confidentiality, Integrity, and Availability, are considered equally important for 
the calculation of the security level of a software product, since the primary focus of infor-
mation security, in general, is the balanced protection of these three security requirements 

(2)fp(s) =

⎧
⎪⎪⎨⎪⎪⎩

1 , s ≤ tl
0.5

tl − tm
(s + tl − 2tm) , tl ≤ s ≤ tm

0.5

tm − tu
(s − tu) , tm ≤ s ≤ tu

0 , s ≥ tu
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(Andress, 2014). Thus, the final Security Index of the software product under evaluation 
is calculated by taking the simple average of the ratings (i.e., scores) of the three security 
characteristics of the model. However, it should be noted that the model is highly customiz-
able with respect to its weights and thresholds, and therefore the importance of its security 
characteristics on the overall Security Index can be manually defined by the users based on 
their preferences. This can be easily achieved simply by changing the values of their cor-
responding weights in the XML file that contains the description of the model (available at 
(Online, 2020)), without the need for any further configuration or re-calibration.

A discrete indicator of software security is also considered highly useful for better com-
municating the results of the assessment even to non-technical stakeholders, and therefore 
for facilitating decision-making, since human brain can perceive better linguistic values 
compared to actual numbers. For this purpose, we propose the adoption of the classifica-
tion scheme (i.e., discrete scoring scheme) presented in Table 6. According to this scheme, 
the security level of a software product can be characterized as Very High, High, Above 
Normal, Below Normal, Low, or Very Low, based on the actual value of its Security Index. 
These categories were defined based on the normal distribution of the Security Indexes of 
the software products that were used for the calibration of the proposed model (i.e., the 
100 Java applications), an approach that is commonly used for determining discrete qual-
ity scores (e.g., SIG Model (Heitlager  et al., 2007)). In Table 6, we also report the per-
centage of the software products of the code base that reside in each rating group. From 
Table 6, one may easily realize that the SI value of 0.5, equally divides the code base. In 
fact, about 50% of the benchmark products received an SI above 0.5, and obviously about 
50% received an SI below 0.5.

Finally, it should be noted that the produced Security Index is a relative (and not abso-
lute) security score. This means that the Security Index actually denotes how well the ana-
lyzed software product stands with respect to its security compared to the benchmark (i.e., 
population) of well-known software products. For instance, if a software product receives 
5 stars (i.e., a Security Index above 0.8), this indicates that the analyzed software is 

Fig. 3  The general structure of 
the utility functions of a given 
security property P. The utility 
function assigns a continuous 
value between 0 and 1 to the 
corresponding property, based on 
the system-level (i.e., normal-
ized) value s of its associated 
code-level measure and on a set 
of data-driven thresholds (i.e., 
t
l
 , t

m
 , t

u
)
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comparable to the top 10% of the software products of the selected benchmark with respect 
to their security level. Hence, this information provides insight for the security readiness 
of a given software product, allowing project managers to decide whether it is ready to be 
released to the market. The Security Index is a relative score since the overall assessment 
that is performed by the proposed SAM is based on the popular idea of benchmarking. 
Being based on benchmarking, also allows the model not to be affected (at least signifi-
cantly) by the errors of the applied tools on which the assessment is based, as the same 
tools are applied both on the benchmark and on the newly analyzed software, and therefore 
these errors are neutralized during the comparisons, assuming (without loss of generality) 
that the selected tools are not biased.

3.2  Model construction

As can be seen in Fig.  1, one of the main steps of our work is the model construction. 
From the previous analysis, it is clear that the proposed SAM is based on a solid basis (i.e.,  
well-established concepts), with respect to its structure and the performed security assess-
ment. More specifically: (i) its structure complies with the one proposed by the ISO/IEC 
25010 international standard, (ii) it encapsulates well-established concepts of quality mod-
els (e.g., aggregation (Heitlager et al., 2007), utility functions (Wagner et al., 2012), and 
(iii) it is based on low-level measures with proven relevance to software security (i.e., static 
analysis alerts and software metrics). However, this is not enough for producing a reliable 
SAM, which provides sufficiently objective security evaluations. The reliability of the final 
model is determined chiefly by its design parameters, since an arbitrarily selected param-
eter may affect the correctness (i.e., objectivity) of the performed assessment.

From the description of the security assessment model provided in Section  3.1, it is 
obvious that two are the main design parameters of the model that need to be determined, 
namely (i) its thresholds, and (ii) its weights. These parameters constitute the main sources 
of potential subjectivity, since they are commonly determined based on expert judgments, 
and therefore their values should be carefully selected. Hence, this section presents the 
details of how the proposed security assessment model was constructed, and particularly 
how the model’s thresholds and weights were derived.

3.2.1  Threshold derivation

The thresholds of the proposed SAM are used by the utility functions  in order to assign 
ratings (i.e., scores) to the model proprieties, and therefore they are very important for  
the overall assessment. These thresholds can be derived based either on expert 

Table 6  The recommended 
discrete scoring scheme of the 
proposed security assessment 
model. The last column displays 
the percentage of the applications 
of the benchmark repository that 
was used for the calibration of 
the model that belong in each 
Security Class

Security Class Security Index (SI) Percentage

Very High (0.8, 1.0] 10%
High (0.6, 0.8] 17%
Above Normal (0.5, 0.6] 20%
Below Normal (0.4, 0.5] 26%
Low (0.2, 0.4] 18%
Very Low [0, 0.2] 9%
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judgments, or on empirical data. The latter approach is highly preferred in the literature,  
since it leads to the derivation of a reliable set of thresholds, which are completely  
free from subjective information. Among the existing threshold derivation approaches, 
benchmarking is widely used in the related literature for threshold derivation (e.g.,  
(Heitlager  et al., 2007; Wagner  et al., 2012; Siavvas  et al., 2017a; Vale et  al., 2019)),  
as it allows the calculation of thresholds based exclusively on data, without requiring 
expert judgments, which are highly subjective. Therefore, the benchmarking approach  
was applied for the derivation of the thresholds of the proposed security assessment  
model.

For the conduction of benchmarking, a large code base of software products is  
required, which constitutes a representative population of widely used and mature soft-
ware products. For this purpose, the 100 most popular Java applications (including well-
known libraries like Junit, Xerces, HyperSQL, etc.), which were able to be analyzed with 
the selected tools (see Section  3.1), were retrieved from the Maven Repository, which,  
as already stated, is the largest online repository of Java libraries. The final repository  
comprises 22,259 classes (i.e., source code files), which correspond approximately to 7 
million lines of code (LOC). As already mentioned, the same code base was used in a  
relatively recent empirical study, with the purpose to investigate the ability of software 
metrics to indicate the existence of vulnerabilities in software products (Siavvas et  al., 
2017b).

It should be noted that by being based on the Maven Repository we ensure that the 
final benchmark comprises popular software applications that are available on the mar-
ket and that are widely used in practice, avoiding applications produced by unreliable  
parties (e.g., students) or applications that their usage or development has been aban-
doned. The repository includes software projects of varying size, ranging from very  
small software applications (i.e., 1,055 LOC) to really large applications (i.e., 521,262 
LOC). The average size of an application that belongs to the benchmark repository is  
63,396 LOC. Finally, it should be noted that the final benchmark repository contains 
products from different domains, including Web Development, Multimedia, Software 
Verification and Validation, Data management, Communication, Security, DevOps,  
Cloud Computing, and Distributed Computing. All these provide confidence that the 
resulting benchmark repository is a representative population of software applications.

Initially, QATCH was adopted in order to analyze the source code of each one of the 
software products of the code base, in order to calculate the system-level values of the 
measures that correspond to the 11 properties of the model (see Table 5 and Table 3). In 
particular, the normalized values of the metrics-based properties and the SAVD metrics  
of the vulnerability categories of the model were calculated, for each one of the soft-
ware products found in the code base. A screenshot of the calculated measures of 20  
software applications selected from the broad repository is illustrated in Fig. 4.

Subsequently, for each property three thresholds were calculated based on the dis-
tributions of the system-level values of their associated measures observed between the  
different products. More specifically, the formulas proposed by (Wagner et  al., 2015)  
were used for deriving these thresholds:

where:

(3)
tl = min({s ∶ s ≥ Q25%(s1, ..., sn) − 1.5 ⋅ IRQ(s1, ..., sn)})

tm = median(s1, ..., sn)

tu = max({s ∶ s ≤ Q75%(s1, ..., sn) + 1.5 ⋅ IRQ(s1, ..., sn)})
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si denotes the normalized value of the measure s of the i-th benchmark product
Qp denotes the p-percentile
IRQ(s1, ..., sn) denotes the inter-quartile-range

In simple words, after performing outlier removal, the minimum, median, and maximum 
observations of each measure were selected as the lower ( tl ), middle ( tm ), and upper ( tu ) 
thresholds of the associated property’s utility function respectively. The final thresholds of 
the proposed model that were derived through the aforementioned approach are presented 
in Table 7. For reasons of reproducibility, the full list of the calculated measures, along 
with the script that calculates the thresholds based on Equations (3) are available on the 
website with the supporting material of the present study (Online, 2020).

3.2.2  Weights elicitation

The model weights constitute quantifiable expressions of the impacts that the properties of 
the model have on its characteristics. Contrary to threshold derivation, weights elicitation 
cannot be data driven. Weights are commonly derived based on subjective judgments of 
individual experts, which are typically the authors of the models in the related literature. 
However, being based on the opinions of a limited number of individual experts is known 

Fig. 4  The system-level values of the security properties of 20 software applications retrieved from the 
complete benchmark repository used for the calibration of the model

Table 7  The final thresholds of the proposed security assessment model

P1 Resource Handling; P2 Exception Handling; P3 Misused Functionality; P4 Synchronization; P5 Null 
Pointer; P6 Logging; P7 Assignment; P8 Complexity; P9 Cohesion; P10 Coupling; P11 Encapsulation

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

tl 2.4 0 0 0 0 0 13.6 2 1 0 0
tm 58.2 2 9.5 0.6 1.4 0.4 69.2 24.7 366.5 12.9 1.7
tu 102 6.3 19.5 2.7 3.8 2.5 133.8 62.39 1571.2 42.3 5.5
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to affect the reliability (i.e., trustworthiness) of the proposed models, due to the fact that 
the performed assessment may not be sufficiently objective.

Hence, as opposed to previous attempts, in our work we propose a novel approach that 
allows the derivation of weights that reflect the well-established knowledge expressed by 
CWE, replacing, in that way, subjective judgments expressed by a limited number of indi-
viduals based on their expertise (i.e., expert judgments). As will be discussed in the follow-
ing, the proposed approach is based on well-known decision-making techniques, particu-
larly the Analytic Hierarchy Process (AHP) (Saaty, 2008) and the SMARTS/SMARTER 
(Edwards & Barron, 1994) approach, for deriving a reliable set of weights that reflect the 
information provided by CWE.

The Analytic Hierarchy Process (AHP) (Saaty, 2008) is a decision-making technique 
that reduces complex decisions to pair-wise comparisons. It is commonly used for facilitat-
ing the selection of the best option among a set of alternatives, based on a set of criteria 
that are evaluated using expert judgments. In brief, it is commonly used for providing solu-
tions to hierarchical multi-criteria decision-making problems. Multi-criteria decision-mak-
ing techniques are considered valuable for performing security assessment (Medeiros et al., 
2018), as it is a multi-dimensional quality attribute (ISO, 2011).

AHP constitutes a suitable technique for calculating the impacts (i.e., weights) of the 
model properties on the model characteristics. Suppose that the proposed model comprises 
N characteristics (i.e., C1,C2,… ,CN ) and M properties (i.e., P1,P2,… ,PM ). According to 
AHP, for each one of the model characteristics, a pair-wise comparison (PWC) matrix is 
required for the calculation of its weights. The general structure of the PWC matrix that is 
required for the calculation of the weights of an arbitrary characteristic Ck of the model is 
presented in Table 8.

As can be seen in Table 8, the rows and the columns of the PWC matrix correspond to  
the properties of the model. The cells of the PWC matrix should be completed with values 
that denote the relative impact of the pairs of properties that correspond to each cell on the 
selected characteristic (i.e., Ck ). More specifically, the value of eij denotes how stronger, or 
weaker, the impact of the property Pi on the characteristic Ck is, compared to the impact of  
the property Pj . These values are normally completed by experts according to their opinions.

Subsequently, the normalized principal eigenvector (i.e., the eigenvector that corre-
sponds to the maximum eigenvalue) of the final matrix is selected to be the weights  
vector w̄ of the corresponding characteristic Ck . More specifically, if A is the aforemen-
tioned PWC matrix, then it can be formally written as follows:

The eigenvalues and eigenvectors of the matrix are calculated by solving the equation:

The vector w̄ containing the desired weights is derived by the following formula:

where:

– w̄max : the principal eigenvector of the pairwise comparison matrix

(4)A = (eij), where ∶ (i, j = 1, 2, ...,M)

(5)(A − �I) = 0

(6)
w̄ =

w̄max

M∑
i=1

wmax,i
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– wmax,i : the ith entry of the principal eigenvector
– M : the length of the principal eigenvector

The main advantage of AHP is that the experts have to focus only on a single pair of 
properties at each time, while the interdependencies between the properties are automati-
cally considered during the weights calculation. This approach guarantees that the produced 
weights will reflect the expert judgments (i.e., the information expressed formally in the 
PWC matrices). However, due to the fact that PWC matrices are completed based on expert 
judgments, subjectivity still exists. To avoid subjectivity the weights should reflect com-
monly accepted impacts expressed by a wider community of experts. This can be achieved 
by completing the PWC matrices of the AHP approach with impact values that were derived 
by commonly accepted sources of information, instead of individual expert judgments.

As far as the alert-based properties are concerned, the CWE knowledge base is used as 
the source of information. In particular, as described in Section 3.1.2, the rules of each vul-
nerability category of the model were mapped to relevant CWE entries. Each CWE entry  
contains important security-relevant information for its corresponding weakness, including its  
impact on well-known security requirements, such as Confidentiality, Integrity, and Availa-
bility. For instance, as can be seen in Fig. 5, the “CWE-248: Uncaught Exception”, according  
to CWE, influences both the Availability and the Confidentiality of a given software product.  
Therefore, CWE was used as a knowledge base for determining the impacts of the alert-based  
properties (i.e., vulnerability categories) on the security characteristics of the model.

Initially, for each one of the alert-based properties (i.e., vulnerability categories) of the 
model we listed their relevant CWE entries based on the mapping between their relevant PMD  
rules and the CWE entries. As already mentioned, each CWE entry potentially has an impact  
on each one of the model’s characteristics. If E is an arbitrary CWE entry, we can formally 
define whether it has a reported impact on a specific characteristic C of the model by using the  
following indicator variable:

Based on the identified binary impacts of the individual CWE entries, the impacts of 
the alert-based properties on the model characteristics can be quantified as follows. Sup-
pose that a static-analysis-based property (i.e., vulnerability category) Pi contains L CWE 
entries, namely Ei,1,Ei,2,… ,Ei,L . As already mentioned, each one of these entries may have 

(7)IE,C = impact(E,C) =

{
1, if E affects C

0, otherwise

Table 8  The general structure 
of the pairwise comparison 
(PWC) matrix that is required 
for calculating the weights of a 
characteristic Ck of a security 
model with M properties, namely 
P1,P2,… ,PM . The value of eij 
denotes how stronger (or weaker) 
the impact of Pi on the Ck is, 
compared to the corresponding 
impact of Pj . The pairwise 
comparison matrix is normally 
completed with expert judgments

Ck P1 P2 ... Pj ... PM

P1 e11 e12 ... e1j ... e1M

P2 e21 e22 ... e2j ... e2M

⋮ ⋮ ⋮ ⋮ ⋮

Pi ei1 ei2 … ... eiM

⋮ ⋮ ⋮ ⋮ ⋮

PM eM1 eM2
… eMj ... eMM
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a reported impact on each one of the N characteristics of the model, i.e., C1,C2 … ,CN . The 
impact (i.e., impact score) that the selected property Pi has on a specific characteristic Ck 
can be calculated based on the reported impacts of its relevant CWE entries (i.e., CWE-
reported impacts) as follows:

where:

– NPi,Ck
 : the number of the CWE entries of  Pi (i.e., Ei,1,Ei,2,… ,Ei,L ) that have a reported 

impact on  Ck.
– IEi,j,Ck

 : the impact that the j-th CWE Entry of the i-th property   Pi has on the k-th  
characteristic  Ck of the model (as reported by CWE), given by Equation (7).

– M : the number of properties of the model.

In simple words, from Equation (8) it is shown that the impact that a property Pi has on 
a specific characteristic Ck corresponds to the total number of the CWE-reported impacts 
that Pi has on Ck , divided by the total number of the CWE-reported impacts that Pi has on 
any of the characteristics considered by the analysis. It should be noted that the value of 
IEi,j,Ck

 is given by (7).
Based on the aforementioned approach we calculated the impact scores of all the  

alert-based properties of the proposed model (see Table  9), on all the characteristics  

(8)IPi,Ck
= impact(Pi,Ck) =

NPi,Ck

N∑
k=1

NPi ,Ck

=

L∑
j=1

IEi,j ,Ck

N∑
k=1

L∑
j=1

IEi,j,Ck

=

L∑
j=1

impact(Ei,j,Ck)

N∑
k=1

L∑
j=1

impact(Ei,j,Ck)

Fig. 5  CWE provides information about the impact that each weakness has on the main security require-
ments of software products
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of the model, namely Confidentiality, Integrity, Availability. It should be noted that the 
characteristic of Non-repudiation was also considered in the initial analysis. The cal-
culated impact scores are presented in Table 9, due to the fact that relevant information  
was available. These impact scores denote the impact that the corresponding vulner-
ability category (i.e., property) has on each one of the identified security characteristics,  
according to the CWE knowledge base.

The impact scores presented in Table 9 seem to reflect the common knowledge regard-
ing software security, as expressed by the CWE knowledge base. For instance, Null Pointer 
issues influence more the Availability of a system, as a null pointer dereference may lead 
to a system crash. Similarly, Logging issues influence more the Non-repudiation require-
ment, as insufficient logging may lead to omission of specific events that could be used to 
identify the sources of security issues. However, the absolute values of these impact scores 
may not be reliable due to the fact that they were determined based on the manual mapping 
of CWE entries to weakness categories. On the contrary, the relative (i.e., quantitative) 
relationships between these impacts seem highly intuitive and representative of the real 
situation, as revealed by the previous examples. Hence, to enhance the reliability of the 
produced model, the weights elicitation was based on the relative impacts.

In order to determine the relative impacts, the SMARTS/SMARTER (Edwards & Bar-
ron, 1994) approach was adopted. SMARTS/ SMARTER is a decision-making technique 
that assigns relative scores (i.e., weights) to a group of attributes based on their ranking. 
Each one of the assigned scores reflects the relative importance of the associated attribute 
compared to the other attributes. The assigned weights are fixed and depend only on the 
total number of the ranked attributes.

To state it more formally, suppose that we are interested in calculating the relative impact  
of property Pi on the characteristic Ck . Initially, all the M properties are ranked in a descending  
order based on their previously defined impact scores on the Cj characteristic (see Table 9). A  
fixed relative impact score rik is assigned to property Pi , based on the following equation:

where:

rankik : the position of property Pi in the properties ranking of Ck

M : the total number of the model’s properties.

The SMARTS/SMARTER approach assigns a fixed set of weights (i.e., relative scores) 
to a ranked list of attributes, based on the total number of attributes (i.e., properties) and 

(9)rik = fSMARTS∕SMARTER(M, rankik)

Table 9  The impact scores of the model properties on security characteristics (calculated based on CWE)

Property Name Confidentiality Integrity Availability Non-repudiation

Null Pointer 0.167 0.167 0.67 0
Exception Handling 0.333 0.333 0.167 0.167
Logging 0.142 0 0.142 0.714
Resource Handling 0.375 0.250 0.375 0
Assignment 0.360 0.5 0.136 0
Misused Functionality 0.25 0.625 0.125 0
Synchronization 0.23 0.462 0.308 0
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their position in the ranked list. In Table 10, the weights that are assigned by the SMARTS/
SMARTER approach for a varying number of properties are shown.

To calculate the relative impact scores, each column of Table 9 was retrieved and its 
properties were ranked based on their actual impact scores. Subsequently, the SMARTS/
SMARTER approach was applied and a set of fixed weights were assigned to those ranked 
properties. These fixed weights correspond to the relative impact scores of the properties 
regarding the selected characteristic (i.e., column). Table 11 summarizes the rankings of 
the properties along with the relative impacts for each one of the selected security charac-
teristics. It should be noted that the Non-repudiation security characteristic was excluded 
from the rest of the analysis, and therefore eliminated from the final model, since its impact 
scores did not allow us to produce a reliable ranking of the model properties. The inclusion 
of this attribute would require the properties to be ranked manually based on our expertise. 
However, this would infringe the objectivity, and, in turn, the reliability of the produced 
model, so its exclusion was considered the best approach. From Table 11, it is obvious that 
the assigned relative impact scores are the weights of Table 10 for M = 7.

These relative impact scores were subsequently used to complete the cells of the PWC 
matrices that correspond to the relationships between vulnerability categories (i.e., alert-
based properties). A simple procedure for completing these cells of the PWC matrices 
based on the relative scores of Table  11 was followed. Suppose the PWC matrix of the 
characteristic Ck presented in Table 8, and eij is the expert judgment that corresponds to the 
pair of properties (Pi,Pj) , where Pi is the property of the row and Pj is the property of the 
column. Suppose also that rik and rjk correspond to the relative impact scores of the proper-
ties Pi and Pj for the corresponding characteristic Ck as retrieved by SMARTS/SMARTER 
(see Table 11). The expert judgment eij is calculated as follows:

The above formula ensures that the final judgments will lie in the interval [0.1, 9], as 
suggested by (Saaty, 2008).

(10)eij =

⎧
⎪⎨⎪⎩

�
(rik∕rjk)

2

�
if rik > rjk�

(rjk∕rik)

2

�
if rik < rjk

Table 10  The weights assigned by the SMARTS/SMARTER approach for a various number of elements 
(i.e., M). The table is adapted from (Edwards & Barron, 1994)

Rank M = 2 M = 3 M = 4 M = 5 M = 6 M = 7 M = 8 M = 9 M = 10

1 0.7500 0.6111 0.5208 0.4567 0.4083 0.3704 0.3397 0.3143 0.2929
2 0.2500 0.2778 0.2708 0.2567 0.2417 0.2276 0.2147 0.2032 0.1929
3 0.1111 0.1458 0.1567 0.1583 0.1561 0.1522 0.1477 0.1429
4 0.0625 0.0900 0.1028 0.1085 0.1106 0.1106 0.1096
5 0.4000 0.0611 0.0728 0.0793 0.0828 0.0846
6 0.0278 0.0442 0.0543 0.0606 0.0646
7 0.0204 0.0335 0.0421 0.0479
8 0.0156 0.0262 0.0336
9 0.0123 0.0211
10 0.0100
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The aforementioned approach allowed us to complete the cells of PWC matrices that are 
relevant to vulnerability categories of the model based exclusively on information provided 
by CWE, without considering any expert judgments. Unfortunately, no similar commonly 
accepted and reliable source of information exists regarding the software metrics-based 
properties. Therefore, these cells were completed by the authors of the paper based on their 
expertise.

Following this approach three individual PWC matrices were constructed, one for each 
one of the three characteristics of the proposed model, namely Confidentiality, Integrity, 
and Availability. Subsequently, AHP was applied using the produced PWC matrices and 
the model’s weights were calculated based on Equations (5) and (6). As an example, the 
PWC matrix that was used for the calculation of the weights of Confidentiality is illus-
trated in Fig. 6. The other two PWC matrices are available on the website with the support-
ing material of the present work (Online, 2020). The final weights of the model’s charac-
teristics are presented in Table 12. The final weights, seem to reflect both the knowledge 
retrieved by CWE knowledge base (i.e., the rankings presented in Table 11), and the judg-
ments provided by the experts.

Although the weights of the metric-based properties are characterized by subjectiv-
ity (i.e., expert judgments), we decided to include these properties in the final model for  
a number of reasons. Firstly, since software metrics are indirect indicators of software  
security (i.e., vulnerabilities)14 (Shin  & Williams, 2008b; Chowdhury  & Zulkernine, 
2011; Shin et al., 2011; Medeiros et al., 2017; Siavvas et al., 2017b; Moshtari et al., 2013; 

Table 11  The rankings of the model’s properties for each characteristic, along with their relative impact 
scores, retrieved from the SMARTS/SMARTER (Edwards & Barron, 1994) approach

Confidentiality Integrity Availability Impacts

Resource Handling Misused Functionality Null Pointer 0.3704
Assignment Assignment Resource Handling 0.2276
Exception Handling Synchronization Synchronization 0.1561
Misused Functionality Exception Handling Exception Handling 0.1085
Synchronization Resource Handling Logging 0.0728
Null Pointer Null Pointer Assignment 0.0442
Logging Logging Misused Functionality 0.0204

Fig. 6  The pairwise comparison matrix used for the calculation of the model’s weights that correspond to 
the characteristic of Confidentiality

14 A large volume of research endeavors have shown that software metrics are related to software vulner-
abilities in a statistically significant manner, albeit with weak strength (Shin & Williams, 2008b; Chowd-
hury & Zukernine, 2011; Shin et  al., 2011; Medeiros et  al., 2017; Siavvas et  al., 2017b; Moshtari et  al., 
2013; Moshtari & Sami, 2016; Stuckman et al., 2017; Ferenc et al., 2019; Jimenez et al., 2019; Zhang et al., 
2019).
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Moshtari & Sami, 2016; Stuckman et al., 2017; Ferenc et al., 2019; Jimenez et al., 2019; 
Zhang et al., 2019), as they highlight questionable constructs (from a security viewpoint), 
enriching the security assessment with information retrieved from software metrics is con-
sidered valuable for enhancing the completeness of the model. Secondly, due to the fact  
that static analysis alerts are considered stronger indicators of software vulnerabilities com-
pared to software metrics, higher weights were assigned to the alert-based properties than 
to metric-based properties.

In fact, both static analysis alerts and software metrics are considered vulnerability indicators  
by the security model, as they indicate the existence of vulnerabilities in software components.  
However, the static analysis alerts are considered stronger indicators, since they actually locate  
the potential vulnerability, contrary to the software metrics that do not provide any information  
about the exact location (i.e., exact line of code) or even the type of the vulnerability that poten-
tially exists in the associated software component. In addition to this, as already stated, soft-
ware metrics have been found to be related to the existence of vulnerabilities in a statistically  
significant manner, albeit with a weak strength (Shin & Williams, 2008b; Chowdhury &  
Zulkernine, 2011; Shin et al., 2011; Medeiros et al., 2017; Siavvas et al., 2017b; Moshtari  
et al., 2013; Moshtari & Sami, 2016; Stuckman et al., 2017; Ferenc et al., 2019; Jimenez et  
al., 2019; Zhang et al., 2019). With that being said, smaller weights have been assigned to metric- 
based properties. In particular, as can be seen in Table12, the total impact of the metric- 
based properties on the characteristics of Confidentiality, Integrity, and Availability, is 11.33%,  
11.13%, and 11.96% respectively. Hence, by keeping their impact low, metric-based properties  
are expected to enrich the produced Security Index with additional security-relevant information  
without predominantly determining its value. Finally, an experiment conducted on a large vol-
ume of empirical data revealed that the inclusion of metrics-based properties does not influence  
the overall assessment (see Section 5.5). In brief, the assessment results of the proposed model  
were found to be in high accordance with those produced by an equivalent model that omits  
software metrics.

To sum up, the weight elicitation approach presented in this section can be used in prac-
tice for the derivation of a reliable set of weights, which are free (to the highest possible 
extent) from the subjective information that is incurred by expert judgments (e.g., the judg-
ments of the authors of the produced model). This is feasible since most of the available 

Table 12  The final weights of the 
model’s characteristics as derived 
from the AHP (Saaty, 2008) 
approach. The weights reflect 
both the impacts retrieved from 
the CWE knowledge base, and 
the expert judgments

Property Name Confidentiality Integrity Availability

Resource Handling 0.2164 0.0973 0.1810
Assignment 0.1739 0.1680 0.0751
Exception Handling 0.1440 0.1153 0.1164
Misused Functionality 0.1180 0.2244 0.0593
Synchronization 0.0992 0.1522 0.1393
Null Pointer 0.0805 0.0798 0.2217
Logging 0.0546 0.0517 0.0877
Complexity 0.0220 0.0321 0.0328
Coupling 0.0182 0.0147 0.0230
Cohesion 0.0279 0.0185 0.0516
Encapsulation 0.0452 0.0460 0.0122
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static code analyzers, especially the commercial ones, provide a build-in mapping between 
the weaknesses that they identify and the relevant CWE entries, reducing in that way the 
required manual effort. Finally, it should be noted that the proposed approach is not limited 
to security models. It can be used for deriving a reliable set of weights for any hierarchical 
quality model, provided that a well-structured source of information (similar to CWE) is 
available. The subjectivity of the models’ weights is a long-standing issue in the broader 
field of software quality assessment, which hinders the reliability of the produced quality 
models (Heitlager et al., 2007; Wagner et al., 2012), and therefore limits their adoption in 
practice.

4  Implementation

To the best of our knowledge, no operationalized security assessment model able to evalu-
ate the internal security level of software products is available in the related literature. To 
fill in this gap, the proposed model was implemented as a standalone open-source com-
mand-line tool, which can be used in practice for security evaluation purposes. This tool is 
available at (Online, 2020), along with detailed instructions for its use. The command line 
version of the model allows its integration with existing continuous integration and assess-
ment platforms, whereas it also enables the fully automated and headless execution of the 
assessment, allowing its regular application during the development cycle. In addition, in 
order to facilitate the manual (on-demand) execution of the model by the developers, an 
alternative version of the tool that offers a simple graphic user interface (GUI) is also pro-
vided. The main screen of this simple GUI is illustrated in Fig. 7.

The proposed SAM has been developed within the context of the SDK4ED project, 
which is an ongoing EU-funded project. The main purpose of the SDK4ED project is to 
develop novel indicators able to quantify important quality attributes (i.e., non-functional 
requirements) of software products, particularly Energy, Maintainability, and Security. The 
ultimate goal of the project is to provide a CASE platform that will facilitate the devel-
opment of high-quality software (with emphasis on Embedded Systems), by identifying 
potential interrelationships and trade-offs between the often conflicting factors of Energy, 
Maintainability, and Security, providing also valuable recommendations to the developers 
on how to improve them. This platform is expected to act as a decision support system that 
will help developers and project managers monitor the quality of a software product (with 
respect to these three quality attributes) during the overall development cycle and make 
more informed decisions regarding potential refactoring and fortification efforts. In fact, 
the proposed SAM has been also developed as a web service, which has been integrated in 
the final SDK4ED platform, in order to be used as the main indicator of Software Security. 
Figure 8 depicts the current status of the Security Dashboard of the SDK4ED platform, 
which is based on the results produced by the proposed SAM.

As already mentioned, a similar SAM for evaluating software products written in C/
C++ was also built within the context of the SDK4ED Project, following the steps that 
were followed for constructing the SAM for Java that were presented in Section  3. A 
detailed description of the internal structure and characteristics of this model is provided in 
the Appendix section of the paper. Similarly to the SAM for Java, the SAM for C/C++ has 
been implemented as a standalone command-line tool that can be found on the web page 
with the supporting material of the present work (Online, 2020). In addition to this, it is 
integrated into the SDK4ED Platform, in the form of a web service.
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At this point, a description of some technical details of the SDK4ED Platform are con-
sidered necessary, in order to facilitate the adoption of its security assessment features 
in practice. The SDK4ED Platform has been implemented following the Microservices 
Architecture Pattern (Wolff, 2016), which means that its main components have been 
implemented as individual microservices, which offer their features in the form of inde-
pendent web services. Hence, the security assessment models for Java and C/C++ that 
were developed are part of the  Quantitative Security Assessment (QSA) service of the 
SDK4ED Platform. This service can be deployed locally using the Docker Engine15, and 

Fig. 7  The graphic user interface of the offline version of the proposed security assessment model

15 https:// www. docker. com/
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used independently for assessing the internal security level of software products. A Wiki 
page describing how this service can be installed and used for assessing the security level 
of a software product, either using the SAM for Java or the SAM for C/C++ has been 
created and made publicly accessible16. Finally, although this is the best way of utilizing 
the produced models, as it enables automation and integration with third-party software, 
instead of using this web service, one can use these models through the SDK4ED Dash-
board. Information and tutorials on how the SDK4ED Dashboard can be installed locally 
and used for analyzing software products with respect to their Maintainability, Energy 
Consumption, and Security have been also provided online17. More information about the 
SDK4ED Platform can be found in our relevant publications (Jankovic et al., 2019; Siav-
vas et al., 2020b; Kehagias et al., 2021).

5  Model evaluation and discussion

As can be seen in Fig. 1, the second part of our work is the evaluation of the proposed 
model, in order to investigate its ability to provide reliable security assessments both at 
product and at class levels of granularity. As opposed to previous research endeavors 
(Ansar  et al., 2018; Sentilles  et al., 2018; Morrison et  al., 2018), which lack empirical 
evaluation of their models, or they rely their evaluation on a limited number of simple 
case studies, in this paper we put significant emphasis on the elaborate empirical evalua-
tion of our model, as it is highly required for ensuring its reliability. More specifically, in 
order to evaluate the correctness of the proposed SAM, as well as to identify its strengths 

Fig. 8  The Security Dashboard of the SDK4ED platform

16 https:// gitlab. seis. iti. gr/ sdk4ed- wiki/ wiki- home/ wikis/ depen dabil ity- toolb ox
17 https:// gitlab. seis. iti. gr/ sdk4ed- wiki/ wiki- home/ wikis/ home
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and weaknesses, five individual experiments were conducted, which were based on a large 
volume of empirical data. The aforementioned experiments along with their corresponding 
results are reported in what follows.

5.1  Comparison with an independent security evaluation approach

To evaluate the ability of the proposed SAM to reliably assess the internal security level 
of software products, a comparison of its assessment results with the corresponding 
results provided by similar models or security experts is considered necessary. However, 
as already mentioned, no other commonly accepted and operationalized security assess-
ment model exists in the literature, while, as opposed to software quality (Wagner et al., 
2012; Siavvas et al., 2017a; Wagner et al., 2015), no expert-based security evaluations of 
software products are publicly available, in order to be used as reference point for our com-
parisons. For this purpose, we decided to compare our model to another indicator of the 
internal security level of software products, namely the Static Analysis Vulnerability Den-
sity (SAVD) (Walden et al., 2009), calculated at system level.

SAVD, which is the total number of security-related static analysis alerts of a given soft-
ware application per thousand lines of code, is commonly used in the literature as an indi-
cator of internal software security (see Section 2.1). For the quantification of the SAVD, 
the FindBugs static code analyzer (Hovemeyer & Pugh, 2004) was employed, which is a 
popular open-source static analysis tool for Java, used in the literature for security audit-
ing purposes (e.g., (Goseva-Popstojanova & Perhinschi, 2015; Siavvas et al., 2018b)). We 
configured the tool appropriately in order to detect only security-relevant weakness cat-
egories including: Performance, Malicious Code, Multithreaded Correctness, and Security. 
The latter bug category is provided by FindSecurityBugs18, which is a popular FindBugs 
plugin.

For the purposes of the experiment, a large code repository of real-world software appli-
cations was constructed. In particular, we mined the online GitHub repository and down-
loaded a large number of open-source Java applications based on their popularity (i.e., 
number of GitHub stars). From these applications, we kept only those that were able to 
successfully compile with Maven without any errors or warnings. This process resulted to 
a relatively large benchmark repository of 150 open-source software applications, compris-
ing approximately 13 million lines of code (as reported by CKJM Extended). From the 
final repository we made sure to exclude software projects that were also part of the reposi-
tory that was used for the calibration of the model (see Section 3.2.1). In order to ensure 
diversity and avoid bias, the software applications were selected in a black-box manner, 
without filtering them based on their semantics (i.e., size, domain, creator, etc.). Hence, 
the resulting repository comprises highly diverse software applications with respect to their 
size, domain, and quality. This is important since the evaluation process should test the 
proposed model on different cases of software applications.

Subsequently, we analyzed the software applications of the resulting repository using 
our proposed SAM, in order to calculate their Security Indexes. We also applied the Find-
Bugs static code analyzer, in order to calculate the SAVD of each one of these applications. 
Next, we obtained two individual rankings of the analyzed software products, one based 
on their Security Indexes, and another one based on their SAVDs. The analyzed software 

18 https:// find- sec- bugs. github. io/
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applications, along with their Security Indexes, their SAVDs, and their corresponding rank-
ings are presented in Table 13.

In order for the Security Index to be considered a reliable indicator of software security, 
a statistically significant positive correlation should be observed between the two rank-
ings. For this purpose, we decided to use the Spearman’s rank correlation coefficient ( � ) 
(Spearman, 1987), which is a non-parametric and non-sensitive to outliers statistical test. 
To interpret the strength of the observed correlation, the thresholds proposed by (Cohen, 
2013) were used. According to (Cohen, 2013), a correlation less than 0.3 is considered 
weak, between 0.3 and 0.5 is considered moderate, and above 0.5 is considered strong. In 
general, a positive and close to one correlation denotes that the studied rankings are almost 
identical. However, it should be noted that in the present experiment we do not expect the 
rankings to be identical, for reasons that are discussed later in the text.

In order to reach safer conclusions regarding the statistical significance of the observed 
correlation, we formulated the following null hypothesis (along with its corresponding 
alternative hypothesis):

H0 : No statistically significant correlation is observed between the two rankings.
H1 : A statistically significant correlation is observed between the two rankings.

which was tested at the 95% confidence level ( a = 0.05).
The calculated Spearman’s rank correlation coefficient between the two rankings was 

found to be � = 0.7024 , which is a positive and strong (according to (Cohen, 2013)) corre-
lation. In addition, since the p-value was found to be lower than the 0.05 threshold (in fact, 
p-value < 2.2 × 10−16 ), the null hypothesis was rejected, which led us to the acceptation 
of the alternative hypothesis, i.e., that a statistically significant correlation exists between 
the two rankings. This suggests that the two rankings are highly consistent, and, in turn, 
that the Security Indexes produced by our proposed SAM are closely related to their com-
puted SAVDs. This denotes that the assessment results provided by our proposed model are 
closely related to the assessment results produced by another independent security evalua-
tion approach, providing support for its ability to reliably reflect the security level of soft-
ware products. Hence, the proposed SAM may be reliably used in practice for assessing the 
security level of software products.

At this point, it should be noted that we did not expect the two rankings to be identi-
cal, since the two approaches capture different security-relevant information. More specifi-
cally, as opposed to SAVD that is a “coarse-grained” indicator of internal software security, 
our proposed model provides finer-grained assessments. This holds because it groups the 
security-relevant static analysis alerts into vulnerability categories and calculates an indi-
vidual SAVD for each one of these categories. Moreover, it considers security information 
retrieved from software metrics. Our proposed SAM uses more security-relevant informa-
tion for determining the final security score of software products than the SAVD metric, 
hence the assessment results of the two approaches are not expected to perfectly match.

5.2  Discretion power of the model

The main objective of the proposed SAM is to provide a high-level indicator of software 
security, in order to facilitate decision making during software development. As already 
mentioned, the proposed SAM starts from raw results (i.e., security-relevant static analy-
sis alerts and software metrics) and systematically aggregates them in order to produce 
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a single security score (i.e., the Security Index), which is obviously more intuitive and 
easily understandable than the raw static analysis results. However, the main challenge of 
the model is to avoid “masking” underlying issues, which may be caused by the several 
iterations of aggregation that are performed for the calculation of the final security score. 
Hence, in order for the model to be reliable, the introduction (or removal) of even a trivial 
number of security-relevant issues between two versions of a software product should be 
reflected as a drop (or increase) in the produced Security Index. Hence, the purpose of the 
present experiment is to evaluate the discretion power of the model, i.e., its ability to detect 
even a small number of source code changes with security implications and highlight these 
changes with a relevant change in the overall Security Index.

A potential approach for investigating the ability of the proposed model to reflect secu-
rity changes is by applying it to the vulnerable and clean versions of a set of software 
applications. If the model tends to assign higher scores to the clean versions (or conversely 
lower scores to the vulnerable ones), it can be considered effective in reflecting security 
changes.

To this end, as an initial attempt, we decided to use the code examples that were used 
in a previous study (Siavvas et al., 2019a). In brief, in this study, four single-class subject 
applications with known vulnerabilities (i.e., Cross-site Scripting and OS Command Injec-
tion) were selected from the repositories of OWASP Benchmark19and NIST’s Juliet Test 
Suite (Boland & Black, 2012), and their security issues were identified and manually fixed, 
by implementing the appropriate security mechanisms through code transformations. Sub-
sequently, these applications were used in this study as the basis for measuring the energy 
footprint of the applied security mechanisms. It should be noted that the security issues 
were identified through manual code review and fixed based on guidelines provided by 
OWASP20 and CWE21. Neither SAM nor PMD were used to guide these refactoring activi-
ties. These applications are available on the website with the supporting material of the 
paper (Online, 2020).

Since both the vulnerable and the clean versions of these applications are available, they 
render suitable candidates for our analysis. Hence, the proposed SAM was employed to 
calculate the Security Indexes of the vulnerable and clean versions of the selected applica-
tions. The results of this analysis are presented in Table 14.

As can be seen in Table 14, the code modifications that led to the removal of security 
issues lead to a significant increase in the Security Index of each application. More spe-
cifically, the Security Index of the vulnerable versions is 0.39 on average, whereas after 
the vulnerability elimination this score increases to 0.91 on average. In fact, a significant 
increase, more than 100% is observed in all four cases. This is reasonable, if we consider 
that the code modifications led to the removal of actual (not potential) vulnerabilities that 
reside in the code. Hence, the proposed SAM tends to assign higher security scores to the 
clean versions of the selected software applications. This provides evidence for the ability 
of the proposed SAM to reflect security-relevant code-level changes.

However, in order to reach safer conclusions, a large-scale analysis is required. This 
demands the construction of a large dataset containing both vulnerable and clean ver-
sions of a considerable number of software applications. Nevertheless, manually remov-
ing or injecting vulnerabilities (as we did in the aforementioned experiment) is a very 

19 https:// owasp. org/ www- proje ct- bench mark/
20 https:// www. owasp. org/
21 https:// cwe. mitre. org/
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time-consuming and effort-demanding process, whereas doing this for a very large num-
ber of applications is considered unrealistic. Hence, automating the process of constructing 
such a dataset is highly necessary for the purposes of the present experiment.

For the purpose, in order to automate the process of the dataset construction, and, in 
turn, conduct a more exhaustive experiment, we developed a dedicated vulnerability injec-
tor, i.e., a tool able to inject security-relevant issues (i.e., potential vulnerabilities) to the 
source code of a given software application written in Java programming language. The 
main requirements of the produced vulnerability injector were (i) to perform the error 
seeding in a random manner in order to avoid potential bias, and (ii) to inject security 
issues that the proposed model is able to detect. The latter is necessary because, as already 
mentioned, the purpose of the experiment is to evaluate whether the raw low-level issues 
that the proposed model is able to detect are reflected in the final Security Index, or masked 
by the applied aggregation procedure. Hence, injecting issues that the model is unable to 
detect, would lead to misleading results. Table 15 presents the security-relevant issues that 
the injector is able to inject, providing their corresponding CWE ID and title.

The overall process that is followed by the vulnerability injector is illustrated in Fig. 9 
in the form of a flow chart diagram. Initially, the injector receives from the user the path 
of the desired application and the percentage of its classes ( n% ) that should be injected 
with potential vulnerabilities. Subsequently, it removes non-eligible classes (e.g., abstract 
classes, interfaces, etc.), which cannot be injected, and creates a list with the eligible ones. 

Table 14  The Security Indexes of the vulnerable and clean versions of four single-class subject applications 
retrieved from OWASP Benchmark and the Juliet Test Suite (Boland & Black, 2012). The removal of an 
actual vulnerability leads to a significant increase in the Security Index of a subject application

Subject SIvulnerable SIclean

CWE78_Juliet 0.39729 0.90309
CWE78_OWASP 0.44208 0.90251
CWE80_Juliet 0.36094 0.94608
CWE80_OWASP 0.36076 0.89956

Table 15  The list of security issues (i.e., potential vulnerabilities) that the Vulnerability Injector is currently 
able to inject

CWE Entry

CWE-396: Declaration of Catch for Generic Exception
CWE-221: Information Loss or Omission
CWE-209: Information Exposure Through an Error Message
CWE-400: Uncontrolled Resource Consumption (’Resource Exhaustion’)
CWE-485: Insufficient Encapsulation
CWE-572: Call to Thread run() instead of start()
CWE-476: NULL Pointer Dereference
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It then constructs a vulnerable method by randomly selecting a number of vulnerability 
issues from Table 15. An example of such a method is presented in Listing. Then it ran-
domly selects one of the eligible classes and inserts in it the vulnerable method. It also 
inserts a call to this vulnerable method in one of its methods after excluding getters, set-
ters, and constructors. The same procedure is applied until the desired number of classes is 
reached (i.e., n% of the eligible ones).

For the purposes of the present experiment, the same benchmark repository of real-
world software applications that was used in the previous analysis, comprising 150 pop-
ular open-source Java applications, was utilized. Based on this repository we performed 
three sets of vulnerability injections. More specifically, we injected vulnerabilities to the 
1%, 10%, and 25% of the eligible classes of the software applications which reside in the 

Fig. 9  The flow chart of the 
Vulnerability Injector 
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Table 16  The Security Indexes of open-source applications after going through vulnerability injection

Project Name SIoriginal SI1% SI10% SI25%

actframework 0.352024 0.343967 0.251141 0.187745
ansj-seg 0.457336 0.443769 0.344782 0.280851
apk-parser 0.583697 0.542649 0.370576 0.278384
AutoLoadCache 0.341156 0.330022 0.279603 0.221497
awaitility 0.454287 0.454287 0.317471 0.259945
azure-sdk-for-java 0.478949 0.456946 0.35437 0.292814
Cerberus 0.196344 0.116318 0.101777 0.090612
citrus 0.470902 0.445511 0.320862 0.230665
clarity 0.565259 0.545041 0.417213 0.318574
cloudhopper-smpp 0.229077 0.227432 0.197935 0.143849
commonmark-java 0.600761 0.568416 0.414812 0.284559
datastructure 0.342878 0.338122 0.307342 0.241162
dcm4che 0.442593 0.436778 0.397911 0.336393
disconf-demos-java 0.448576 0.370105 0.24512 0.163774
dockerfile-maven 0.508837 0.390313 0.390313 0.290177
docker-java 0.431021 0.382882 0.221588 0.152934
docker-maven-plugin 0.343779 0.32669 0.265841 0.183987
docx4j 0.635219 0.61829 0.515065 0.416619
easy-rules 0.402111 0.362793 0.222248 0.169057
ECharts 0.545777 0.521376 0.360537 0.25602
effective-java-examples 0.500633 0.463412 0.344919 0.285154
embedded-redis 0.384162 0.296804 0.247277 0.229425
essentials 0.509864 0.498703 0.469617 0.451142
ews-java-api 0.493813 0.480297 0.407534 0.321918
Examination-System 0.442733 0.442733 0.328905 0.295759
fastdfs-client-java 0.485265 0.485265 0.399554 0.314383
fast-serialization 0.776316 0.761969 0.738295 0.693991
fastweixin 0.48152 0.459449 0.316142 0.25164
flexmark-java 0.924524 0.924496 0.915084 0.882224
fluent-validator 0.264751 0.211517 0.104249 0.073031
fnlp 0.441396 0.427898 0.369922 0.291956
gecco 0.257109 0.242501 0.173926 0.1267
geohash-java 0.714379 0.554184 0.474674 0.329395
google-oauth-java-client 0.533626 0.456387 0.279106 0.207563
hbc 0.410178 0.380124 0.250954 0.188347
Hive2Hive 0.483311 0.483311 0.332146 0.250775
HotswapAgent 0.390755 0.386231 0.32558 0.262075
incubator-dubbo 0.341017 0.328691 0.265764 0.23135
itchat4j 0.415945 0.395977 0.374598 0.348051
itextpdf 0.592183 0.583421 0.517781 0.433613
J2V8 0.632275 0.620926 0.532211 0.442839
jade4j 0.902218 0.902171 0.894924 0.847366
jansi 0.598783 0.598539 0.530301 0.503714
java-client-api 0.523719 0.454379 0.311415 0.237173
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Table 16  (continued)

Project Name SIoriginal SI1% SI10% SI25%

javaewah 0.699787 0.69978 0.537004 0.44253
java-faker 0.569881 0.569881 0.304856 0.240969
java-speech-api 0.485521 0.485521 0.410912 0.38181
jcabi-aspects 0.845957 0.759561 0.661231 0.53554
jdeb 0.541412 0.509106 0.394245 0.312157
jdonframework 0.102865 0.093311 0.085093 0.082731
jesque 0.556685 0.556465 0.533378 0.488221
jgit-cookbook 0.860868 0.835267 0.704882 0.577861
jieba-analysis 0.58456 0.488172 0.487794 0.426844
jitwatch 0.544635 0.538237 0.469515 0.401801
jmustache 0.263917 0.169661 0.141551 0.091969
JSqlParser 0.771822 0.764178 0.641924 0.528942
Jupiter 0.434233 0.424789 0.355087 0.320407
jvmtop 0.273965 0.265731 0.264068 0.251226
jzmq 0.358069 0.357702 0.330382 0.276126
kilim 0.79681 0.793863 0.760818 0.713261
kryonet 0.856678 0.843191 0.836679 0.817007
lanproxy 0.491656 0.472639 0.438913 0.371588
lanterna 0.495402 0.484513 0.429778 0.384932
lavagna 0.506193 0.484234 0.40415 0.324363
librec 0.880626 0.87893 0.849054 0.814136
light-admin 0.534388 0.454951 0.288249 0.178013
light-task-scheduler 0.45567 0.434087 0.364907 0.302089
LinuxJavaFixes 0.82487 0.817212 0.817209 0.811357
Luyten 0.505584 0.491516 0.463108 0.40396
mango 0.419876 0.392812 0.266014 0.189145
marytts 0.553067 0.548324 0.509697 0.461853
metadata-extractor 0.730007 0.697415 0.560236 0.432206
Minim 0.817954 0.811651 0.781035 0.743482
mockserver 0.477356 0.465706 0.379591 0.31669
mp3agic 0.644456 0.643888 0.507346 0.41413
mybatis-3 0.253467 0.219222 0.119903 0.071508
mysql-binlog-connector-java 0.60821 0.588843 0.496418 0.392033
nanohttpd 0.424165 0.42384 0.377409 0.311873
nlp-lang 0.593405 0.577926 0.519929 0.432324
obd-java-api 0.662797 0.566094 0.404516 0.281353
OpenID-Connect-Java-Spring-Server 0.442037 0.434625 0.329451 0.258615
openmessaging-java 0.534546 0.426148 0.382544 0.321658
open-replicator 0.784442 0.760755 0.659755 0.550302
opentracing-java 0.575996 0.533617 0.454393 0.387832
ormlite-core 0.362458 0.35418 0.27467 0.201593
oshi 0.622193 0.60143 0.509096 0.400173
paoding-rose 0.454234 0.44441 0.376851 0.313296
parallec 0.329874 0.319669 0.266816 0.242659
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Table 16  (continued)

Project Name SIoriginal SI1% SI10% SI25%

pcap4j 0.541731 0.533679 0.482257 0.415653
pcollections 0.843381 0.78003 0.715853 0.672371
pf4j 0.402288 0.37047 0.291384 0.222261
prettytime 0.946105 0.946105 0.839409 0.756861
psi-probe 0.42465 0.417118 0.331299 0.27199
pushy 0.49364 0.493594 0.455646 0.366757
qart4j 0.767537 0.689786 0.569791 0.516853
QRGen 0.643101 0.531669 0.400739 0.336487
red5-server 0.386592 0.378048 0.324807 0.275212
RedisClient 0.901686 0.901678 0.897839 0.894393
restcountries 0.409211 0.346277 0.301389 0.201738
restx 0.52012 0.50839 0.418083 0.355805
Resty 0.449362 0.426592 0.315516 0.239358
rome 0.773322 0.764871 0.700611 0.636363
Saturn 0.389488 0.384044 0.32785 0.281945
sentry-java 0.412249 0.403277 0.364919 0.337222
signpost 0.321402 0.293694 0.217543 0.182213
smart 0.46726 0.422626 0.290259 0.199294
spring-roo 0.53518 0.522306 0.458172 0.362744
sqlite-jdbc 0.493073 0.482678 0.462218 0.433642
stateless4j 0.494501 0.494501 0.329849 0.231485
swagger-core 0.493445 0.473674 0.282874 0.23113
tabula-java 0.631983 0.592542 0.494188 0.475451
takes 0.829594 0.793471 0.629119 0.499926
tess4j 0.374361 0.374361 0.353686 0.267663
thymeleaf 0.737764 0.71179 0.584382 0.468349
traccar 0.63278 0.599191 0.484344 0.387687
transmittable-thread-local 0.506995 0.468214 0.424198 0.38053
ttorrent 0.436991 0.417945 0.380512 0.319233
unirest-java 0.466348 0.375272 0.312737 0.240977
vlcj 0.368498 0.345768 0.198761 0.14175
vraptor4 0.419702 0.378472 0.159071 0.085575
webcam-capture 0.253044 0.245153 0.199477 0.154831
webdrivermanager 0.440957 0.43232 0.335839 0.292603
webmagic 0.447593 0.416051 0.273064 0.214924
weixin4j 0.54181 0.513727 0.37923 0.274158
weixin-popular 0.443848 0.393402 0.211224 0.150336
weixin-sdk 0.437277 0.401593 0.279026 0.22022
XChart 0.651997 0.627409 0.491825 0.373863
xmemcached 0.831587 0.83015 0.80285 0.762659
ysoserial 0.44773 0.439218 0.405839 0.347767
zxing 0.722341 0.707105 0.606375 0.502947
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benchmark repository. After each injection, the whole repository was recompiled in order 
to produce the binaries (i.e., class files), which were necessary for the assessment. Only 
those applications that were able to successfully compile without additional warnings or 
errors were selected for the final experiment. In fact, from the 150 software applications 
of the benchmark repository, the 131 of them were able to compile correctly without addi-
tional issues. The injected applications were then analyzed using our proposed SAM, and 
their Security Indexes are presented in Table 16.

As can be seen in Table  16, the security scores of the injected software applications 
tend to be smaller compared to the corresponding scores of their original versions. This 
is observed even in the case of 1% injection. Another interesting observation is that the 
security scores of the analyzed software applications seem to follow a declining trend with 
respect to the level of injection. In fact, the higher the level of injection, the lower the Secu-
rity Index of the software products. (i.e., the more the vulnerabilities, the lower the security 
score). This is can be observed more clearly in the box plots presented in Fig. 10. In fact, 
the 1%, 10%, and 25% injection led to an average reduction in the Security Indexes of the 
analyzed software applications by 5.66%, 22.72%, and 35.96% respectively. This suggests 
that even the introduction of a small number of security issues leads to a relatively high 
reduction in the produced security score, which is important because even a single vulner-
ability may lead to far-reaching consequences.

Fig. 10  The boxplots of the Security Indexes of each injection groups
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Formal mathematical analysis is required, in order to reach safer conclusions. For this 
purpose, we decided to use hypothesis testing in order to examine whether there are any 
statistically significant differences between the security scores of the four groups of soft-
ware applications. If any statistically significant difference exists at least between the secu-
rity scores of the original applications and their injected versions, we can conclude that the 
model has sufficient discretion power.

The four groups are considered dependent since the same subject (i.e., software applica-
tion) was involved in each round of vulnerability injection/security evaluation. This indi-
cates that we have a repeated measures experiment, and therefore the repeated-measures 
analysis of variance (rANOVA) seems a good statistical tool for our experiment. In fact, 
rANOVA is a statistical test that is used to determine whether statistically significant dif-
ferences exist between two or more samples in a repeated measurement test, i.e., when 
the samples are dependent. However, rANOVA is a parametric test, meaning that specific 
assumptions should be satisfied in order for the test to provide reliable results. The main 
assumptions that should be satisfied in order to apply rANOVA are the following:

– Normality Assumption: This assumption requires the pair-wise differences between the 
studied groups to follow a normal distribution.

– Sphericity Assumption: This assumption requires the pair-wise differences between the 
studied groups to have equal variances.

In order to test the Normality Assumption we applied the Shapiro-Wilk test, while for vali-
dating the Sphericity Assumption we applied the Mauchly’s test. The results of these exper-
iments led us to the conclusion that these two assumptions are not fully satisfied for the 
data of the present experiment. The detailed results of these tests are provided on the web 
page with the supporting material of the present work (Online, 2020).

To this end, we decided to use Friedman test, which is a popular non-parametric alter-
native to the repeated-measures ANOVA. For this purpose, we formulated the following 
null hypothesis (along with its alternative hypothesis):

H0 : No statistically significant differences are observed between the Security Indexes of 
the studied groups.
H1 : Statistically significant differences are observed between the Security Indexes of the 
studied groups.

which was tested at the 0.05 level of confidence. Since the p-value of the test was found to 
be lower than 2.2 × 10−16 , which is significantly smaller than the threshold of 0.05, the null 
hypothesis is rejected. Therefore, we can conclude that the security scores of the four stud-
ied groups are significantly different.

Table 17  The results (i.e., 
p-values) of the post-hoc 
Nemenyi Test

SI SI1% SI10% SI25%

SI - 2.7 × 10−8 < 2.2 × 10−16

SI1% - 7.3 × 10−10 < 2.2 × 10−16

SI10% - 1.9 × 10−9

SI25% -
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Finally, in order to specifically determine which of the studied groups are significantly 
different from the others, post-hoc analysis was performed. For this purpose, we employed 
the Nemenyi test, which is a post-hoc test that is widely used along with the Friedman test. 
The results of the Nemenyi test are presented in Table 17. As can be seen in Table 17, all 
the calculated p-values are lower than the 0.05 threshold, which denotes that the security 
scores of each one of the four groups are statistically significantly different from the secu-
rity scores of the three other groups.

From the above analysis, it is obvious that even the injection of a small number of secu-
rity-relevant issues (i.e., potential vulnerabilities) leads to a clear reduction in the produced 
Security Index of a software application. This suggests that the introduction of even a small 
number22 of security issues is highlighted by the proposed SAM with a relevant drop in 
the produced Security Index. In simple words, the model does not seem to mask existing 
underlying issues, and therefore we can conclude that it has sufficient discretion power.

5.3  Comparison with a CVE‑based approach

As mentioned in Section  5.1, in order to evaluate the capacity of the proposed SAM to 
reliably assess the security level of software projects, its results should be compared to the 
assessment results provided either by similar security models or by security experts. How-
ever, due to the lack of similar operationalized models and expert-based security assess-
ments, in Section 5.1, we compared the proposed SAM with another popular security met-
ric, i.e., the SAVD calculated using FindBugs (Heitlager et al., 2007).

Since both SAM and SAVD are CWE-based approaches, i.e., they are based on CWE 
issues detected by different static code analyzers, and in order to enhance the completeness 
of our evaluation, in the present section, we compare the proposed SAM with a different 
non-CWE-based approach. More specifically, we assess the security level of a set of soft-
ware projects based on relevant vulnerability information that can be found in the Common 
Vulnerability and Exposures (CVE)23 database, and we compare these assessments with the 
assessments provided by SAM. A close correlation between these assessments will provide 
further confidence for the ability of the proposed SAM to reflect the security of software 
projects.

For the purposes of the present experiment, the OWASP Dependency Check24 tool was 
used as the reference point of our analysis. The OWASP Dependency Check is a software 
composition analysis tool that attempts to detect publicly disclosed vulnerabilities con-
tained within the dependencies of software projects. More specifically, the tool receives 
a software project as input and checks whether it has links to known vulnerabilities that 
have been disclosed in the National Vulnerability Database (NVD)25, and that are uniquely 
identified by relevant publicly available CVE entries (i.e., identifiers). After the analysis is 
complete, the tool produces detailed reports with the assessment results, which contain the 

22 It should be noted that even the 25% injection of security issues is considered small. 25% injection 
means that the 25% of the eligible classes of a software application were injected with a small number (usu-
ally one or two) of potentially insecure instructions, which is trivial compared to the overall size (i.e., lines 
of code) of the application.
23 CVE is a list of publicly disclosed cybersecurity vulnerabilities that is free to search, use, and incorpo-
rate into products and services (link: https:// cve. mitre. org/ cve/).
24 https:// owasp. org/ www- proje ct- depen dency- check/
25 https:// nvd. nist. gov/
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number of the identified vulnerable dependencies, along with the exact CVEs (i.e., CVE 
identifiers) of the detected vulnerabilities.

For the present analysis, the same benchmark repository of real-world software applica-
tions that was used in the previous analyses (i.e., in Section 5.1 and in Section 5.2), com-
prising 150 popular open-source Java applications, was utilized. The OWASP Dependency 
Check tool was manually applied to each one of the software projects of this benchmark. 
Only those applications that were able to be analyzed with the OWASP Dependency Check 
tool were selected for the final analysis. In fact, from the original 150 software projects, the 
OWASP Dependency Check tool was able to generate reports for 111 of them. For the rest 
of them, the tool was not able to parse their dependencies or their list of dependencies was 
missing, making it unable to search on the NVD for relevant CVE entries for these appli-
cations. The detailed HTML reports of the aforementioned analysis are available on the 
web page with the supporting material of the present paper (Online, 2020). These reports 
contain detailed information about the CVEs that were detected for real-world projects, and 
therefore we believe that this information may be useful for further research endeavors.

The HTML reports that were produced by the OWASP Dependency Check tool were 
then parsed, and the total number of the identified CVEs was computed (i.e., #CVEs) for 
each one of the analyzed software applications (i.e., projects). In this experiment, we used 
the number of the identified CVEs of a software project as an indicator of its security level, 
as they correspond to security issues that the projects contain. The Security Indexes of 
these projects were already available from the analysis that was performed in Section 5.1. 
Next, we obtained two individual rankings of the selected software projects, one based on 
their Security Indexes, and another one based on their number of identified CVEs (i.e., 
#CVEs) that were determined by the OWASP Dependency Check tool. A subset of the ana-
lyzed software applications, along with their Security Indexes, their #CVEs, and their cor-
responding rankings are presented in Table 18. The full table with the results is available 
on the web page with the supporting material of the present work (Online, 2020).

In order for the Security Index to be considered a reliable indicator of software security, 
a statistically significant positive correlation should be observed between the two rankings. 
Similarly to Section 5.1, we decided to use the Spearman’s rank correlation coefficient ( � ) 
(Spearman, 1987), which is a non-parametric and non-sensitive to outliers statistical test. 
To interpret the strength of the observed correlation, the thresholds proposed by (Cohen, 
2013) were used. In order to reach safer conclusions regarding the statistical significance of 
the observed correlation, we formulated the following null hypothesis (along with its corre-
sponding alternative hypothesis), which was tested at the 95% confidence level ( a = 0.05):

H0 : No statistically significant correlation is observed between the two rankings.
H1 : A statistically significant correlation is observed between the two rankings.

The calculated Spearman’s rank correlation coefficient between the two rankings was 
found to be � = 0.63 , which is a positive and strong (according to (Cohen, 2013)) cor-
relation. In addition, since thep-value was found to be lower than the 0.05 threshold (in 
fact, p-value < 2.2 × 10−16 ), the null hypothesis was rejected, indicating that a statistically 
significant correlation exists between the two rankings. This suggests that the two rank-
ings are highly consistent, and, in turn, that the Security Indexes produced by our proposed 
SAM are closely related to their number of their CVEs that were detected by the OWASP 
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Table 18  A fragment of the security evaluation results of the selected open-source software products, as 
produced by the proposed security assessment model (i.e., SI), the OWASP Dependency Checktool (i.e., 
number of CVEs), along with their corresponding rankings. The complete table is available online (Online, 
2020)

Project Name Security Index SI Rank #CVEs CVE Rank

jBCrypt 0.967839 1 0 1
fastweixin 0.48152 64 7 71
Resty 0.449362 73 60 93
citrus 0.470902 67 27 83
AutoLoadCache 0.341156 101 63 95
rome 0.773322 17 6 68
weixin4j 0.54181 46 34 86
librec 0.880626 6 4 57
ysoserial 0.44773 74 30 85
signpost 0.321402 104 27 83
smart 0.46726 68 141 109
azure-sdk-for-java 0.478949 65 118 106
Jupiter 0.434233 83 21 82
red5-server 0.386592 96 80 99
mockserver 0.477356 66 102 102
incubator-dubbo 0.341017 102 142 110
mango 0.419876 87 13 77
EMV-NFC-Paycard 0.897857 5 1 35
OpenID-Connector 0.442037 79 103 103
dockerfile-maven 0.508837 52 59 92
dcm4che 0.442593 78 99 101
qart4j 0.767537 19 2 45
psi-probe 0.42465 85 121 107
light-task-scheduler 0.45567 70 132 108
tess4j 0.374361 98 9 73
swagger-core 0.493445 62 50 90
itchat4j 0.415945 89 5 65
parallec 0.329874 103 67 96
lavagna 0.506193 54 115 104
sentry-java 0.412249 90 19 79
docker-maven-plugin 0.343779 100 10 76
google-oauth-java-client 0.533626 50 19 79
vraptor4 0.419702 88 9 73
apk-parser 0.583697 39 3 55
Saturn 0.389488 95 362 111
re2j 0.90167 4 0 1
java-memcached-client 0.595624 36 16 78
Cerberus 0.196344 109 116 105
weixin-sdk 0.437277 81 97 100
Examination_System 0.442733 77 71 98
jdeb 0.541412 48 8 72
restcountries 0.409211 92 19 79
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Dependency Check tool (#CVEs). This denotes that the assessment results provided by our 
proposed model are closely related to the assessment results produced by another inde-
pendent security evaluation approach, which, contrary to the analysis of Section 5.1 is not 
CWE-based, providing support for its ability to reliably reflect the security level of soft-
ware products. Hence, the results of the present analysis along with the results of Sec-
tion 5.1, provide confidence for the capacity of the proposed SAM to reflect the security 
level of software products in practice.

Similarly to Section  5.1, it should be noted that the two rankings were not expected 
to be identical, since the two approaches are based on different security-related informa-
tion. More specifically, the proposed SAM is based on the CWE issues that are identified 
through static analysis, whereas the approach that was used as the reference point of the 
present experiment was based on the CVE entries that are detected by the OWASP Depend-
ency Check tool. Hence, the assessment results that are produced by the two approaches are 
not expected to perfectly much. However, the existence of a statistically significant strong 
correlation between these assessments provides confidence that the proposed SAM is able 
to reflect the security level of software products, or at least that it does not provide informa-
tion that is irrelevant to the security of the analyzed software.

5.4  Class‑level security assessment

The purpose of the previous experiments was to examine the ability of the proposed SAM 
to reliably evaluate the internal security of complete software products. Another interesting 
problem, is whether the proposed model can be used to reliably assess the security level of 
individual software components (i.e., classes). In other words, we are interested in knowing 
whether the security score of a single software component (i.e., class) may indicate (i.e., 
predict) the existence of software vulnerabilities in this class. To this end, in this section, 
we investigate the ability of the proposed SAM to discriminate between vulnerable and 
clean classes. A positive answer to this question will suggest that the model can provide 
reliable class-level estimations of software security, and that the produced security score 
can be used as the basis for class-level vulnerability prediction (i.e., for highlighting poten-
tially vulnerable classes).

Table 18  (continued)

Project Name Security Index SI Rank #CVEs CVE Rank

docker-java 0.431021 84 68 97
webcam-capture 0.253044 107 37 87
jesque 0.556685 43 49 89
natty 0.902403 2 0 1
fluent-validator 0.264751 105 9 73
java-client-api 0.523719 51 43 88
paoding-rose 0.454234 72 55 91
webmagic 0.447593 75 60 93
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5.4.1  Vulnerability dataset

For the purposes of the present experiment a highly balanced dataset of vulnerable and 
clean software components is required. However, current literature lacks such a reliable 
dataset. In fact, existing datasets are highly unbalanced, while they are constructed based 
mainly on reported vulnerabilities of software products (e.g., (Scandariato et  al., 2014; 
Zhang et al., 2019)). This affects their correctness, since not all of the vulnerabilities that a 
product contains are always reported, and therefore many components that are considered 
clean in the dataset may in fact be vulnerable, as they may contain vulnerabilities that have 
not been reported yet. Hence, for the needs of the present study, and in order to enhance the 
reliability of its results, a highly balanced dataset of clean and vulnerable components was 
constructed based on the OWASP Benchmark.

OWASP Benchmark is a popular test suite that is commonly used for the evaluation of 
static code analyzers regarding their ability to detect vulnerabilities. It is a collection of a 
large number of software components that contain known vulnerabilities. The reason for 
selecting this benchmark as the basis of our study is twofold. Firstly, the software com-
ponents provided by the benchmark are Java classes, and therefore they can be easily ana-
lyzed by the proposed SAM. Secondly, contrary to similar test suites (e.g., Juliet Test Suite 
(Boland & Black, 2012)), the selected benchmark comprises also software components that 
do not contain actual vulnerabilities (i.e., they contain false positives). In particular, the 
OWASP Benchmark v1.2 was used which comprises 2740 software components, of which 
1415 contain actual vulnerabilities, and 1325 contain false positives. The classes contain-
ing actual vulnerabilities were selected as the vulnerable components, whereas those con-
taining false positives as the clean components of the present analysis.

The proposed SAM was employed in order to calculate the security scores of the 
selected vulnerable and clean software components. Subsequently, based on these scores 
duplicates were removed, in order to remove bias imposed by highly similar components. 
This was necessary since the same component was frequently used by the benchmark for 
testing different types of vulnerabilities. After removing duplicates, the dataset consisted 
of 1061 vulnerable and 1007 clean classes. In order to construct a highly balanced dataset, 
600 observations were randomly selected from each group of vulnerable and clean compo-
nents. Undersampling was used in order to reduce the possibility of selecting highly com-
mon components for the final analysis. Hence, this led to the construction of a highly bal-
anced dataset, comprising 600 vulnerable and 600 clean Java classes.

5.4.2  Correlation analysis

In order to investigate the ability of the proposed SAM to provide reliable class-level esti-
mations of software security, we initially applied correlation analysis, with the purpose to 
examine the relationship between the produced Security Index and the existence of vul-
nerabilities in software classes. A statistically significant relationship would provide con-
fidence for the ability of the proposed model to indicate the existence of vulnerabilities in 
software classes.

To this end, the proposed SAM was initially employed to compute the Security Indexes 
of the OWASP Benchmark classes that were selected through the process described in Sec-
tion 5.4.1. In order to enhance the completeness of the present analysis and reach more 
reliable conclusions, apart from SAM, we also included the SAVD metric in our analysis. 
More specifically, we calculated the SAVDs of the selected subset of OWASP Benchmark 
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classes, by employing the FindBugs static code analyzer, using the same configuration that 
was used for the experiment that was presented in Section 5.1. A small fragment of the 
analyzed classes, along with their Security Indexes and SAVDs that were computed based 
on the aforementioned procedure are presented in Table  19. The purpose of this frag-
ment is to demonstrate the structure of the dataset used for the present analysis. The com-
plete results are available on the website with the supporting material of the present work 
(Online, 2020). It should be noted that the last column of Table 19 is the vulnerability state 
of the class, which denotes whether the corresponding class is vulnerable (i.e., 1), or clean 
(i.e., 0).

Subsequently, we calculated the correlation between the Security Index and the vulner-
ability state (i.e., ground truth), as well as between the SAVD and the vulnerability state. 
For the purposes of the present study, we decided to use the Point-biserial correlation coef-
ficient (r), which is used for computing the correlation between a continuous and a dichoto-
mous (i.e., binary) variable. For the characterization of the correlation strength, similarly 
to the previous experiments, we used the thresholds suggested by (Cohen, 2013). However, 
it should be noted that we do not expect the correlations to be strong. Even a weak cor-
relation, is normally acceptable for providing evidence for the potential ability of a factor 
to indicate the existence of vulnerabilities (e.g., (Shin & Williams, 2008b; Chowdhury & 
Zulkernine, 2011; Shin et al., 2011; Medeiros et al., 2017; Siavvas et al., 2017b; Moshtari 
et al., 2013; Moshtari & Sami, 2016; Stuckman et al., 2017; Ferenc et al., 2019; Jimenez et 
al., 2019; Zhang et al., 2019)).

The Point-biserial correlation coefficient (r) between the Security Indexes of the classes 
and their vulnerability state was found to be r = −0.31 , which is a negative and medium 

Table 19  The Security Indexes 
(i.e., SI), the SAVDs, and the 
Vulnerability States of a fragment 
of the constructed vulnerability 
dataset, which contains 1200 
classes. The SI’ column contains 
the Security Indexes of the 
selected classes that were 
computed by an alternative 
security assessment model that 
omits software metrics. The 
complete table is available online 
(Online, 2020)

Class Name SI SAVD SI’ Vulner-
ability 
State

Bench_00126 0.794198 29.411764 0.764353 0
Bench_01564 0.732225 22.304832 0.695615 0
Bench_01429 0.444389 35.087719 0.395615 1
Bench_01408 0.358902 30.120481 0.287730 1
Bench_01012 0.637875 38.461538 0.585201 0
Bench_00866 0.389418 18.691588 0.323054 0
Bench_00551 0.470953 42.253521 0.391098 1
Bench_01039 0.568046 28.089887 0.517363 0
Bench_01041 0.542754 25.906735 0.488677 1
Bench_00405 0.689363 44.247787 0.640945 0
Bench_02026 0.713227 27.777777 0.668393 0
Bench_01648 0.671609 51.724137 0.620549 1
Bench_00535 0.495721 20.618556 0.435758 0
Bench_00947 0.510003 27.027027 0.438829 1
Bench_01479 0.433639 23.584905 0.366153 0
Bench_01740 0.695840 15.686274 0.655495 1
Bench_02567 0.416972 20.408163 0.349303 1
Bench_00788 0.399086 20.979020 0.332508 1
Bench_01825 0.774997 23.333333 0.741085 0
Bench_01442 0.361662 27.210884 0.286471 1
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correlation (according to (Cohen, 2013)). This correlation is statistically significant, since 
the p-value was found to be 4.945 × 10−11 , which is significantly lower than the threshold 
of 0.05. It should be noted that the negative value denotes that lower the Security Index the 
higher the probability for the associated class to be vulnerable (i.e., 1), which is the desired 
behavior.

Similarly, the Point-biserial correlation coefficient (r) between the SAVDs of the classes 
and the vulnerability state was calculated and found to be r = 0.1 , which is a positive and 
weak correlation (according to (Cohen, 2013)). The p-value was found to be 3.73 × 10−11 , 
which suggests that the observed correlation is statistically significant. The positive cor-
relation denotes that the higher the SAVD of a given class, the higher its probability to be 
vulnerable (i.e., 1), which is the desired behavior.

A direct comparison between the calculated correlations (in terms of absolute values) 
reveals that the Security Index is more closely related to the existence of vulnerabilities 
compared to the SAVD computed based on the FindBugs static code analyzer. This sug-
gests that the proposed SAM may provide more reliable class-level security estimations 
compared to its counterpart (at least for the given dataset), despite the fact that it is based 
on a popular tool that is known for its ability to detect security issues. In addition to this, 
the statistically significant medium correlation provides evidence for the potential ability 
of the proposed model to indicate the existence of vulnerabilities in software classes, and 
therefore to be used as the basis for vulnerability prediction. However, since the observed 
correlation was not found to be strong, discriminant analysis is required in order to reach 
safer conclusions, which is presented in Section 5.4.3.

To further enhance the completeness of the present analysis, similarly to Section 5.1, 
we also computed the correlation between the ranking of the selected OWASP Benchmark 
classes based on their Security Index, and their ranking based on their SAVD. Similarly 
to Section 5.1, we decided to use the Spearman’s rank correlation coefficient ( � ) (Spear-
man, 1987), which is a non-parametric and non-sensitive to outliers test. The thresholds 
proposed by (Cohen, 2013) were also used for interpreting the strength of the observed 
correlation. In order to reach safer conclusions with respect to the statistical significance of 
the observed relationship, the following hypothesis was formulated and tested at the 95% 
confidence level ( � = 0.05):

H0 : No statistically significant correlation is observed between the two rankings.
H1 : A statistically significant correlation is observed between the two rankings.

The calculated Spearman’s rank correlation coefficient ( � ) between the two rankings was 
found to be � = 0.19 , which is a positive, but weak correlation. Since the p-value was 
found to be lower than the threshold value of 0.05 (in fact, p − value < 2.2 × 10−12 ), the 
null hypothesis is rejected. This suggests that the observed correlation between the two 
rankings is statistically significant. The results of this analysis are in line with the results of 
the Point bi-serial correlation. More specifically, the two rankings were found to be corre-
lated in a statistically significant manner, which is reasonable as both the Security Indexes 
and the SAVDs of the selected classes demonstrated a statistically significant correlation 
with the vulnerability state of these classes (i.e., ground truth). In addition to this, the Secu-
rity Indexes demonstrated a much stronger correlation with the ground truth compared to 
the SAVDs, which explains the weak correlations between their rankings. Hence, this anal-
ysis further supports the observation that the Security Index may be a better vulnerability 
indicator than the FindBugs-based SAVD, and therefore that it can be used as the basis for 
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vulnerability prediction. However, as already mentioned, in order to reach safer conclu-
sions, discriminant analysis is also required.

5.4.3  Discriminant analysis

In order to investigate the ability of the proposed SAM to discriminate between vulner-
able and clean software components, we employed discriminant analysis. Initially, the box 
plots of the security scores of the vulnerable and clean components (calculated through the 
aforementioned process) were plotted, to allow the visual comparison of their distributions 
(Fig. 11).

Figure 11 clearly shows that the security scores of vulnerable classes tend to be lower 
compared to the scores of the clean components. This indicates that the produced Security 
Index may possibly be used as an indicator of vulnerable components. However, in order to 
reach safer conclusions hypothesis testing was applied. More specifically, Wilcoxon Rank 
Sum test was performed between the security scores of vulnerable and clean software com-
ponents in order to investigate whether a statistical significant difference exists between 
their values. Wilcoxon Rank Sum  test is a non-parametric test, which is not sensitive to 
outliers and does not assume any distribution for the studied data. It has been widely used 
in the related literature for testing the ability of different factors to discriminate between 
vulnerable and clean software artifacts (e.g., (Shin & Williams, 2008; Munaiah & Meen-
ley, 2016; Jimenez et al., 2019)). In particular, the following null hypothesis (along with its 
corresponding alternative hypothesis) was formulated and tested with confidence level 95% 
(i.e.,a = 0.05):

H0 : No difference exists between the security scores of vulnerable and clean software 
components.
H1 : The security scores of the clean and vulnerable components are statistically differ-
ent.

Fig. 11  Distribution of the Security Indexes of vulnerable and clean software components (i.e., classes)
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After performing the test the p-value was found to be much lower than the threshold of 
0.05 (i.e., p-value < 2.2 × 10−16 ). Hence, the null hypothesis is rejected, leading to the 
acceptance of the alternative hypothesis, denoting that a statistically significant difference 
exists between the security scores of the vulnerable and clean components. This suggests 
that the proposed SAM can discriminate between vulnerable and clean software compo-
nents, and thus its score can be used as an indicator of vulnerabilities.

For reasons of completeness, we also performed a Wilcoxon Rank Sum test between 
the SAVDs of the vulnerable and clean software components of the selected benchmark, 
in order to observe whether a statistically significant difference exists between their val-
ues. The test resulted in a p-value that was lower than the threshold value of 0.05 (p-value 
< 2.2 × 10−16 ), leading to the rejection of the null hypothesis. This suggests that the SAVDs 
that are calculated using FindBugs are also able to discriminate between vulnerable and 
clean software components, meaning that the FindBugs-based SAVD can potentially be 
used as a vulnerability indicator. However, since the Security Index demonstrated a much 
higher correlation to the vulnerability state of the selected classes compared to the Find-
Bugs-based SAVD, it can be considered a stronger vulnerability indicator (at least for the 
studied dataset, i.e., the OWASP Benchmark).

In brief, since the proposed SAM is able to discriminate between vulnerable and clean 
software classes, we can conclude that it can potentially provide reliable class-level secu-
rity assessments. In fact, the results of the present experiment lead us to the conclusion that 
the value of the produced security score can potentially indicate whether the analyzed class 
contains vulnerabilities or not. This also provides preliminary evidence that the proposed 
SAM can be used as the basis for the construction of a vulnerability prediction model, 
able to highlight classes of a software product that are potentially vulnerable. For instance, 
a specific threshold can be trained for the Security Index of the model, below which, a 
class will be considered vulnerable. However, it is obvious that a more elaborate study is 
required for the latter, which is left as a future work.

5.4.4  Vulnerability prediction based on the security index

In the previous sections (i.e., Section 5.4.2 and Section 5.4.3), correlation and discriminant 
analysis were performed, in order to check whether the Security Index produced by the pro-
posed SAM can be used as a good indicator of software vulnerabilities. The results of these 
analyses showcased that the Security Index is closely correlated to the existence of vulner-
abilities and that it has sufficient discriminative power. Hence, being in line with the litera-
ture, the preliminary results of these analyses provide us with confidence that the Security 
Index can be considered an indicator of software vulnerabilities, which can be used as the 
basis for constructing vulnerability prediction models.

In fact, the research in the field of vulnerability prediction focuses on (i) identifying 
potential indicators of software vulnerabilities (i.e., through empirical studies focus-
ing on correlation and discriminant analysis) (Shin & Williams, 2008a, b; Chowdhury & 
Zulkernine, 2010; Siavvas et al., 2017b; Zhang et al., 2019; Jimenez et al., 2016; Sultana et 
al., 2017; Roumani et al., 2016; Medeiros et al., 2017; Sultana et al., 2019), and/or on (ii) 
building vulnerability prediction models (VPMs) based on the identified indicators, which 
are normally built based on machine learning (ML) techniques (Shin et al., 2011; Chowdhury  
& Zulkernine, 2011; Scandariato et al., 2014; Moshtari & Sami, 2016; Dam et al., 2018; 
Siavvas et al., 2020a; Kalouptsoglou et al., 2020).
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Although the correlation and discriminant analyses are normally enough for detect-
ing potential vulnerability indicators, in order to enhance the completeness of the present 
experiment, since the correlation and discriminant analysis showed that the Security Index 
can be considered a sufficient indicator of software vulnerabilities, we go one step further 
and we attempt to construct a uni-variate VPM based on this indicator. The construction of 
a VPM with sufficient accuracy would provide further confidence for the ability of the pro-
duced SAM to provide reliable class-level security assessment, and, in turn, that the Secu-
rity Index can be used as the basis of vulnerability prediction. However, it should be clearly 
stated that examing the feasibility of constructing VPMs using the Security Index of the 
proposed SAM is out of the scope of the present paper. This analysis is performed in order 
to gain further insight with respect to the capacity of the proposed SAM to discriminate 
between vulnerable and clean classes, and therefore to provide reliable class-level security 
assessments.

The first step of our analysis is the selection of the dataset for the construction of the 
VPMs. For the purposes of the present experiment, the highly balanced dataset of vulner-
able and clean components that was constructed in Section  5.4.1 based on the OWASP 
Benchmark was utilized. Since the produced models are uni-variate, the calculated Security 
Index was used as the independent variable, whereas the vulnerability state of each class 
of the dataset was used as the dependent variable (see Table 19). Based on this dataset, 
several models were built, using both linear and non-linear machine learning algorithms. In 
particular, we used the following ML algorithms:

– Logistic Regression is a classifier that predicts the probability of a categorical target 
variable Y belonging to a certain class by employing a logit function. Although the 
logit function makes logistic regression suitable for binary classification where there 
are two classes, it can be extended to support classification where multiple classes are 
present.

– K-Nearest Neighbours is a simple algorithm that initially keeps all available labeled 
data points in the memory. Once a new data point comes in, it gets classified based on 
the majority label of the k data points closest to it. The closeness between data points is 
computed by using a distance function (e.g., Euclidean distance).

– Naïve Bayes is a probabilistic classifier that is based on the Bayes’ theorem. To make 
classifications, it computes the odds of a data point to belong into a specific class. 
Although Naive Bayes is simple and intuitive, it works under the assumption that all 
features are independent and they not affect the other, which is rarely the case in real-
life classification tasks.

– Support Vector Machine is a classifier that tries to find the optimal N-dimensional 
hyperplane (i.e., support vectors) that maximizes the margin between the data points, 
thus making them distinctly separable. To achieve this, it tries to learn a non-linear 
function by linearly mapping the data points into high-dimensional feature space.

– Random Forest is a classifier that is constructed based on multiple decision trees. For 
the classification, the new instance (i.e., input vector) is fed as input to each one of the 
decision trees of the Random Forest, which predicts its class. Then the Random Forest 
collects all the votes that are produced by its decision trees and provides a final clas-
sification. Usually, the class that was selected by the majority of the decision trees is 
chosen as the final class of the new instance.

– XGBoost is a decision-tree-based ensemble ML algorithm that uses multiple decision 
trees to predict an outcome based on a gradient boosting framework.
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The predictive performance of these models was evaluated and compared using popu-
lar performance metrics, namely Recall, Precision, and F1 score. For the evaluation, the 
10-fold cross-validation approach was employed. According to this approach, the original 
dataset is randomly split into 10 folds, nine of them are used for training and one for test-
ing. This process is repeated until each one of the 10 folds is used as a test set. The per-
formance metrics of each one of the 10 folds are recorded and then the average of these 10 
recorded metrics is computed. The average values of these performance metrics through 
these 10 folds are selected as the performance metrics of the model. This process was 
repeated for each one of the selected ML algorithms, and their predictive performance was 
compared based on the calculated performance metrics. The results of the evaluation of the 
produced models are presented in Table 20.

As can be seen in Table 20, the Logistic Regression is the best performing model, as it 
showcases an F1 Score of 0.71. This suggests that a uni-variate logistic regression model 
can predict the existence of vulnerabilities in software components with sufficient accu-
racy. Apart from Logistic Regression, the XGBoost also demonstrates high Recall, and a 
satisfactory F1 Score. It should be also noted that all the studied models demonstrate a pre-
dictive performance, which is better than the base model of random guess.

Hence, from the results presented in Table 20, it is eminent that the Security Index can 
be used as the basis for the construction of uni-variate VPMs with sufficient predictive 
performance, at least for the given dataset. The preliminary results of this analysis provide 
more confidence for the capacity of the proposed SAM to provide reliable class-level secu-
rity assessments, and to be utilized for class-level vulnerability prediction.

The utilization of additional vulnerability indicators along with the Security Index is 
expected to lead to multi-variate VPMs with better predictive performance. More specifi-
cally, the Security Index could be used in conjunction with other factors for building more 
accurate VPMs, whereas it could probably enhance the predictive performance of existing 
VPMs that are based on other known vulnerability indicators (e.g., text-mining features). 
However, as already mentioned, this is out of the scope of the present paper, and it is left as 
a direction for future work.

5.5  Impact of software metrics

As mentioned in Section  3.1, we decided to include software metrics in the proposed 
model, in order to enhance the completeness of the security assessment, by taking into 
account factors that are indirectly related to software security. However, since the weights 

Table 20  Cross-validation 
averaged scores for all the 
produced class-level vulnerability 
prediction models

Classifier Precision Recall F1 Score

Random Forest 0.59 0.58 0.58
Logistic Regression 0.66 0.76 0.71
K-NN 0.59 0.65 0.62
Naïve Bayes 0.64 0.71 0.67
XGBoost 0.62 0.76 0.68
SVM 0.64 0.68 0.66
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of the metric-based properties are determined based on expert judgments, they inevita-
bly include subjectivity, which may potentially affect the correctness (i.e., objectivity) of 
the overall assessment. Although the total impact of the software metrics on the produced 
Security Index was observed to be small (i.e., approximately 11-12%, as discussed in Sec-
tion 3.2.2), in order to convince the reader about our choice to include software metrics, a 
formal evaluation of their actual impact on the overall security assessment is provided in 
the present section.

5.5.1  Comparison with a security model that omits software metrics

As a first step towards this formal evaluation, the assessment results of the proposed model 
need to be compared to the corresponding assessment results of an equivalent model that 
omits software metrics. To this end, we created an alternative security assessment model 
that is based exclusively on alert-based properties (i.e., vulnerability categories). The 
thresholds of the alert-based properties of the new model are the same with those of the 
original model (see Table 7), while its weights were elicited based on the same pair-wise 
comparison matrices (e.g., Fig.  6), using only the values that correspond to vulnerabil-
ity categories. Thus, since the thresholds of the model are data driven and the weights 
are determined based on information retrieved from the CWE knowledge base (instead of 
expert judgments), the new model is free from subjectively defined parameters.

For the purposes of the experiment, we analyzed the same software applications that 
were used in the previous analyses, i.e., the 150 popular Java applications retrieved from 
GitHub repository (see Section 5.1), using the newly constructed model, and we ranked 
them based on their computed Security Indexes. The Security Indexes of the analyzed 
applications along with their corresponding ranking are presented in Table  13. Subse-
quently, we compared this ranking with the ranking of the software applications obtained 
based on the Security Indexes that were calculated by the original model. For the compari-
son of the two rankings the Spearman’s Rank Correlation Coefficient (�) (Spearman, 1987) 
was employed, and the following null hypothesis (along with its corresponding alternative 
hypothesis) was formulated and tested at the 95% (a = 0.05) level of confidence:

H0 : No statistically significant correlation exists between the two rankings.
H1 : A statistically significant correlation is observed between the two rankings.

The calculated � between the two rankings was found to be � = 0.989 , which is a correla-
tion highly close to the value of 1. This suggests that the two rankings are almost identical. 
In addition, the p-value of the correlation was found to be highly lower than the threshold 
of 0.05 (in fact, p-value< 2.2 × 10−16 ). This led us to the rejection of the null hypothesis, 
which indicates that the observed correlation is statistically significant. This suggests that 
the security assessments provided by the two models are highly similar.

To enhance the completeness of the present study, an additional analysis based on the 
OWASP Benchmark was conducted, in order to also compare the models with respect to 
their class-level assessments. More specifically, in Section 5.4, a vulnerability dataset was 
constructed based on the OWASP Benchmark and analyzed using the proposed SAM. For 
the purposes of the present experiment, we analyzed the same vulnerability dataset using 
the alternative model that omits software metrics. The Security Indexes of a fragment of 
these classes that were produced using this alternative model are presented in the fourth 
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column of Table 19. The detailed results are available on the website with the supporting 
material of the present experiment (Online, 2020).

Subsequently, the Point-biserial correlation (r) between the Security Indexes that were 
calculated using the alternative model and the vulnerability state of the analyzed classes 
was computed. The value of the correlation was found to be r = −0.32 , which is a nega-
tive and medium correlation according to (Cohen, 2013). In addition, this correlation is 
statistically significant, since its p-value was found to be 2.6 × 10−12 , which is significantly 
smaller than the threshold of 0.05. This correlation is almost equal to the correlation that 
was observed between the Security Indexes produced by the original SAM and the vulner-
ability states of the studied classes that that was calculated in Section  5.4.2, which was 
found to be r = −0.31 . Hence, this suggests that both models are almost equally correlated 
to the ground truth (as reflected by the OWASP Benchmark), which indicates that the two 
models provide similar class-level security assessments, providing further support that they 
can be used interchangeably for security assessment.

From the above analysis, we can conclude that the two models provide almost identi-
cal assessment results. In fact, although the security scores that are produced by the origi-
nal model are slightly different from the corresponding scores produced by the model that 
omits software metrics (Table 13 and Table 19), the overall assessment (i.e., ranking) is 
almost the same, whereas their correlation with a ground truth of software vulnerabili-
ties (as expressed by the OWASP Benchmark) is also almost equal. This indicates that the 
inclusion of the software metrics enriches the produced security scores with additional 
security-relevant information without significantly affecting the overall evaluation. This 
also suggests that the subjective parameters of the proposed model (i.e., expert-defined 
weights) that were introduced because of the inclusion of the software metrics, do not seem 
to have a significant impact on the overall assessment, and, in turn, on the objectivity of the 
final model. Therefore, the two models can be used interchangeably in practice for assess-
ing the internal security of software products.

5.5.2  Comparison with a quality model

Although the previous analysis highlighted that the impact of the selected software met-
rics on the proposed model is very small (which is what we wanted), another interesting 
question is to investigate what observations could be made if this impact was high. For 
this purpose, we created a new model by manually setting its weights so that 80% of the 
produced score to be determined by the selected object-oriented (OO) software metrics, 
and only 20% by the defined weakness categories. Since the final score is determined pre-
dominantly by OO metrics, we treat the resulting model as a quality model (and not as a 
security model), and we term the produced score as Quality Index (QI), instead of Security 
Index (SI), as OO metrics are commonly treated in the literature as quality indicators (e.g., 
(Bansiya & Davis, 2002; Heitlager et al., 2007; Wagner et al., 2015; Siavvas et al., 2017b)).

Subsequently, similarly to the previous analysis, we computed the Quality Indexes of the 
150 GitHub applications that were used previously, and ranked them based on these quality 
scores. The Quality Indexes and the corresponding ranking of these applications is pre-
sented in Table 13. Then, similarly to the previous analysis, we calculated the Spearman’s 
Rank Correlation Coefficient (�) between this ranking and the ranking that was obtained 
based on the Security Indexes that were computed using the original model, which was 
found to be � = 0.0665 . This is a very weak correlation (according to (Cohen, 2013), 
which is close to zero. In addition, the p-value was found to be 0.41875, indicating that the 

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Software Quality Journal 

1 3

observed correlation is not statistically significant. Hence, the results of this analysis sug-
gest that the two approaches provide different assessments, which provides further support 
to our decision to assign small weights to the metric-based properties, as higher weights 
would affect the overall assessment.

To reach safer conclusions we also employed the quality model in order to calculate 
the Quality Indexes of the classes of the OWASP Benchmark, and computed their cor-
relation with their vulnerability state using the Point-biserial correlation coefficient 
(r). The detailed results of this analysis are available on the website with the supporting 
material of the paper (Online, 2020). The correlation was found to be r = −0.17 , and its 
p-value=0.0016. This is a statistically significant negative and weak correlation (accord-
ing to (Cohen, 2013)). The negative correlation indicates that the Quality Index tends to 
be lower for vulnerable classes, which is the desired behavior. Hence, the OO metrics-
based quality model is not sufficiently correlated to the ground truth (as expressed by the 
OWASP Benchmark), as opposed to the other two security models (i.e., the original and 
the one that omits software metrics), which were found to have a medium correlation with 
the ground truth. This suggests (at least for the studied dataset) that software metrics are 
only weakly correlated to vulnerabilities. This is in line with the large body of knowledge, 
which suggests that software metrics are only weak indicators of vulnerabilities (Shin & 
Williams, 2008b; Chowdhury & Zulkernine, 2011; Shin et al., 2011; Medeiros et al., 2017; 
Siavvas et al., 2017b; Moshtari et al., 2013; Moshtari & Sami, 2016; Stuckman et al., 2017; 
Ferenc et al., 2019; Jimenez et al., 2019; Zhang et al., 2019).

5.5.3  Discussion

To conclude, the results of the present analysis justifies our decision to assign small 
weights to software metrics, since they were found to be only weakly correlated to vulner-
abilities, whereas assigning higher weights was found to significantly affect the assessment 
results. In addition, the proposed security model was found to provide similar assessment 
results with an equivalent security model that omits software metrics, which provides con-
fidence for its objectivity, and indicates that these models can be used interchangeably for 
security assessment. Although we recommend the adoption of the security model with the 
software metrics since it is more complete, we also provide the model that is based only on 
alert-based properties on the web page with the supporting material of the present paper 
(Online, 2020).

6  Static analysis, model transparency, and root‑cause analysis

As mentioned in the previous sections, the proposed SAM is based exclusively on static 
analysis. This allows the proposed SAM to be applied regularly during the software devel-
opment process from the very early stages of the implementation in a fully automated way, 
as static analysis does not require the execution of the software product under assessment. 
Despite the obvious benefits that SAM has from the adoption of static analysis, static anal-
ysis itself could benefit from the concepts and mechanisms that are provided by SAM.

One of the main shortcomings of static code analyzers, which hinders their adoption 
in practice, is their poorly presented results (Johnson et al., 2013; Siavvas et al., 2018a), 
which comprise long lists of raw warnings (i.e., alerts) or absolute values of software met-
rics. Firstly, although these results contain valuable security-related information about the 
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product at hand, this information is difficult (if not impossible) to comprehend, especially 
by stakeholders with little or no technical knowledge, such as project managers. Another 
issue is that these long lists of warnings that are produced by the tools are difficult to 
inspect (a time-consuming & effort-demanding process that is often termed triaging (Wal-
den & Doyle, 2012; Ruthruff et al., 2008)), which discourages developers from using them 
in practice.

The proposed SAM attempts to address the former issue (i.e., difficult-to-comprehend 
results), by aggregating the raw static analysis results into higher-level security scores, 
through several levels of aggregation. These security scores are more intuitive and easily 
understandable even by stakeholders with little or no technical knowledge. In addition to 
this, the hierarchical structure of the security model allows the stakeholders to focus on 
a specific level of abstraction, putting their focus on what matters most. For instance, a 
project manager could check only the overall security score (i.e., the Security Index) of the 
software under development, in order to get an overview of its overall security status, or 
they could check the security score of a specific security characteristic (e.g., Confidential-
ity, Integrity, and Availability) in order to see whether there are static analysis issues that 
affect this security characteristic.

More interestingly, the proposed SAM also contributes towards addressing the latter 
issue (i.e., impracticality of static analysis), through its hierarchical structure and transpar-
ency. In fact, the transparency of the proposed model enables the conduction of root-cause 
analysis, meaning that it can be used for identifying the underlying reasons that led to the 
assignment of a specific score to a given software product (or class). To better explain 
this concept, a simple example is illustrated in Fig. 12. Suppose that a specific product (or 
class) received a security score of 0.47, which is relatively low. As can be seen in Fig. 12, 
we can follow the model’s hierarchy in order to gain more detailed insight. More specifi-
cally, by focusing on the layer of characteristics, we can see that the product received a 
low score in the characteristic of Confidentiality, which indicates that it may not handle 
well sensitive information. If we go one step further and examine the model’s properties, 
we can see that very low scores were assigned to the properties of Logging and Exception 
Handling. This suggests that the given product (or class) suffers from many logging and 
exception handling issues, which may have an impact on its Confidentiality, and, in turn, its 
overall security.

Fig. 12  An example demonstrat-
ing how the proposed model can 
be used for conducting root-cause 
analysis. A developer can start 
from the high-level security score 
of a given product (or class), and 
drill down to the code, in order 
to identify what issues led to the 
assignment of this score. In the 
given example, the path (i.e., 
sub-graph) that attracts the atten-
tion of the developer is marked 
with red color
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From the above analysis, it is clear that the developer can start from the high-level secu-
rity score of a given product (or class), and drill down to the code, in order to identify 
what issues led to the assignment of this score. Hence, the developers can actually use this 
information to better prioritize their testing and fortification efforts, for example by starting 
their refactoring activities by fixing these issues first. This suggests that apart from a high-
level score, the model also facilitates the identification of low-level security problems that 
a program may have, which can be used to drive refactoring activities. Therefore, instead 
of triaging the long list of the produced static analysis warnings and fixing those issues in 
an arbitrary manner, developers can focus on subsets of this list that are more critical from 
a security viewpoint, and start their refactoring activities from these issues first.

7  Conclusion

In the present paper, we proposed a fully automated hierarchical Security Assessment 
Model (SAM) that is able to quantify the internal security level of software applications 
written in Java, based on low-level security indicators (i.e., static analysis alerts and soft-
ware metrics). In brief, the proposed model, following the guidelines of ISO/IEC 25010 
(ISO, 2011) and based on a set of thresholds and weights, aggregates these low-level indi-
cators in order to produce a single security score (i.e., the  Security Index) that reflects 
the internal security level of the analyzed software. The model was calibrated based on a 
large code repository comprising 100 popular Java applications retrieved from the Maven 
Repository, as well as on knowledge retrieved from the Common Weakness Enumeration 
(CWE). In order to produce a reliable set of weights that reflect the knowledge expressed 
by CWE instead of expert judgments, a novel weights elicitation approach grounded on the 
AHP (Saaty, 2008) and SMARTS/SMARTERS (Edwards & Barron, 1994) decision mak-
ing techniques was developed and used.

The proposed model was evaluated through a set of experiments that were based on 150 
popular open-source Java applications retrieved from GitHub, as well as on 1200 test cases 
retrieved from the OWASP Benchmark. The results of these experiments showcased the 
ability of the model to reliably reflect the internal security level of software applications 
both at product and at class levels of granularity, with sufficient discretion power, while 
they also provided preliminary evidence for its ability to discriminate between vulnerable 
and clean software components and hence to be used as the basis for vulnerability predic-
tion. To the best of our knowledge, this is the first fully automated and operationalized 
security assessment model that can be found in the related literature, whereas it is the only 
model that was built and evaluated on such a large volume of empirical data (i.e., 250 real-
world software applications, comprising approximately 20 million lines of code).

Several directions for future work can be identified. First of all, we are planning to 
extend our work in software security assessment in order to support other programming 
languages including C/C++ and Python. This can be easily achieved by integrating the 
appropriate language-specific static analysis and software metrics tools, and by applying 
the model construction approach described in Section 3 in order to produce similar security 
assessment models. More specifically, the construction of a SAM for a new programming 
language includes the following steps: (i) definition of the model structure (i.e., security 
characteristics, properties, and measures), (ii) construction of a benchmark repository and 
calculation of the model thresholds, and (iii) calculation of the model weights. Within the 
context of the SDK4ED project a SAM for C/C++ has already been developed, based on 
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the described approach, and has already been used by industrial partners, namely Neuras-
mus26 and AIRBUS Defence and Space27. A detailed description of this model is available 
online (Online, 2020).

Currently, the proposed SAM uses the CKJM Extended tool for computing the software 
metrics that quantify its metric-based properties. The CKJM Extended tool operates on the 
bytecode-level, which restricts the practicality of the produced model, as it requires the 
source code to be compiled before being analyzed, an often tedious process. In the future, 
in order to further enhance the practicality of the proposed model, we are planning to 
update the proposed model by replacing the CKJM Extended tool with other open-source 
static analysis tools that operate directly on the source code of the software products, like 
JHawk28 and OpenStaticAnalyzer29. We are also planning to extend the QATCH platform, 
by integrating the aforementioned static code analyzers.

In addition to this, the current version of the model focuses on three security charac-
teristics, i.e., requirements, namely Confidentiality, Integrity, and Availability. Although 
these characteristics are considered the main security requirements of information sys-
tems (NIST, 2018; ISO, 2013), often termed as the CIA triad (Andress, 2014), additional 
requirements could be considered, such asAuthenticity and Non-repudiation (ISO, 2011), 
in order to enhance the completeness of the model by providing more fine-grained assess-
ments and also cover special cases of software that exhibit specific security needs. Hence, 
in the future, we are planning to extend our model by including additional security charac-
teristics. In order to do this though, there would be a need for tools that are able to stati-
cally detect issues that are related to these security characteristics, whereas there should be 
also information available on well-accepted security knowledge bases that will enable the 
derivation of a reliable set of weights.

For the quantification of the alert-based properties, a single static code analyzer was uti-
lized both for the SAM that operates on Java projects (presented in Section 3), and for the 
similar model that operates on C/C++ projects (described in the Appendix section of this 
paper). As already mentioned, this decision was made in order to avoid increasing the com-
plexity of the models, as well as for preserving their practicality. However, the inclusion 
of additional static code analyzers would allow the model to detect new types of security 
issues (i.e., vulnerabilities) covering, in that way, the security needs of more types of soft-
ware projects. Hence, a possible direction for future work would be to extend these models 
by integrating multiple static analysis tools. Nevertheless, in order to avoid affecting the 
practicality of the produced models due to the resulting aggregation of the alerts of mul-
tiple analyzers, appropriate techniques for filtering out those alerts that are unactionable 
should be investigated and integrated (Muske & Serebrenik, 2016; Heckman & Williams, 
2013).

Appendix

The main goal of the present paper was to examine whether state-of-the-art concepts from 
the field of software quality evaluation can be leveraged (and potentially extended) for 
building models able to reliably assess software security. To this end, a SAM for software 

26 http:// www. neura smus. com/
27 https:// www. airbus. com/ space. html
28 http:// www. virtu almac hinery. com/ jhawk prod. htm
29 https:// github. com/ sed- inf-u- szeged/ OpenS tatic Analy zer
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products written in Java programming language was carefully constructed and used as a 
proof-of-concept through elaborate experimentation. The internal structure of the model, 
along with the steps that were followed for its construction, was described in detail in Sec-
tion 3 in order to help the reader (i.e., researchers or practitioners) build similar models 
that better meet their needs.

Within the context of the SDK4ED Project, we have also built a similar model for 
assessing the security level of C/C++ software products. This model was built in order to 
satisfy the needs of two of the project’s use case providers, namely Neurasmus30 and AIR-
BUS Defence and Space31, who wanted to use the proposed security assessment concepts 
for assessing the security level of embedded software applications written in C/C++ that 
run on implantable devices and drones respectively. For building the new model, the steps 
presented in Section 3 were followed. In the rest of this section, the internal characteristics 
of the new model are presented. We believe that the information provided in this section 
will further facilitate interested researchers and practitioners in building similar models. It 
should be noted that the similar security assessment model for C/C++ software products 
is also available online on the web site with the supporting material of the paper (Online, 
2020) as a standalone offline tool, whereas it is also integrated in the SDK4ED Platform as 
a web service.

Static analysis tools selection

Initially, the QATCH platform was extended by integrating appropriate static code analyz-
ers for C/C++ programs. More specifically, the CCCC 32 tool was integrated for allowing 
the calculation of software metrics. The CCCC tool is a static code analyzer that operates 
on the sources of software programs written in C/C++, in order to compute popular soft-
ware metrics, including those provided by the CK Metric suite (Chidamber & Kemerer, 
1994). The CCCC metrics tool is also necessary for calculating the SAVDs of the defined 
vulnerability categories (see Section 3.1.3), since it allows the calculation of the lines of 
code of the analyzed software applications.

For the alert-based properties, the Cppcheck33 static code analyzer was utilized. Cpp-
check is a static analysis tool that allows the identification of software bugs in C/C++ soft-
ware applications. The tool is able to detect a large number of security issues (i.e., potential 
vulnerabilities), including buffer overflows, memory leaks, race conditions, null pointer 
dereferences, usage of dangerous string functions (e.g., strcpy()), etc. It is listed by NIST34 
in their list of static analysis tools recommended for security auditing purposes.

One advantage of Cppcheck over its counterparts is that it contains rules (i.e., check-
ers) that verify the compliance of the source code with guidelines provided by the CERT-
C standard (Seacord, 2008). Table 21 presents some indicative examples of the mapping 
between the Cppcheck checkers and the CERT-C guidelines. In addition, there are also 
checkers that evaluate the compliance of the source code with the MISRA C 2012 stand-
ard (Bagnara, 2018). However, due to licensing agreement, detailed information about the 
mapping between the tool checkers and the MISRA C guidelines is not freely accessible 

32 https:// sarno ld. github. io/ cccc/

30 http:// www. neura smus. com/
31 https:// www. airbus. com/ space. html

33 http:// cppch eck. sourc eforge. net/
34 https:// samate. nist. gov/ index. php/ Source_ Code_ Secur ity_ Analy zers. html
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by the users. Finally, a build-in mapping between the tool checkers and the CWE entries is 
also available by the Cppcheck tool. This is important since it facilitates the derivation of a 
reliable set of weights through the approach presented in Section 3.2.2 of the paper.

Definition of the model properties

The model should be able to analyze software applications that are written both in C and in 
C++ programming languages. However, although the two languages are similar regarding 

Table 21  Mapping between Cppcheck checkers and CERT-C guidelines – Representative Examples

Checker CERT-C Guideline

arrayIndexOutOfBounds ARR30-C. Do not form or use out-of-bounds pointers or array 
subscripts

arrayIndexThenCheck ARR30-C. Do not form or use out-of-bounds pointers or array 
subscripts

nullPointer EXP34-C. Do not dereference null pointers
nullPointerDefaultArg EXP34-C. Do not dereference null pointers
outOfBounds ARR30-C. Do not form or use out-of-bounds pointers or array 

subscripts
possibleBufferAccessOutOfBounds ARR30-C. Do not form or use out-of-bounds pointers or array 

subscripts
ignoredReturnValue  EXP12-C. Do not ignore values returned by functions
leakReturnValNotUsed MEM31-C. Free dynamically allocated memory when no longer 

needed

Table 22  The alert-based properties (i.e., vulnerability categories) of the proposed security assessment 
model. The most representative CWE entry that better describes each property is also provided

Vulnerability Category Description

Overflow Contains bugs that may potentially lead to buffer overflows (e.g. improper array 
bounds checking).

I/O Issues Contains bugs that are relevant to the dangerous usage of the I/O functionali-
ties of the C/C++ language (e.g. bad usage of sprint, invalid usage of output 
stream etc.).

Exception Handling Contains bugs that are relevant to improper or incorrect handling of exceptions 
or errors.

Resource Handling Contains bugs that are relevant to improper management of system resources 
(e.g. memory leaks, race conditions, etc.).

Strng Issues Contains bugs that are relevant to the misusage of C-style strings (e.g. usage of 
the unsafe strcpy()).

Null Pointer Contains bugs that are relevant to Null Pointer deference.
Misused Functionality Contains rules that check for misused functions that are provided by the pro-

gramming language or widely used APIs
Dead Code Contains issues that are relevant to the existence of unreachable code, unused 

variables and functions.
Arithmetic Issues Contains bugs that are relevant to arithmetic operations and expressions. (e.g. 

division by zero, improper type casting, improper variable initialization, 
dangerous sign conversion, etc.)
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their syntax, they belong to different programming paradigms. In particular, C++ is an 
object-oriented (OO) programming language, whereas C is just a structural programming 
language. This means that the OO software metrics cannot be computed for the case of 
programs written in C. Hence, in order to avoid potential problems caused by the applica-
bility  (or non-applicability) of software metrics, and since software metrics are considered 
security indicators, but of weak strength (see Section 3.2.2 of the paper) (Shin & Williams, 
2008b; Chowdhury & Zulkernine, 2011; Shin et al., 2011; Medeiros et al., 2017; Siavvas 
et al., 2017b; Moshtari et al., 2013; Moshtari & Sami, 2016; Stuckman et al., 2017; Fer-
enc et al., 2019; Jimenez et al., 2019; Zhang et al., 2019), the produced security assessment 
model was decided to be based exclusively on alert-based properties.

For the definition of the alert-based properties of the new security model, the check-
ers of the Cppcheck were manually inspected and grouped into nine vulnerability catego-
ries based on their relevance. The alert-based properties (i.e., vulnerability categories) that 
were defined through this process are presented in Table 22.

Thresholds and weights derivation

For the calculation of the model’s thresholds, a benchmark repository of real-world C/
C++ software applications was required. For this purpose, a code base of C/C++ software 
applications was constructed by downloading open-source projects from the online GitHub 
repository. More specifically, 100 software applications (half of them written in C and the 
other half written in C++) were downloaded based on their popularity (i.e., GitHub stars) 
and analyzed using the selected static analysis tools. More specifically, the CCCC and Cpp-
check tools were employed, in order to calculate the SAVDs of the vulnerability categories 

Table 23  The final thresholds of the alternative security assessment model that is able to analyse software 
applications written in C/C++.

P1  Arithmetic Issues; P2  Dead Code; P3  Exception Handling; P4  I/O Issues; P5  Misused Functionality; 
P6 Null Pointer; P7 Overflow; P8 Resource Handling; P9 String Issues

P1 P2 P3 P4 P5 P6 P7 P8 P9

tl 0 0 0 0 0 0 0 0 0
tm 1 4.8 0.1 0.3 2.9 0.3 0.1 1.1 0.1
tu 8.4 23.4 1 3.2 22.5 3.2 1.5 13.9 1

Table 24  The final weights of the 
characteristics of the alternative 
security assessment model 
that is able to analyse software 
applications written in C/C++ 
as derived from the AHP (Saaty, 
2008) approach. The weights 
reflect both the impacts retrieved 
from the CWE knowledge base, 
and the expert judgments

Property Name Confidentiality Integrity Availability

Arithmetic Issues 0.1226 0.1643 0.0981
Dead Code 0.0646 0.0282 0.223
Exception Handling 0.1413 0.0908 0.0653
I/O Issues 0.1887 0.0516 0.1216
Misused Functionalities 0.0606 0.2645 0.1507
Null Pointer 0.1063 0.0783 0.0504
Overflow 0.1404 0.1092 0.0302
Resource Handling 0.1225 0.1311 0.1836
String Issues 0.0443 0.0906 0.0772
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presented in Table  22. Subsequently, the thresholds of the vulnerability categories were 
computed based on the equations presented in Section 3.2.1 of the paper. The final com-
puted thresholds are presented in Table 23.

The weights of the model were determined based on the knowledge retrieved from the 
CWE Knowledge Base, utilizing the approach presented in Section 3.2.2 of the paper. The 
build-in mapping between the Cppcheckers and the CWE entries, facilitated the weights 
elicitation procedure. The mapping is available on the web site with the supporting mate-
rial of the present paper (Online, 2020). The final weights of the model are presented in 
Table 24.
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