
Data Driven Optimum Cyberattack Mitigation
Erol Gelenbe

Inst. of Theoretical & App. Informatics
Polish Acad. of Sciences (IITIS-PAN)

44100 Gliwice, PL
& CNRS I3S, Univ. Côte d’Azur, 06103 Cedex 2 Nice, FR

& Dept. of Eng., King’s College London, UK
ORCID:0000-0001-9688-2201

Mohammed Nasereddin
Inst. of Theoretical & App. Informatics

Polish Acad. of Sciences (IITIS-PAN)
44100 Gliwice, PL

ORCID:0000-0002-3740-9518

Abstract—Gateways to the Internet of Things (IoT)
are typically servers that communicate with IoT devices,
providing them with low-latency services, and connecting
them to the internet and other backbone networks. Since
IoT devices are often simple and have limited storage
and computational capabilities, gateways can be equipped
with Attack Detection (AD) software to analyze incoming
traffic, detect potential cyberattacks, and protect both the
gateway and connected devices from threats that could
overwhelm the system as a whole. This paper presents an
enhanced gateway system that combines a traffic shaping
technique with an attack detection module and an opti-
mum attack mitigation scheme aimed at protecting the
gateway and the overall system from cyberattacks. The
optimum mitigation approach selects a sampling interval
for the AD, that minimizes the total overhead of AD
and mitigation. The proposed approach is implemented
in a practical test-bed, so that the performance of the
mitigation scheme may be evaluated in the presence
of flood attacks. The experiments show its practical
value and illustrate the agreement obtained between the
analysis and the measurements obtained from several
experiments

Index Terms—IoT Gateways, Optimum Attack Detec-
tion and Mitigation, Flood Attacks, Quasi-Deterministic
Transmission Policy

I. INTRODUCTION

The Internet of Things (IoT) is composed of over
22 billion devices that are often connected to IoT
gateways, which are servers designed to process the
traffic to and from a set of devices, while providing
them with low-latency edge services. These gateway
servers can be subject to cyberattacks [1], [2] that
can compromise both the gateways and IoT devices,
disabling them through malware and packet floods
[3], such as the 2017 attack that took down 180, 000
servers with 2.54 Tbps of traffic [4]. Such attacks
[5] not only compromise their targets but can also
convert them into attackers [6], creating packet floods
that cause congestion, system crashes [7], and even
overload the Attack Detection (AD) systems that are
often installed on gateways. Therefore it is crucial to

protect IoT infrastructures with effective AD, but also
with mitigation techniques.

Thus, in this paper we first review the literature on
leading-edge AD and mitigation solutions in Section
II, highlighting the limitations of existing models and
explaining how the proposed approach in this paper
addresses these shortcomings. Then, in Section III,
we introduce a novel approach that combines traffic
shaping to protect the AD from attack overloads,
together with periodic AD that examines the incoming
traffic, and adaptively drops packets when an attack
is detected. This approach is based on an Adaptive
Attack Mitigation (AAM) algorithm that minimizes
a cost function combining the overhead of the AD
when it examines packets, and the loss of a fraction
of the benign packets due to the packet drops when an
attack is detected. This approach is then evaluated with
extensive measurements, showing a good agreement
between the theoretical results in Section III and the
experimental measurements in Section IV. Conclusions
and suggestions for future work are presented in Sec-
tion V.

II. LITERATURE REVIEW

Attack detection and mitigation systems often em-
ploy machine learning (ML) and deep learning (DL)
techniques, such as Decision Trees [8], Convolutional
Neural Networks (CNNs) [9], and Generative Adver-
sarial Networks (GANs) [10], to identify anomalies
and detect cyber threats, although analytical mod-
elling techniques have also been used in this area
[11]. Most evaluations are conducted offline, without
considering the real-time impact of attacks and the
consequence of the attack on the targeted system
[12]–[14], including the impact that attacks can have
on its energy consumption [15]. However, some test-
beds have been constructed to conduct experimental
attacks [16], [17]. Several security protocols and ar-
chitectures have been developed to meet the specific

demands of gateway environments, with emphasis on
autonomous vehicles [18] and 6G-enabled Internet of
Vehicles (IoV) environments [19]. Recent advances
also emphasize collaborative and adaptive solutions to
address data-sharing limitations across heterogeneous
gateways. For instance, transfer [20] and federated
learning [21] enable knowledge transfer between de-
vices and networks without compromising data privacy,
with improvements in attack detection rates. Advanced
AD systems can incorporate innovative techniques
such as spatial-temporal analysis, Bayesian networks
[22], and hybrid approaches to secure smart cities [23],
[24] and critical SCADA systems [25]. Furthermore,
integrating DL models with edge computing and Multi-
access Edge Computing (MEC) has been useful in
real-time attack mitigation [26]. Ensemble learning and
proactive detection methods using Bayesian DL and
Discrete Wavelet Transform, have shown the impor-
tance of adaptive techniques to counter threats targeting
gateways [27].

By focusing on mitigation solutions, Table I presents
a selection of recent research papers, including a
comparison with the system proposed in this paper.
It compares the adopted approaches and highlights the
limitations and challenges associated with each solu-
tion. The proposed system integrates traffic regulation,
attack detection, and a novel adaptive attack mitigation
technique that dynamically drops packets during an
attack to minimize computational overhead. Notably,
the training phase of the system does not require
high computational power, making it deployable on
resource-constrained devices such as those used in IoT
environments. It can be trained on a limited number
of packets—just a few thousand—within a short time
frame. A key advantage of this system is that it only
requires training on normal traffic, eliminating the need
for attack-specific samples. This feature also enhances
its robustness and adaptability to diverse attack patterns
and behaviors. Furthermore, the effectiveness of the
employed AD has already been validated across vari-
ous environments and datasets, as mentioned in Section
III.

III. METHODOLOGY

In this section, we present the proposed Adaptive
Attack Mitigation (AAM) system. It consists of a
Smart QDTP Forwarder (SQF) which shapes the in-
coming traffic to protect the server from excessive
packet backlog during a flood attack, followed by
the AD attack detection module, which is enhanced
by the novel AAM algorithm for attack mitigation.
The AD takes its decision based on a window of W
packets. As long as the AD does not detect an attack,

the AAM is not activated. However, when the AD
detects an attack, it triggers the AAM which takes
the following actions: it first drops the packets at the
input to the SQF, and then directs the AD to skip the
following m +W incoming packets and then sample
the subsequent m+ 1-th window of incoming packets
repeating the sequence of drops and samples until
the AD announces a ”NO −ATTACK” decision, at
which time normal operation resumes. The value m is
selected in a manner that minimizes a cost function
C(AAM) which combines the overhead of testing
incoming packet streams and dropping benign as well
as malicious packets.

This AD [34] uses the Random Neural Network
[35] based learning [36], [37], and uses clusters of
neurons with soma-to-soma interactions [38], [39]. It
was evaluated with a variety of datasets [40], including
the Kitsune attack dataset [41], [42], and within an
experimental test-bed [43]. Its high accuracy of 99.69%
with a True Positive Rate (TPR) of 99.71%, and a
True Negative Rate (TNR) of 98.48% is summarized
in Figure 2.

However, relying solely on the AD is insufficient
for system protection. Indeed, flood attacks lead to a
huge packet accumulation at the AD, causing large
queuing delays as illustrated by the red curves in
Figure 5 in subsection IV-B. For instance, the Fig-
ure (above) shows a 10-second attack that floods the
server with over 153, 667 malicious packets mixed with
normal traffic from various devices in the network,
overwhelming the AD processing capacity. During
longer, 60-second attacks, Figure (below) shows that
the attack causes over 400, 000 packets to accumulate
and severely congest the AD, leading to the paralysis of
the resource-constrained gateway server and prolonged
downtimes or even system failure.

A. The Smart QDTP Policy Forwarder (SQF)

Thus, to protect the gateway server from being paral-
ysed by the congestion that occurs when it is targeted
by a flood attack, the initial system architecture shown
in Figure 1 (above) was modified to incorporate traf-
fic shaping with the Quasi-Deterministic Transmission
Policy (QDTP) [44], which can be installed on a low-
cost Raspberry Pi. The resulting architecture with the
Smart QDTP Forwarder (SQF), is shown in Figure 1
(below). The SQF forwards the n-th arriving packet
that arrives at time an, n ≥ 0, to the server at time tn
defined by t0 = a0 and:

tn+1 = max(tn +D, an+1), n ≥ 0, (1)
hence : tn+1 − tn ≥ D , (2)

TABLE I
COMPARISON OF RECENT MITIGATION APPROACHES IOT ENVIRONMENTS

No. Reference Approach Limitations and Challenges
1 (Varalakshmi & Thenmozhi, 2025) [28] The authors use entropy-based detection

and stochastic techniques for mitigation
and adaptive resource allocation to opti-
mize energy efficiency and security. The
approach targets DDoS attacks in SDN-
IoT environments.

• May struggle in dynamic or large-
scale IoT environments due to
variability in entropy metrics.

2 (Mihoub el al., 2022) [29] The authors propose ML-based detec-
tion method that is “Looking Back” for
DoS/DDoS attacks in the IoT.

• High computational cost for some
models.

• Minimal performance gain in gen-
eral classifiers. effectiveness de-
pends on specific scenarios.

3 (Hayat et al., 2022) [30] The authors introduce a framework that
uses a distributed, device-level verifi-
cation mechanism to identify and ex-
clude (isolate) malicious devices via
blockchain and smart contracts.

• Block-chain operations increase
energy consumption, limiting fea-
sibility on IoT devices.

4 (Li et al., 2021) [31] The authors use federated learning at
the fog layer for collaborative, privacy-
preserving DDoS mitigation.

• Struggles with heterogeneous de-
vices and various types of data.

• High overhead and limiting appli-
cability in low-resource WSNs.

5 (Lawal et al., 2021) [32] The authors apply Fog-based DDoS mit-
igation using k-NN and a signature
database for known threats.

• Relies on pre-labelled attack sig-
natures, which are less effective
for zero-day attacks.

• Higher latency due to its depen-
dency of the fog service.

6 (Galeano-Brajones et al., 2020) [33] The authors utilize an entropy-based de-
tection method integrated into a stateful
SDN data plane to identify and mitigate
DoS/DDoS attacks in IoT environments.
The system dynamically analyzes flow
states to detect abnormal traffic patterns.

• May overload SDN controllers.
• Entropy-based statistical methods

can be bypassed by low-rate or
adaptive attacks.

7 The system described in this paper It employs a smart traffic shaping
strategy that avoids IDS overlaod, ac-
curately detects attacks, coupled with
an adaptive packet dropping tech-
nique for operational efficiency during
flood attacks.

• Works well in dynamic environ-
ments.

• Offers low overhead and re-
quires low computational power.

• Can be trained on small datasets
and has short training time.

• Short decision time.

where D > 0 is a constant parameter. Thus, the total
delay Qn experienced by the n-th packet is given by:

Q0 = t0 − a0 = 0, Qn+1 = tn+1 − an+1,

= max(tn +D, an+1)− an+1,

= 0, if tn +D ≤ an+1, and

= tn +D − an+1, otherwise. (3)

Since tn = Qn + an, we obtain the recursive expres-
sion:

Qn+1 = max(0, tn +D − an+1),

= max(0, Qn +D − an+1), n ≥ 0. (4)

The actual transmission time from the Raspberry Pi to
the gateway server was measured, including the Simple
Network Management Protocol (SNMP) time taken at
the server, and it was found to be less than 15% of
the approximately τ ≈ 3 ms taken by the AD to
process one packet. Therefore, when the n-th packet is
forwarded by the SQF, we can assume that it instantly
reaches the server’s input queue for AD processing.
The effect of the SQF was experimentally validated,
and the blue curve in Figures 5 (above) and (below),
clearly show that the SQF successfully protects the
server during a flood attack, resulting in a server queue
length that remains very short, both during and after

Fig. 1. The experimental test-bed consists of gateway devices
connected directly to the server via a switch using Ethernet (above).
In the modified architecture, the SQF is placed between the server
and the gateway devices, isolating the server and serving as a traffic-
shaping interface (below).

the attack.

Fig. 2. Performance of the AADRNN attack detector that was
evaluated on the test-bed [43].

B. Adaptive Attack Mitigation (AAM)

The blue curve in Figures 5 (above) and (below)
shows that the SQF successfully protects the server
from severe packet accumulation during a flood attack,
maintaining the queue length of the server at normal
levels both during and after the attack. However, while
this approach safeguards the server from being over-
whelmed, it does not stop the flow of attack packets;
instead, these packets accumulate at the entrance of
the SQF, creating a substantial backlog that must
eventually be processed by the server. Thus, although
the server is protected from paralysis, challenges such
as high delays and benign packet loss persist.

To address these challenges, we introduce a novel
AAM algorithm. This algorithm, featuring early attack
detection, reduces the AD processing workload during
attacks, thereby decreasing the computational overhead
on the server, actively drops attack packets to reduce
congestion, and promptly stops packet dropping after
the attack ends to avoid the excessive loss of legitimate
packets.

The algorithm begins by testing the first window of
W > 0 consecutive packets sequentially. The size of
this window W , is selected experimentally to optimize
the accuracy of attack detection. If the AD identifies
that a majority of the packets in the window are
classified as ”ATTACK,” it concludes that an attack
is occurring. It then drops the preceding m+W packets
to reduce congestion and skips m > 0 packets ahead
in the incoming packet stream to test the next window
of W packets. This ensures that the AD system is
not overwhelmed during an attack and can continue
operating efficiently. Conversely, if the AD detects
”NO−ATTACK,” the current window of W packets
is forwarded to the server, and the algorithm proceeds
to test the next W packets in the same manner, and
the process is repeated.

C. Optimization of the Adaptive Attack Mitigation
During a flood attack, a fraction (0 < f ≤ 1)

of incoming packets are part of the attack, while the
remaining 1 − f are benign, and f is unknown in
advance. While dropping packets, the AAM will also
drop some benign packets originating from various
devices in the network. Although the AAM reduces
the number of packets tested by the AD during an
attack, it still introduces computational overhead by
testing W packets after every m-packet interval. Thus,
in this subsection, we finalize the AAM by calculating
the optimal value of m.

Let us denote by X the total number of packets
received at the SQF during an attack. Since X is
unknown in advance, it is treated as a random variable
with the expected value E[X]. When AD initially
identifies an attack within a W -packet window by
identifying a majority of attack packets within the W -
packet window, the first detection window serves as the
starting point of the attack. The attack is considered to
have ended when the AD detects a majority of non-
attack packets in a subsequent W -packet window. The
total number of detection windows N during the attack,
and its expected value E[N], are therefore:

N = ⌈X −W

m+W
⌉, E[N] ≈ E[X]−W

m+W
+

1

2
, (5)

where the expression for E[N] is based on a mathe-
matically proven [45] first order approximation.

Since the SQF ensures that the AD processing time
per packet remains constant at a value τ , the server
overhead Ω, and its expected value, are:

Ω = NτW, E[Ω] ≈ τW
[E[X]−W

m+W
+

1

2

]
. (6)

During the attack, the number of packets dropped by
the AAM and its expected value, are:

δ = W +N(m+W), E[δ] ≈ E[X] +
1

2
(m+W).

Note that the dropped packets include those in the
initial window classified as ”ATTACK” and the
following m packets, in a pattern that repeats N
times. The final W -packet window is classified as
”NO −ATTACK” and is not dropped.

Within the X packets which constitute the attack,
we can assume that a fraction 0 < f ≤ 1 are attack
packets, but there may also be X(1 − f) non-attack
packets. Since the last δ−X packets that are dropped
after the attack ends contain only benign packets, the
AD’s overhead for reprocessing all the lost benign
packets, denoted by K, assuming that they are all re-
sent by their sources sequentially and tested by the AD,
in windows of W packets, will be:

K = τW ⌈fX + δ −X

W
⌉,

E[K] ≈ τ [fE[X] +
1

2
m+W]. (7)

Thus the total average cost is:

C(AAM) = αE[K] + βE[Ω], (8)

where α > 0 is the importance we attribute to the cost
of AD processing of packets that were lost during the
attack and which came back after the attack ended,
while beta > 0 is the importance we attribute to the
AD processing of packets during the attack. Presum-
ably, we should have β > α if, during an attack, the
server is overloaded with other urgent tasks such as
packet dropping. In addition, we know that during an
attack, and despite the presence of the SQF, the actual
processing of packets by the AD is increased. Thus we
would take β

α > 1 if we wish to reduce the overhead of
AD processing during an attack, while we would take
β
α < 1 if we wish to minimize the overhead throughout
the system (including at the sources of traffic) caused
by re-sending and re-processing the benign packets that
were dropped by mistake during an attack.

Taking the derivative of the right-hand side of (8)
with respect to m we get:

1

τ

dC(AAM)

dm
≈ 1

2
α− βW

E[X]−W

(m+W)2
, (9)

and equating it to zero, we see that the total average
cost C(AAM) is approximately minimized when set-
ting m = m∗:

m∗ ≈
√

2
β

α
W [E[X]−W] −W. (10)

We note that m∗ does not depend on f and τ , and it
increases with the square root of E[X]. The minimum
value of C(AAM) computed at m∗ is:

C∗(AAM) ≈

ατ [fE[X] +

√
β

2α
W [E[X]−W] +

W

2
]

+βτW [
E[X]−W√

2β
αW [E[X]−W]

+
1

2
] .

(11)

Figure 3 shows m∗, the value that minimizes the cost
C(AAM), for different values of β

α and W = 20
(which is the actual value we have set for the AD in
our experimental work), and different values of E[X],
Such figures can be used to choose the value of m∗

rapidly for different parameter sets.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Expected Number of Packets E[X] Received During a Flood Attack 105

0

0.5

1

1.5

2

2.5

3

3.5

T
h
e
 O

p
ti
m

a
l
m

*
 t
h
a
t
M

in
im

iz
e
s
 C

(A
A

M
)

104

=1, =1

=1, =20

=1, =50

Fig. 3. Graph of the theoretical optimum value of m denoted m∗,
which minimizes C(AAM), plotted as a function of E[X] for W =
20 and different values of β

α
.

IV. RESULTS AND EVALUATION

In this section, we present the measurements and
evaluation of the proposed system’s behavior through
real-time UDP flood attack experiments conducted on a
test-bed. First, we describe the hardware and software
configurations and settings of the test-bed prepared for
the experiments. Then, we show the attack detection
experiments conducted with and without the SQF,
followed by the experimental measurements of the
optimization of the proposed AAM algorithm.

Fig. 4. Schematic representation of the server’s software organiza-
tion, featuring the simple network management processor (SNMP),
the AD or Intrusion Detection System (labeled IDS in the figure),
followed by the processing software for incoming data.

A. Hardware & Software Configurations

The test-bed on which we run our experiments
includes Raspberry Pi 4 Model B Rev 1.2 processors
acting as mobile or sensor devices of the IoT system.
Each one has a 1.5 GHz ARM Cortex-A72 quad-core
processor, 2 GB RAM, and runs Raspbian GNU/Linux
11. Some send attack traffic randomly or in a prede-
termined manner, while others send legitimate UDP
packets with periodic machine temperature data to the
server. The devices have a network buffer of 176 kB
and communicate with the server via Ethernet as shown
in Figure 1.

The gateway server is emulated by 3.1 GHz In-
tel 8-Core i7-8705G processor, 16 GB RAM, and
Linux 5.15.0 (Ubuntu SMP), receives packets at port
5555 using the UDP protocol and processes them
using SNMP 6.2.0-31-generic as shown in Figure 4.
Its NIC supports 1000 Mbps speeds in full duplex
mode, with a 208 kB network buffer. We used UDP
protocol due to its lightweight nature, which avoids the
overhead of connection establishment and acknowledg-
ments (ACKs) [46].

The Maximum Transmission Unit (MTU) is set to
1.5 kB/packet for efficient packet transmission. Tests
with 1000 packets showed low latency, averaging 0.437
ms, i.e., less than 15% of the server’s AD processing
time of Tn ≈ 3 ms; therefore, this transmission delay
is considered negligible in Section III.

To generate attack traffic, we used the MHDDoS
public repository [47], which includes 56 real-world
DoS emulators, enabling comprehensive testing with
up-to-date scenarios.

B. Attack Detection

Without the SQF, the gateway server is exposed to
a huge accumulation of packets at the entrance of the
AD during a flood attack, as shown by the experimental
results shown in red in Figure 5 (above) and (below).
Even if the attack lasts only a few seconds, as seen

in the first experiment (above), a queue of approxi-
mately 153, 667 packets forms when the attack lasts 10
seconds, and the server requires around 15 minutes to
process them and resume normal operation. For the 60-
second attack shown in the second experiment in the
Figure (below), a substantially large queue exceeding
400, 000 packets forms at the server. This results in the
system experiencing continuous interruptions during
various periods, such as the period between minutes
133 and 183 of the experiment, where the server
becomes paralyzed and unable to operate the AD or
other services. Furthermore, the system remains at
constant risk of failure under these conditions.

In contrast, when the SQF is used, the blue curves
show that in both experiments, a short queue forms at
the entrance of the server, and packets are processed
normally without delays or interruptions. Naturally,
fluctuations in the server’s packet processing time
result in the formation of a very small queue of no
more than 20 to 30 packets.

0.0 0.2 0.4 0.6 0.8 1.0

Time (sec) 103

100

101

102

103

104

105

106

Q
u
e
u
e
 L

e
n
g
th

Without QDTP

With QDTP
Duration of Attack = 10 sec

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Time (sec) 103

100

102

104

106

Q
u

e
u

e
 L

e
n

g
th

Without QDTP

With QDTP

Duration of Attack = 60 sec

Fig. 5. The server queue length, measured experimentally and
displayed on a logarithmic scale, is shown for a UDP flood attack
lasting 10 seconds (above) and 60 seconds (below). The red curves
represent the queue lengths without SQF, while the blue curves show
the impact of SQF in reducing the queue length during both attacks
duration, with D = 3 ms.

C. Attack Mitigation

This subsection presents the experimental evaluation
of the proposed AAM algorithm that is described
earlier in subsection III-C.

We conducted several experiments in which the
parameter X was randomly generated. To evaluate the
performance of the AAM algorithm, each experiment
was repeated 30 times for a fixed expected number
of packets E[X] received during a flood attack. This
process was repeated for different values of E[X].
The cost function C(AAM) was calculated for each
experiment, and its average value was computed by av-
eraging the cost outcomes for different values of X and
each specific E[X]. The experimental measurements in
Figure 6 illustrate how the value of m increases with
E[X], and empirically demonstrate the effectiveness of
cost minimization by choosing m∗.

100 200 300 400 500 600 700 800 900 1000

Fixed Value of m for each of the Attacks that were Tested

0

10

20

30

40

50

60

70

80

A
v
e
ra

g
e
 T

o
ta

l
C

o
s
t
C

(A
A

M
)

(s
e
c
)

Avg.(X) = 10825 packets

Avg.(X) = 15685 packets

Avg.(X) = 23133 packets

Avg.(X) = 35932 packets

Fig. 6. Graph of the measured experimental value of the average
total cost C(AAM) against the parameter m.

Figure 7 (above) shows the queue length at the
entrance of the SQF during an experiment in which
the system is targeted by two flood attacks: the first
containing approximately 10, 000 packets and the sec-
ond 40, 000 packets. Upon receiving an alert from the
AD indicating an attack, AAM calculates the value
of m∗, which is 127 for the first attack and 248 for
the second, as previously described by the theoretical
formula. Figure 7 (below) shows the queue length
at the entrance of the AD, which remains below 22
packets, illustrating the effectiveness of the AAM in
making rapid decisions to drop packets, even when two
attacks occur consecutively within a short time frame.

Combining the SQF and the AAM ensures a low
queue length at the AD immediately after an attack
starts, and facilitates decision-making to drop packets
and minimize C(AAM).

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Time (sec) 102

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
Q

F
 Q

u
e
u
e
 L

e
n
g
th

104

X = 35932 Packets

m = 248

X = 10825 Packets

m = 127

Duration of Attack = 5 sec

Duration of Attack = 16 sec

0.0

5.0

10.0

15.0

20.0

25.0

ID
S

 Q
u
e
u
e
 L

e
n
g
th

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Time (sec) 102

Duration of Attack = 5 sec

Duration of Attack = 16 sec

Fig. 7. Timeline of the queue length measurements at the entrance
of the SQF (above) during two successive attacks: the first involves
approximately 10, 000 packets, and the second about 40, 000 pack-
ets. At the entrance of the AD system, the combined use of SQF and
AAM limits the input queue to around 20 packets (below). When
AAM activates, it computes m∗, which is 127 for the first attack
and 248 for the second attack.

V. CONCLUSIONS AND FUTURE WORK

This paper sheds light on the impact of UDP flood
attacks on resource-constrained gateway servers, show-
ing that even short-duration attacks can overwhelm the
server, resulting in prolonged backlogs and delays.

To address this challenge, we propose a new ar-
chitecture featuring an SQF on a lightweight device
implementing traffic shaping with the QDTP policy,
which was introduced in [44] to protect the server
from congestion, combined with our proposed AAM
algorithm that samples and drops attack packets from
the input stream, minimizing a cost function associated
with benign packet drops and the sampling overhead.

The experimental results show that combining SQF
with AAM effectively mitigates severe flood attacks.

Future work will explore IoT Systems with multiple

gateways, evaluate dynamic AD policies for complex
networks of interconnected gateway networks with
static and mobile nodes, and mitigation techniques that
also minimize energy consumption.

ACKNOWLEDGMENT

This work was partially supported by the EU
Horizon 2020 Project DOSS, Grant Agreement No.
101120270.

REFERENCES

[1] Cisco, Cisco Annual Internet Report (2018–2023), Mar. 2020.
[Online]. Available: https://www.cisco.com/c/en/us/solutions/
collateral/executive-perspectives/annual-internet-report/
white-paper-c11-741490.html

[2] J. Liu, L. Song et al., “A novel congestion reduction scheme for
massive machine-to-machine communication,” IEEE Access,
vol. 5, pp. 18 765–18 777, 2017.

[3] E. Johns and M. Ell, “Cyber security breaches survey
2023,” April 2023. [Online]. Available: https://www.gov.
uk/government/statistics/cyber-security-breaches-survey-2023/
cyber-security-breaches-survey-2023

[4] Cloudflare. [Online]. Available: https://www.cloudflare.com/
learning/ddos/famous-ddos-attacks/

[5] S. Evmorfos, G. Vlachodimitropoulos, N. Bakalos, and E. Ge-
lenbe, “Neural network architectures for the detection of SYN
flood attacks in IoT systems,” in Proceedings of the 13th ACM
International Conference on PErvasive Technologies Related
to Assistive Environments, 2020, pp. 1–4.

[6] H. Sinanović and S. Mrdovic, “Analysis of mirai mali-
cious software,” in 2017 25th International Conference on
Software, Telecommunications and Computer Networks (Soft-
COM). IEEE, 2017, pp. 1–5.

[7] A. Iqbal, S. Aftab, I. Ullah, M. A. Saeed, and A. Husen, “A
classification framework to detect DoS attacks.” International
Journal of Computer Network & Information Security, vol. 11,
no. 9, 2019.

[8] Q. He, X. Meng, R. Qu, and R. Xi, “Machine learning-
based detection for cyber security attacks on connected and
autonomous vehicles,” Mathematics, vol. 8, no. 8, p. 1311,
2020.

[9] T. H. Aldhyani and H. Alkahtani, “Attacks to automatous
vehicles: A deep learning algorithm for cybersecurity,” Sensors,
vol. 22, no. 1, p. 360, 2022.

[10] A. Kavousi-Fard, M. Dabbaghjamanesh, T. Jin, W. Su, and
M. Roustaei, “An evolutionary deep learning-based anomaly
detection model for securing vehicles,” IEEE Transactions on
Intelligent Transportation Systems, vol. 22, no. 7, pp. 4478–
4486, 2020.

[11] G. Gorbil, O. H. Abdelrahman, M. Pavloski, and E. Gelenbe,
“Modeling and analysis of rrc-based signalling storms in 3g
networks,” IEEE Transactions on Emerging Topics in Comput-
ing, vol. 4, no. 1, pp. 113–127, 2015.

[12] M. Banerjee and S. Samantaray, “Network traffic analysis
based iot botnet detection using honeynet data applying clas-
sification techniques,” International Journal of Computer Sci-
ence and Information Security (IJCSIS), vol. 17, no. 8, 2019.

[13] E. Y. Güven and Z. Gürkaş-Aydın, “Mirai botnet attack de-
tection in low-scale network traffic,” Intelligent Automation &
Soft Computing, vol. 37, no. 1, pp. 419–437, 2023.

[14] E. Gelenbe and M. Nakip, “Traffic based sequential learning
during botnet attacks to identify compromised iot devices,”
IEEE Access, vol. 10, pp. 126 536–126 549, 2022.

[15] E. Gelenbe, “Energy packet networks: smart electricity storage
to meet surges in demand,” in SIMUTOOLS ’12: Proceedings
of the 5th International ICST Conference on Simulation Tools
and Techniques, 2012, pp. 1–7.

[16] M. Kaouk, F.-X. Morgand, and J.-M. Flaus, “A testbed
for cybersecurity assessment of industrial and IoT-based
control systems,” in Lambda Mu 2018 - 21è Congrè de
Maı̂trise des Risques et Sûreté de Fonctionnement, Oct
2018, Reims, France. [Online]. Available: https://hal.science/
hal-02074654v1/document

[17] O. A. Waraga, M. Bettayeb, Q. Nasir, and M. A. Talib,
“Design and implementation of automated iot security testbed,”
Computers & security, vol. 88, p. 101648, 2020.

[18] K. Kim, J. S. Kim, S. Jeong, J.-H. Park, and H. K. Kim,
“Cybersecurity for autonomous vehicles: Review of attacks and
defense,” Computers & Security, vol. 103, p. 102150, 2021.

[19] H. Sedjelmaci, N. Kaaniche, A. Boudguiga, and N. Ansari,
“Secure attack detection framework for hierarchical 6g-enabled
internet of vehicles,” IEEE Transactions on Vehicular Technol-
ogy, 2023.

[20] X. Li, Z. Hu, M. Xu, Y. Wang, and J. Ma, “Transfer learning
based intrusion detection scheme for internet of vehicles,”
Information Sciences, vol. 547, pp. 119–135, 2021.

[21] E. Gelenbe, B. C. Gul, and M. Nakip, “Disfida: Dis-
tributed self-supervised federated intrusion detection algo-
rithm with online learning for health internet of things
and internet of vehicles,” Internet of Things, vol. 28, no.
https://doi.org/10.1016/j.iot.2024.10134, p. 101340, 2024.

[22] M. Aloqaily, S. Otoum, I. Al Ridhawi, and Y. Jararweh, “An
intrusion detection system for connected vehicles in smart
cities,” Ad Hoc Networks, vol. 90, p. 101842, 2019.

[23] S. Aurangzeb, M. Aleem, M. T. Khan, H. Anwar, and M. S.
Siddique, “Cybersecurity for autonomous vehicles against mal-
ware attacks in smart-cities,” Cluster Computing, pp. 1–16,
2023.

[24] F. Pascale, E. A. Adinolfi, S. Coppola, and E. Santonicola,
“Cybersecurity in automotive: An intrusion detection system
in connected vehicles,” Electronics, vol. 10, no. 15, p. 1765,
2021.

[25] A. Ghaleb, S. Zhioua, and A. Almulhem, “Scada-sst: a scada
security testbed,” in 2016 World Congress on Industrial Control
Systems Security (WCICSS). IEEE, 2016, pp. 1–6.

[26] T. Alladi, V. Kohli, V. Chamola, F. R. Yu, and M. Guizani,
“Artificial intelligence (ai)-empowered intrusion detection ar-
chitecture for the internet of vehicles,” IEEE Wireless Commu-
nications, vol. 28, no. 3, pp. 144–149, 2021.

[27] E. Eziama, F. Awin, S. Ahmed, L. Marina Santos-Jaimes,
A. Pelumi, and D. Corral-De-Witt, “Detection and identifica-
tion of malicious cyber-attacks in connected and automated
vehicles’ real-time sensors,” Applied Sciences, vol. 10, no. 21,
p. 7833, 2020.

[28] I. Varalakshmi and M. Thenmozhi, “Energy optimization using
adaptive control algorithm to enhance the performance of
sdn iot environment,” Discover Internet of Things, vol. 5,
no. 1, p. 27, 2025.

[29] A. Mihoub, O. B. Fredj, O. Cheikhrouhou, A. Derhab, and
M. Krichen, “Denial of service attack detection and mitigation
for internet of things using looking-back-enabled machine
learning techniques,” Computers & Electrical Engineering,
vol. 98, p. 107716, 2022.

[30] R. F. Hayat, S. Aurangzeb, M. Aleem, G. Srivastava, and J. C.-
W. Lin, “Ml-ddos: A blockchain-based multilevel ddos mitiga-
tion mechanism for iot environments,” IEEE Transactions on
Engineering Management, 2022.

[31] J. Li, L. Lyu, X. Liu, X. Zhang, and X. Lyu, “Fleam: A
federated learning empowered architecture to mitigate ddos in
industrial iot,” IEEE Transactions on Industrial Informatics,
vol. 18, no. 6, pp. 4059–4068, 2021.

[32] M. A. Lawal, R. A. Shaikh, and S. R. Hassan, “A ddos attack
mitigation framework for iot networks using fog computing,”
Procedia Computer Science, vol. 182, pp. 13–20, 2021.

[33] J. Galeano-Brajones, J. Carmona-Murillo, J. F. Valenzuela-
Valdés, and F. Luna-Valero, “Detection and mitigation of dos

and ddos attacks in iot-based stateful sdn: An experimental
approach,” Sensors, vol. 20, no. 3, p. 816, 2020.

[34] O. Brun, Y. Yin, and E. Gelenbe, “Deep learning with dense
random neural network for detecting attacks against iot-
connected home environments,” Procedia Computer Science,
vol. 134, pp. 458–463, 2018.

[35] E. Gelenbe, “Random neural networks with negative and pos-
itive signals and product form solution,” Neural Computation,
vol. 1, no. 4, pp. 502–510, 1989.

[36] E. Gelenbe and M. Nakip, “Iot network cybersecurity as-
sessment with the associated random neural network,” IEEE
Access, vol. 11, pp. 85 501–85 512, 2023.

[37] E. Gelenbe and Y. Yin, “Deep learning with random neural
networks,” in 2016 International Joint Conference on Neural
Networks (IJCNN). IEEE, 2016, pp. 1633–1638.

[38] E. Gelenbe, “G-networks with instantaneous customer move-
ment,” Journal of Applied Probability, vol. 30, no. 3, pp. 742–
748, 1993.

[39] ——, “G-networks: a unifying model for neural and queueing
networks,” Annals of Operations Research, vol. 48, no. 5, pp.
433–461, 1994.

[40] E. Gelenbe and M. Nakıp, “G-networks can detect different
types of cyberattacks,” in 2022 30th International Sympo-
sium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS). IEEE, 2022, pp.
9–16.

[41] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune:
An ensemble of autoencoders for online network intrusion
detection,” in The Network and Distributed System Security
Symposium (NDSS) 2018, 2018.

[42] “Kitsune Network Attack Dataset,” August 2020.
[Online]. Available: https://www.kaggle.com/ymirsky/
network-attack-dataset-kitsune

[43] M. Nasereddin, M. Nakıp, and E. Gelenbe, “Measurement
based evaluation and mitigation of flood attacks on a lan
test-bed,” in The 48th IEEE Conference on Local Computer
Networks (LCN) October 1-5, 2023, Daytona Beach, Florida,
USA. IEEEXpress, 2023, pp. 1–4. [Online]. Available:
https://zenodo.org/record/8094796

[44] E. Gelenbe and K. Sigman, “Iot traffic shaping and the
massive access problem,” in ICC 2022, IEEE International
Conf. on Comms., 16–20 May 2022, Seoul, South Korea.
https://zenodo.org/record/5918301, 2022, pp. 1–6.

[45] E. Gelenbe, J. C. A. Boekhorst, and J. L. W. Kessels,
“Minimizing wasted space in partitioned segmentation,”
Commun. ACM, vol. 16, no. 6, p. 343–349, jun 1973.
[Online]. Available: https://doi.org/10.1145/362248.362253

[46] M. Masirap, M. H. Amaran, Y. M. Yussoff, R. Ab Rahman,
and H. Hashim, “Evaluation of reliable udp-based transport
protocols for internet of things (iot),” in 2016 IEEE Symposium
on Computer Applications & Industrial Electronics (ISCAIE).
IEEE, 2016, pp. 200–205.

[47] “MHDDoS - DDoS Attack Script With 56 Methods,”
Online, May 2022, accessed: 2023-02-22. [Online]. Available:
https://github.com/MatrixTM/MHDDoS

