
Recent quantum runtime (dis)advantages

J. Tuziemski,1 J. Paw lowski,2, 1 P. Tarasiuk,1 L. Pawela,3, 1 and B. Gardas3

1Quantumz.io Sp. z o.o., Pu lawska 12/3, 02-566 Warsaw
2Institute of Theoretical Physics, Faculty of Fundamental Problems of Technology,

Wroc law University of Science and Technology, 50-370 Wroc law, Poland
3Institute of Theoretical and Applied Informatics,

Polish Academy of Sciences, Ba ltycka 5, 44-100 Gliwice, Poland

We (re)evaluate recent claims of quantum advantage in annealing- and gate-based algorithms,
testing whether reported speedups survive rigorous end-to-end runtime definitions and comparison
against strong classical baselines. Conventional analyses often omit substantial overhead (readout,
transpilation, thermalization, etc.) yielding biased assessments. While excluding seemingly not
important parts of the simulation may seem reasonable, on most current quantum hardware a clean
separation between “pure compute” and “overhead” cannot be experimentally justified. This may
distort “supremacy” results. In contrast, for most classical hardware total time ≈ compute +
a weakly varying constant leading to robust claims. We scrutinize two important milestones: (1)
quantum annealing for approximate QUBO [PRL 134, 160601 (2025)], which uses a sensible time-
to-ε metric but proxies runtime by the annealing time (non-measurable); (2) a restricted Simon’s
problem [PRX 15, 021082 (2025)], whose advantageous scaling in oracle calls is undisputed; yet,
as we demonstrate, estimated runtime of the quantum experiment is ∼ 100× slower than a tuned
classical baseline. Finally, we show that recently claimed “runtime advantage” of the BF-DCQO
hybrid algorithm (arXiv:2505.08663) does not withstand rigorous benchmarking. Therefore, we
conclude that runtime-based supremacy remains elusive on NISQ hardware, and credible claims
require a careful time accounting with a proper reference selections, and an adequate metric.

I. INTRODUCTION

The main motivation for the development of quan-
tum computers, noted in pioneering works on the sub-
ject [1, 2], is the possibility of efficiently solving prob-
lems currently intractable for classical computation. Ini-
tially a theoretical field, quantum computing has seen
rapid technological progress, and major roadmaps pre-
dict error-corrected machines by around 2030 [3–5]. An-
nealing technology is also advancing [6]. Yet, demon-
strating quantum advantage experimentally for both
these paradigms remains a key challenge driving research.

Quantum advantage can be defined in various ways,
such as in computation or metrology [7]. One approach
relies on complexity-theoretic arguments proving bet-
ter scaling than classical algorithms, as in Simon’s al-
gorithm [8], which shows exponential query separation,
or Shor’s algorithm [9], based on the presumed hardness
of factoring [10]. While generic speedups for NP-hard
problems are unlikely, restricted instances may allow im-
provements [11], motivating studies of heuristic quantum
algorithms [12]. These may provide complexity state-
ments for specific cases or empirical advantages, given
appropriate hardware. Other notions, such as energetic
advantage, have also been discussed [13].

As quantum devices improve, attention turns to exper-
imental verification [14]. Early claims based on Random
Circuit Sampling [15] were challenged by classical simula-
tion [16, 17], though recent results seem intractable [18].
Further claims include favorable time-to-solution scaling
for QUBO optimization on D-Wave annealers [19], query
complexity advantage in restricted Simon’s problem [20],
and runtime benefits for a hybrid classical-quantum al-

gorithm [21]. These claims are significant as they reflect
the growing technological maturity of quantum comput-
ing. However, a key question remains: do these reported
advantages translate into actual runtime improvements
— a critical factor for practical adoption? In this work,
we reassess various strategies employed in these experi-
ments and show that the answer is negative: no runtime
advantage is observed when runtime is properly measured,
and an appropriate classical baseline is selected.

In particular, in Sec. II, we examine the findings of
Ref. [19], which reported that the runtime of a quantum
annealing-based approximate QUBO scaled more favor-
ably than the best classical reference algorithm (therein
PT-ICM [22]). We discuss challenges in defining total
runtime for such experiments and show that, under a ro-
bust definition, no advantage remains. Next, we exam-
ine the results of Ref. [21], where the digitized counter-
diabatic quantum optimization algorithm, a gate-based
approach, was reported to achieve a runtime advan-
tage over classical Simulated Annealing (SA) [23] and
CPLEX [24]. We identify several issues with the defi-
nitions of classical and quantum runtime used therein,
which ultimately eliminates this advantage altogether.

In Sec. III, we address the reported query complex-
ity advantage for a restricted Simon’s problem [20] on
noisy gate-based IBM quantum computers. We investi-
gate whether fewer oracle calls lead to shorter runtimes
and find that, although the classical algorithm indeed ex-
hibits exponentially worse scaling in oracle calls, in the
regime considered in [20] its runtime is actually two or-
ders of magnitude shorter than the quantum algorithm.

Finally, in Sec. IV, we discuss the importance of se-
lecting an appropriate classical reference algorithm and,

ar
X

iv
:2

51
0.

06
33

7v
2

 [
qu

an
t-

ph
]

 1
6

O
ct

 2
02

5

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.134.160601
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.15.021082
https://arxiv.org/abs/2505.08663
https://arxiv.org/abs/2510.06337v2

2

focusing on runtime as the key metric, outline essential
criteria for this choice. We revisit the reference selec-
tion made in [21] and argue that a proper choice al-
ready eliminates any quantum-classical runtime advan-
tage. This scenario closely parallels a recent discussion
in [25], where it was shown that an appropriately cho-
sen classical baseline can demonstrate robust scaling and
effectively remove claims of quantum supremacy in dis-
crete approximate optimization (cf. Ref. [19]) under op-
erationally meaningful conditions. For completeness, we
also verified the performance of a D-Wave quantum an-
nealer on the problems studied in [21], and found that
adiabatic quantum computing offers no runtime advan-
tage either. On the contrary, these instances appear to
be particularly challenging for the D-Wave machine, as
they require a complex embedding that ultimately de-
grades solution quality.

II. QUANTUM ADVANTAGE IN ALGORITHM
RUNTIME

In this section, we address the problem of defining run-
time in a manner suitable for quantum computation and
investigate how sensitive claims of runtime advantage are
to changes in this definition. Our focus is on approximate
quadratic unconstrained binary optimization (QUBO),
where we assume that the problem has been mapped to
an instance of the Ising model, whose ground state en-
codes the solution [26]. The Ising model, originating from
statistical physics, describes the energy associated with
a configuration of discrete variables (spins) s ∈ {−1, 1}N ,

H(s) =
∑
i<j

Jijsisj +
∑
i

hisi, (1)

where Jij are coupling strengths between spins, and hi

are local magnetic fields [27].
In the case of approximate optimization the stan-

dard figure of merit is time-to-epsilon, TTε (sometimes
used interchangeably with time-to-approximation-ratio
TTR [28]), which quantifies the time needed to obtain
a solution within ε fraction of the ground state energy,

TTε
.
= tf ·

log(1− 0.99)

log
(
1− pE≤E0+ε|E0|

) , (2)

where tf is the time taken to generate the solution and
pE≤E0+ε|E0| is the probability of finding a solution with
energy E, within ε optimality gap of the true ground
state energy E0 in cases when the solution is known, or
a reference energy otherwise (e.g. the best energy found
by a reference solver). In most cases the probability dis-
tribution pE≤E0+ε|E0| remains unknown, and it needs to
be replaced by an estimator, whose computation involves
firstly a non-trivial optimization of the solver settings,
and subsequently a number of independent runs of the
solver with optimal parameters, from which the estimate

is established. The employed function of success proba-
bility estimates the number of times an algorithm needs
to be run to find a solution within the desired optimality.

Investigation of TTε for specific classes of optimization
problems, or its scaling with the problem size serves as
a standard comparison tool between different heuristic
algorithms, including the quantum ones [19]. However,
it is clear from the above definition that a proper defi-
nition of the runtime tf is absolutely crucial for fair and
unbiased comparison.

In most cases defining and measuring runtime for clas-
sical algorithms poses no problem. The set of tools
for straightforward runtime measurements is also avail-
able [29–31]. On the other hand, there are two fun-
damental challenges concerning quantum runtime. The
first one concerns the proper definition of quantum run-
time, as one must determine which of various quantum
computation stages should be included in the total run-
time. Secondly, one needs to establish a robust method
of measuring times of those stages. In the subsections
these issues would be addressed separately for quantum
annealing and gate based devices.

A. Runtime for annealing quantum devices

Solution of an optimization problem on a quantum an-
nealer consists of the following stages. Firstly, an op-
timization problem must be loaded into the annealing
device. This involves two steps: embedding, which maps
a given instance of the Ising model onto the device topol-
ogy, and programming, which sets the physical proper-
ties of the device to realize the embedded problem. Sub-
sequently, the quantum annealing protocol takes place.
Here it is important to note that the duration of the an-
nealing is an input parameter to the protocol, and, at
least using the standard cloud access, it is not possible
to measure it independently [32]. Due to the probabilis-
tic nature of the annealing protocol, multiple runs are
required to increase the probability of obtaining a high-
quality solution. These annealing runs are executed se-
quentially, and are interrupted by the two processes. The
first is readout, which allows to obtain information about
the final state of each protocol, whereas the second is
thermalization, which restores the device to its initial
state. Both processes have their intrinsic runtimes.

It seems reasonable, therefore, that for quantum an-
nealers, the total runtime should be defined as the sum
of all annealing runs, including readout, thermalization,
and programming times. This is not a common prac-
tice; for instance, in [19], runtime was defined (and not
measured) solely as the annealing time, excluding other
contributions. Our aim is now to examine how this de-
cision influenced the reported scaling of TTε, and how
the scaling changes when the additional stages of the an-
nealing protocol are taken into account. To this end we
repeated the experiments using the same instances as in
Refs. [19, 33]. When tf is set to the annealing time per

3

sample, we reproduce the results of [19], confirming that
the methodology was implemented correctly. We then in-
vestigated how the TTε scaling changes when tf is taken
as the total QPU time, which includes programming, an-
nealing, readout, and thermalization times, as reported
by the cloud interface [34]. To further validate these re-
sults, we measured the usage time of the cloud interface
itself, which also accounts for access overheads.

In both cases, the results indicate that the runtime is
almost constant. The analysis of the scaling exponent
support this findings as the uncertainties of the fits are
too large to conclude that the exponents are non-zero.
Analysis of the different runtime components shows that
the dominant contribution to the total runtime comes
from the readout, which is on the order of 200µs per an-
nealing run. This implies that measuring the final quan-
tum state of the D-Wave quantum annealer is up to two
orders of magnitude longer than executing the quantum
evolution required to prepare this state, as the annealing
time in this experiment varies from 0.5µs to 27µs. This
discrepancy, and the difficulties it poses for investigat-
ing TTε scaling, motivated the exclusion of readout time
in [19]. However, this argument is not entirely convinc-
ing. Measurements are an inescapable part of quantum
computing, whether analogue or digital. Information en-
coded in a quantum state must be read from a quantum
device, as only the measurement results provide the so-
lution to a computational problem.

For reference we compared scaling of the quantum an-
nealing protocol to a classical algorithm, Simulated Bi-
furcation Machine (SBM [25, 35, 36]), cf. App. A1. Since
it is a classical algorithm, the runtime can be measured
directly and split into components, in particular the pure
computation time, in our case performed on GPU – tGPU

f ,

and the overhead time toverheadf , which is dominated by
the data transfer between CPU and GPU and hyperpa-
rameter tuning as exaplained in Appendix A1. We de-
note the total time from the end user perspective as
ttotf = tGPU

f + toverheadf . In Fig. 1 we show that the im-

pact of overhead on the scaling of [TTε]Med is certainly
non-negligible, albeit much less pronounced than in the
quantum case. Our experiments show that runtime ≈
“compute” + “a weakly varying constant” does not hold
for quantum annealers. In contrast, this approximation
remains valid for classical hardware such as GPUs, which
explains why scaling behavior is preserved across different
methodologies for measuring time.

To properly address this issue, all stages of computa-
tion would need to be included. On such time scales,
however, the runtime becomes nearly constant for the
problem sizes considered. Conclusive scaling results for
current annealing devices would therefore require exper-
iments with annealing times exceeding 200µs and with
substantially more than 5000 qubits.

150 300 600 900 1300

Instance size N

100

102

104

106

108

[T
T
ε]

M
ed

[µ
s]

(a) ε = 0.75%

2.23± 0.25
1.56± 0.53

0.61± 1.20

0.93± 1.24

1.83± 0.11

1.19± 0.13

QAC [19]

QAC tanneal per sample
f

QAC tQPU access
f

QAC truntime
f

SBM ttot
f

SBM tGPU
f

150 300 600 900 1300

Instance size N

(b) ε = 1.25%
1.17± 0.21

0.79± 0.21

−0.27± 0.65

0.03± 0.59

1.29± 0.07

0.85± 0.14

0.5% 0.75% 1.0% 1.25% 1.5%
Optimality threshold ε

−1

0

1

2

3

4

F
it

ti
n

g
ex

p
on

en
t
α

(c) N ∈ [142, 1322]

FIG. 1. Time-to-epsilon [TTε]Med scaling with the size N
of the Sidon-28 instances, for values of ε = 0.75% in panel
(a), and ε = 1.25% in panel (b). Results for QAC (blue)
solver are reproduced from Ref. [19], courtesy of the authors.
Remaining QAC data concerns experiments performed by us
on the instances form Ref. [19]. With the same definition of
runtime the results (orange) are consistent with [19], what
confirms correctness of methodology implementation. In ad-
dition [TTε]Med defined using the complete QPU access time

tQPUaccess
f as reported by D-Wave’s cloud interface (green),

as well as runtime measured with cloud access truntime
f (red)

are presented. Solid lines are power-law fits [TTε]Med ∝ Nα,
with the corresponding exponents α shown on the plot. The
instance size range spanned by the lines denote which data
points were used for the respective fits. Both plots clearly
demonstrate that with the proper runtime definition [TTε]Med

is constant for considered problem sizes. For comparison data
for Simulated Bifurcation Machine (SBM) solver[25, 35–37]
with [TTε]Med computed using 1 GPU and total runtime ttotf

(cyan), as well as pure GPU runtime tGPU
f (magenta) are pre-

sented. In this case the scaling of [TTε]Med is more robust
with respect to different runtime definitions, which is gener-
ally the case for classical algorithms. The bottom panel (c)
shows detailed data of the fitting exponent and its uncertainty
for values of ε ∈ {0.5, 0.75, 1.00, 1.10, 1.25, 1.5}%

B. Runtime for digital quantum devices

For digital quantum computers, one can distinguish
computation stages analogous to those discussed for
quantum annealers. The first stage is preprocessing,
which involves translating a quantum circuit into the
topology and native gate set of a chosen device, a process
known as transpilation. The transpiled circuit is then
executed multiple times (shots), with consecutive runs
separated by readout and thermalization. A proper def-
inition of runtime for digital quantum computers should
therefore account for all these processes. This perspective
was also advocated in [38], which describes a procedure

4

for measuring their durations on IBM devices.
With this definition of quantum runtime, we revisit

the results of Ref. [21]. Their digitized counter-diabatic
quantum optimization algorithm was reported to ex-
hibit a runtime advantage over Simulated Annealing
(SA [23]) and IBM’s proprietary CPLEX solver [24] for
a class of Higher-Order Unconstrained Binary Optimiza-
tion (HUBO) problems. These are probles whose cost
function includes multi-variable terms of order N = 3,
thereby generalizing the Ising model of Eq. (1),

P (s) =
∑

i1,··· ,iN
i1+···+iN≤3

Ji1...iN si11 . . . siNN . (3)

The choice of these two particular classical references is
discussed in Sec. IV. Here, we focus solely on the em-
ployed definition of runtime, as well as its measurement.
The algorithm considered in [21] is a hybrid quantum-
classical algorithm consisting of two runs of SA and a sin-
gle run of the quantum routine. This methods begins
with a single run of SA providing an initial guess for
quantum routine. The state produced by the quantum
routine is then fed into a second run of SA, which aims
to mitigate possible readout errors.

The total runtime thus comprises both classical and
quantum components. The classical runtime was esti-
mated based on the time required to perform a single
pass of SA. Therefore, the reported times are not the re-
sult of a physical measurement, but rather estimates de-
rived from the number of passes performed. Curiously,
the authors did not account for overheads associated with
SA, which, if included, would affect their conclusions, as
the overheads provided by the authors are on the or-
der of 1.6s. We emphasize that a robust protocol for
measuring classical computational time would allow for
avoiding such ambiguities. The quantum runtime was es-
timated under the assumption that the quantum devices
used in the experiments can execute 104 circuit repeti-
tions per second. This estimate, however, excludes over-
heads such as programming and transpilation time, as
discussed above. For such experiments a better method-
ology, specifically designed for IBM quantum devices,
could be applied, cf. Ref. [38].

To conclude, there are a number of severe problems
with the definition and measurement of runtime for both
classical and quantum algorithms, which constitute the
digitized counter-diabatic quantum optimization algo-
rithm. Due to these concerns, and the lack of an ap-
propriate metric, we conclude that at the present stage
the runtime advantage claimed in Ref. [21] is unfounded.
Furthermore, even if such a non-standard approach to
measuring runtime were to be justified, the claimed
“supremacy” would not withstand comparison against
a strong classical reference. We explicitly address this
point in Sec. IV, where we highlight further method-
ological problems in Ref. [21]. For instance, applying
their methodology to the same class of problem instances
shows that other classical methods (and even optimized

SA) can achieve comparable or superior results, thereby
undermining the BF-DCQO supremacy claim. A detailed
analysis is provided in App. A3.

C. Runtime for classical-quantum algorithms

Heuristic algorithms generally rely on a set of hyper-
parameters that must be tuned to achieve optimal per-
formance [39]. Such tuning is often computationally ex-
pensive [40, 41]. If the reported runtime of a solver ex-
cludes the cost of hyperparameter optimization, it cannot
be regarded as evidence of a runtime advantage. Unless
the chosen hyperparameters are demonstrably problem-
independent, or the tuning effort is uniform across all
instances. Furthermore, in hybrid quantum–classical ap-
proaches, the reported runtime should also include the
overhead associated with transferring data between the
classical host and the quantum device. This practice is
standard in classical–classical settings, such as combined
CPU–GPU computations, and there is no justification
for treating quantum–classical methods differently.

In this context, let us discuss the results of Ref. [42],
where a new quantum-classical solver for large-scale spin
glasses has been proposed, and it was claimed that it out-
performs other quantum and classical algorithms both in
terms of solution quality and the runtime. The solver
is based on a sequential process, in which at every step
the algorithm needs a set of hyperparameters. However,
the runtimes presented by the authors do not explicitly
include execution times needed to obtain those hyperpa-
rameters. Moreover, a tuning subroutine for hyperpa-
rameters is not described. Therefore, while the quality
of solutions is impressive, the runtime advantage claim
is not justified. Again, a proper metric in this context is
TTε, with all the necessary time components included,
and optimization performed [39].

III. SUPREMACY IN THE ORACLE QUERY
COMPLEXITY FRAMEWORK

Oracle query complexity is a well-established frame-
work for analyzing the computational resources required
to solve certain classes of problems [43, 44]. The central
assumption of this framework is that the problem spec-
ification is not fully known; instead, partial information
can be obtained by querying an external computational
routine, known as an oracle. For example, consider the
task of minimizing a function f(x) whose explicit form
is unknown to the solution algorithm. The algorithm
can interact with the oracle to obtain a function value
at a specific point x. The query complexity of the algo-
rithm is then characterized by the number of oracle calls
it makes as a function of the problem size.

In general, the query complexity framework applies
only to certain families of algorithms that access func-
tions in a way that can be modeled as querying an ora-

5

cle. It is worth noting that the first theoretical demon-
strations of quantum speedup were obtained within this
framework [8, 45, 46]. However, once the restriction
on limited problem knowledge is lifted, for instance, if
the details of an oracle’s implementation are made pub-
licly available, the validity of query complexity results no
longer holds. In such cases, it becomes possible to design
more efficient algorithms that exploit the additional in-
formation about the problem specification. See, e.g., the
recent discussion in [47] regarding Grover’s algorithm.

Here, we aim to interpret the query complexity frame-
work from the perspective of a resource theory. To re-
gard the number of oracle calls as a computational re-
source, one must assume that the oracle performs the
most resource-intensive part of the computation. Only
under this assumption the claim that an algorithm re-
quiring fewer oracle queries is more efficient can be jus-
tified. Furthermore, even when a separation between the
query complexities of different algorithms is proven, it
is important to examine how this separation translates
into runtime performance. This is particularly relevant
in comparing quantum and classical computing, where
the operations are characterized by different timescales
– typically, a single quantum operation is slower than
a classical one [48]. Because of these considerations, it
has been argued that a practical quantum advantage can
be achieved only by algorithms offering super-quadratic
speedups [48]. Runtime analysis thus plays a crucial role
in determining the problem scales at which an oracle
query complexity advantage leads to a genuine compu-
tational advantage in practice.

Recently, it has been experimentally demonstrated
that, for certain problem sizes and even in the pres-
ence of uncorrected noise, quantum computers can ex-
hibit an exponential advantage in a variant of Simon’s
problem [20]. In the original problem, the task is to find
a hidden period (a bitstring) encoded in an unknown 2-
to-1 function. In contrast, the authors of [20] study N -
bit periods with a restricted Hamming weight w (i.e.,
the number of nonzero bits). In their formulation, the
algorithm’s figure of merit is defined in terms of a score
function, whose primary purpose is to penalize random
period-guessing strategies. The authors study scaling
of this figure of merit, as a function of the total num-
ber of possible periods denoted as Nw ≡

∑
j

(
N
j

)
, where

N is the total number of bits, and w the maximal al-
lowed Hamming weight. Theoretical considerations are
presented that suggest possibility of a quantum advan-
tage for such defined problem even for noise, uncorrected
quantum computers. The exponential advantage mani-
fest itself in a polylogarithmic scaling of the score func-
tion as a function of the total number of possible periods
(the classical model scales polynomial with this param-
eter). The authors verify then these claims experimen-
tally. An exponential speedup is observed for functions
with 29-bit inputs and restricted Hamming weights in the
range w ∈ [2, 7]. For larger problem sizes, however, the
advantage is destroyed by noise. This raises the ques-

tion: how does this favorable scaling relate to the actual
runtime of the algorithm?

To compare the runtimes of quantum and classical al-
gorithms for Simon’s problem, we implemented a classi-
cal brute-force algorithm running on a single GPU. In
Ref. [19], the notion of a compiler was introduced to
construct an oracle feasible for NISQ devices. The com-
piler’s role is to split the computations performed by Si-
mon’s oracle into classical and quantum parts. Its ob-
jective is to generate the shallowest possible oracle cir-
cuit that can be embedded into the topology of a given
NISQ device. A detailed discussion of this compiler can
be found in Ref. [19]. For a fair comparison, we imple-
mented a classical oracle corresponding to the quantum
oracle described in Ref. [19], and we included only the or-
acle operation in the runtime. Other computations per-
formed by the compiler were excluded. We assume that
any additional classical computations required for the or-
acle would take the same runtime in both the classical
and quantum cases. Furthermore, the comparison does
not account for the time needed to construct a shallow
quantum circuit. Therefore, in principle, it should also
apply to the next generation of quantum devices that will
support deeper quantum circuits.

The quantum oracle computes the following classical
n-bit function fb : {0, 1}n 7→ {0, 1}n,

fb(x) = (x0, . . . , 0, xn−i+1 ⊕ xn−i, . . . , xn−i) , (4)

where b = 0n−i1i is the function period of Hamming
weight i [19]. The additional steps transforming this
function into a generic 2-to-1 function are performed by
the classical compiler [20]. In our implementation we re-
lied on the same function form.

The quantum algorithm for Simon’s problem was im-
plemented following the approach of Ref. [20], with its
runtime estimated using Qiskit functionalities [49]. For
each problem size, the quantum circuit was generated and
transpiled with the Qiskit compiler (optimization level
3) to account for the connectivity and native gate set
of IBM Brisbane [50]. The number of shots was chosen
according to the oracle call bound given in Eq. (16) of
Ref. [20]. The results are summarized in Fig. 2. The
runtime analysis clearly demonstrates that the exponen-
tial query complexity speedup reported in [20] does not
translate into a faster solution time. For instance, with
a problem size of N = 29 bits and Hamming weight
w = 7, the classical brute-force algorithm requires ap-
proximately 0.035s to find the solution, while the esti-
mated runtime for the quantum algorithm is on the or-
der of 2s, assuming s = 105 shots as in the experimental
demonstration of Ref. [20]. The projected problem size
at which the quantum algorithm would achieve a run-
time advantage is N = 60. However, as already dis-
cussed in Ref. [20], for such problem sizes the impact
of noise is too severe to obtain a correct solution to Si-
mon’s problem with the quantum algorithm. Let us also
stress that the classical algorithm was run on a single
general purpose GPU unit. Implementation of this algo-

6

rithm on a specifically tailored hardware, such as FPGA,
would result in even larger separation between classical
and quantum runtimes [51].

We emphasize once again that results derived from
complexity theory, and query complexity in particular,
are typically understood in an asymptotic sense. In con-
trast, currently available quantum devices restrict us to
very small problem sizes. Combined with the fact that
quantum and classical computers operate on different
timescales for their basic operations, this leads to an im-
portant conclusion: a query complexity separation in
favor of a quantum algorithm does not necessarily im-
ply a runtime advantage. For certain ranges of problem
sizes, algorithms with worse asymptotic scaling may in
practice run much faster than those requiring, even ex-
ponentially, fewer operations or oracle calls. Similarly,
the fastest known algorithm for matrix–matrix multipli-
cation, which scales as O(n2.371339) [52], does not provide
any practical advantage over optimized implementations
of the standard method with O(n3) scaling.

IV. APPROPRIATE CHOICE OF A CLASSICAL
REFERENCE ALGORITHM

A promising approach to identifying quantum advan-
tage for restricted classes of NP-hard instances, where no
complexity-theoretic guarantees can be made is the in-
vestigation of quantum heuristic methods. In such cases,
demonstrating quantum advantage necessarily requires
a direct comparison with classical algorithms solving the
same problems. Because classical algorithms are contin-
uously improving in both design and performance, most
announcements of quantum supremacy should be under-
stood as claims relative to the state-of-the-art classical
methods (see also the related discussion in [11]). This
was, for example, the case with the first random circuit
sampling–based supremacy results [15–17]. Even though
some of these quantum supremacy claims may later be
invalidated, they nonetheless represent important mile-
stones on the path toward establishing an unambiguous
quantum advantage. At the same time, the choice of the
classical reference algorithm must be made with great
care, to avoid situations in which the observed quantum
speedup arises merely from comparing against a subopti-
mal classical baseline. This naturally raises the question:
How should the reference algorithm be chosen?

For heuristic algorithms, there is no universal guide-
line for selecting the classical reference, and the decision
must be made on a case-by-case basis. Nevertheless, sev-
eral criteria can reasonably guide this choice. First, the
selection depends on the quality metric, such as runtime
or energy consumption, as well as on the specific problem
under consideration. In the context of optimization prob-
lems, which form the main focus of this work, arguably
the most relevant practical quantity is TTε, which mea-
sures the expected time required to obtain an approxi-
mate solution within a given precision, cf. Eq. 2.

15 25 35 45 55
Number of bits N

101

103

105

107

N
u

m
b

er
of

or
ac

le
ca

ll
s (a)

Log. scaling

Poly
. sc

ali
ng

experimental
advantage

range

Classical algorithm

Quantum algorithm

15 25 35 45 557
Number of bits N

10−2

10−1

100

101

A
lg

or
it

h
m

ru
n
ti

m
e

[s
] (b)

∼ 102× slower
experimental

advantage
range

2 3 4 5 6 7
Maximal Hamming weight w

0

1

2

F
it

ti
n

g
ex

p
on

en
t
γ (c)

NTS ∼ eC(log2Nw)γ[log(1+log2Nw)](1−γ)

Classical algorithm

Quantum algorithm

2 3 4 5 6 7
Maximal Hamming weight w

0

1

2

3

4

C
on

st
an

t
C

(d)

FIG. 2. For the restricted Simon’s problem the quantum ad-
vantage manifests itself in a favorable polylogarithmic scaling
of the protocol score function with the total number of periods
Nw =

∑
j

(
N
j

)
as compared to the exponential scaling for the

classical algorithm. The score function depends on number of
oracle queries and a probability of protocol success. (a) Total
number of oracle queries for the protocol and (b) runtime as
a function of total number of bits N , as obtained via execution
of classical and quantum algorithm solving restricted Simon’s
problem with w = 7. The shaded area indicates sizes of prob-
lems, for which the advantage was verified experimentally in
[20]. For the considered problem sizes and oracle periods the
classical algorithm runtime is shorter than the quantum one,
we predict that the runtime crossover occurs for problem sizes
N = 60. For example, in the case of N = 29 bits, what cor-
responds to the implementation presented in Ref. [20], the
runtime of the classical algorithm is two order of magnitude
shorter than the quantum algorithm. The quantum imple-
mentation is based on oracle constructed in Ref. [20], and the
number of shots required for the algorithm was established us-
ing Eq. (16) of Ref. [20]. In this case the quantum circuit was
transpiled to take into account connectivity and native gate
set of IBM Brisbane, and runtime was estimated using Qiskit
functionalities. The classical algorithm was implemented on
a GPU. The fitting parameters of the score function for quan-
tum and classical algorithm are presented in panels (c), (d).
Parameter γ = 0 indicates that the score scales polylogarith-
micly, which implies quantum scaling advantage. The data for
the quantum algorithm correspond to the results obtained for
IBM Brisbane with dynamical decoupling - Table XX in [20].

For this figure of merit, an optimal reference classical
algorithm should ideally combine solution quality with
short runtime. Thus, the most reasonable choices are
parallelizable algorithms, whose execution times are sig-
nificantly shorter than those of sequential approaches,
thanks to their ability to fully exploit modern comput-
ing resources such as GPUs [53] or FPGAs [54]. In this
regard, a particularly interesting class of classical heuris-
tics is based on the dynamics of Hamiltonian nonlinear

7

systems [25, 35–37, 55–57], as these methods combine
good performance with short execution times. Recently,
it was shown that one algorithm from this class-the Simu-
lated Bifurcation Machine (SBM)-achieves scaling of TTε
comparable to, or better than, that of quantum anneal-
ing [25]. This result effectively closes the previously re-
ported quantum-classical gap in approximate optimiza-
tion announced in [19], where the chosen classical ref-
erence was Parallel Tempering with Isoenergetic Cluster
Moves (PT-ICM). The PT-ICM algorithm belongs to the
class of physics-inspired methods based on temperature
annealing [58]. However, unlike algorithms rooted in non-
linear Hamiltonian dynamics, PT-ICM is not straightfor-
wardly parallelizable, and consequently exhibits longer
execution times. This makes it a suboptimal reference for
comparison with quantum annealing, a conclusion sup-
ported by the detailed analysis in [25].

Secondly, a classical reference algorithm should be de-
signed to solve the same class of problems. Otherwise,
the comparison is biased as it favours the quantum al-
gorithm. Potential worst performance of a chosen clas-
sical algorithm is not an evidence of a quantum algo-
rithm advantage but it merely reflects the fact that the
problem cannot be solved natively by the classical ref-
erence. For example, in [21], the investigated counter-
diabatic quantum optimization algorithm is designed to
solve HUBO problems, whereas the reference CPLEX
solver requires reformulation into a mixed-integer pro-
gram. As the authors note, this reformulation is respon-
sible for the longer runtime of CPLEX compared to their
quantum algorithm. Setting aside the fact that the over-
heads of counter-diabatic quantum optimization were not
accounted for (see the discussion in Sec. II), the relevant
question is how the performance of the counter-diabatic
quantum optimization algorithm would compare against
a classical solver capable of solving HUBO with signifi-
cantly lower overhead?

To address this issue, we consider the same class of
HUBO problems as in Ref. [21], described by the Hamil-
tonian of the form

H =
∑

(m,n)∈G2

Jmn σ
z
mσz

n +
∑

(p,q,r)∈G3

Kpqr σ
z
pσ

z
qσ

z
r , (5)

where G2 and G3 are the sets of two- and three-body
couplings, respectively, and Jmn and Kpqr are the corre-
sponding coupling strengths, The topology of considered
instances is constructed iteratively, starting from the cou-
pling graph C0 of heavy-hexagonal lattice of IBM’s Heron
architecture. Each step starts by using graph coloring to
identify sets of independent two- and three-body inter-
actions, then S2q (S3q) of them gets included in the G2

(G3) set, and finally the coupling graph is modified by
performing SWAP operation on pairs of qubits as de-
fined by one of the two-body interactions sets. This
procedure creates rather challenging instances, which are
however particularly well suited for the BF-DCQO algo-
rithm, since by changing the number of SWAP iterations,
one can directly control the depth of the quantum circuit

100 130 156

Number of variables N

0.975

0.980

0.985

0.990

0.995

1.000

A
p

p
ro

x
im

at
io

n
ra

ti
o
R

0.6s

0.5s

0.2s

6.0s

2.4s
1.1s

6.0s
1.3s

0.3s

(a) SA [21] BF-DCQO [21] SBM

80 100 130 156

Number of variables N

10−2

10−1

100

101

T
im

e-
to

-r
at

io
T

T
R

[s
]

0.95
0.97

0.95 0.94

0.96

0.98 0.96

0.95

(b)

CPLEX [21]

BF-DCQO [21]

SBM

FIG. 3. Partial reproduction of Fig. 5 from Ref. [21], with
additional results from SBM solver. Panel (a) shows approx-
imation ratio R achieved in a time annotated on top of the
bars, for instance of type S2q = 1, S3q = 4 and couplings from
Cauchy distribution. The SA and BF-DCQO results from
Ref. [21] correspond to a single, best performing instance.
Since the exact instances used by the authors of Ref. [21] had
not been disclosed, we generated our own instances and show
SBM results for the best performing instance. This high-
lights the danger of cherry-picking results, and the simplic-
ity of ”manufacturing” supremacy claims. Finally, panel (b)
shows the value of time-to-ratio TTR for instances of type
S2q = 1, S3q = 6 and couplings from a symmetrized Pareto
distribution, while the annotations indicate the target ratio
R. The results for CPLEX and BF-DCQO are again taken
from Ref. [21], where they were obtained as a result of aver-
aging over 5 random instances. Similarly, we constructed our
own instances and show SBM results averaged over 5 of them.
In both cases SBM outperforms other solvers, casting doubt
on the supremacy claim of Ref. [21]. Moreover, in App. A3
we present a more thorough analysis of these instances, and
show how to optimize HUBO SA to outperform BF-DCQO.

necessary for the quantum part of the algorithm. The au-
thors of Ref. [21] thus restricted their analysis to only one
SWAP iteration, which results in shallow circuits that
can be executed on an IBM device in a regime, where
the results are not dominated by noise. The instances
used in Ref. [21] were not made publicly available [59].
Consequently, we generated our own instances, closely
following the description in Ref. [21] (cf. App. A3), and
we make both these instances and the generation routine
available in the accompanying GitHub [60].

To make a connection with the supremacy claims of
Ref. [21], we employ the same figure of merit, which is
the time-to-ratio TTR [28], defined as the time required
to find a solution with an energy lower thanREGS, where
EGS is the ground state energy of the problem instance.
While this metric is conceptually similar to [TTε]Med,
its execution in Ref. [21] is questionable, since it does
not reflect the stochastic nature of investigated solvers.
In Fig. 3, we compare SBM with the results of BF-
DCQO, as well as SA and CPLEX taken from Ref. [21].
The authors choose to present their results only for ei-
ther the best performing instance or as an average over
just a few instances. In App. A3, we argue in detail why
this approach is not satisfactory, especially for these par-
ticular instances, and furthermore, we show that even
an optimized version of HUBO-native SA is enough to
disprove their supremacy claims. Here, for the sake of

8

80 100 130 156

Number of variables N

0.4

0.6

0.8

1.0
A

p
p

ro
x
im

at
io

n
ra

ti
o
R (a) S2q = 1, S3q = 4, Cauchy

0.5 µs

10.0 µs

100.0 µs

80 100 130 156

Number of variables N

(b) S2q = 1, S3q = 6, Sym. Pareto

1 2 3 4 5 6 7 8 9 10 11 12

Chain length

100

101

102

103

C
ou

n
t

(c) Distribution of embedding chains

N = 80

N = 100

N = 130

N = 156

FIG. 4. (a)-(b) Approximation ratio R achieved by D-
Wave’s Advantage2 1.6 quantum annealer on the same HUBO
instances as in Fig. 3, computed for each instance type and
size, by selecting the best result out of 5 shots with 210 sam-
ples each. Forward annealing scheme was used, with anneal-
ing times of 0.5µs (red), 10µs (green) and 100µs (blue). The
instances were first reduced to QUBO form in the same way
as in the case of SBM results (see App. A3 for details), and
then embedded into Advantage2 1.6 working graph. The re-
sults are, unsurprisingly, much worse than all other considered
solvers. They can be explained by investigating the distribu-
tion of chain lengths in the necessary embedding, shown in
panel (c). Since very long chains are needed to fit the prob-
lem instances onto the QPU, the performance of the quantum
annealer is severely degraded by possible chain breaks. This
highlights an issue that is often overlooked, yet crucial in the
context of benchmarking solvers with hardware-imposed con-
straints on problem topology.

the argument, we proceed in a similar fashion, showing
SBM data for the best performing instance in Fig. 3(a),
and the average over five instances in Fig. 3(b). In both
cases, SBM outperforms all other solvers, including BF-
DCQO. Nevertheless, we stress that the purpose of this
comparison is not to claim any kind of supremacy, but
only to highlight how easy it is to “manufacture” such
claims by cherry-picking results.

Nonetheless, an important point is to be made by look-
ing at a particular results for N = 100 in Fig. 3(a).
There, it seems like BF-DCQO retains its advantage,
since it achieves a better approximation ratio. However,
the difference between SBM and BF-DCQO is miniscule
(∆R ≃ 0.002), while the corresponding TTR is smaller
by a factor of 2 for SBM. A proper metric for comparing
stochastic solvers, such as the time-to-epsilon [TTε]Med
defined in Eq. (2), should take into account both solution
quality, and the expected runtime to achieve it.

This analysis illustrates how important it is to select
a suitable classical reference algorithm when assessing

102 103 104 105

Instance size N

102

104

106

108

[T
T
ε]

M
ed

[µ
s]

1.8
3±

0.1
1

1.1
9± 0.1

3

1.5
6±

0.5
3

0.61± 1.20
0.93± 1.24

1.3
8±

0.1
5

1.3
4±

0.1
2

(a) ε = 0.75%

Strong finite
size effects

Weak finite
size effects

SBM ttot
f

SBM tGPU
f

QAC tanneal per sample
f

QAC tQPU access
f

QAC truntime
f

102 103 104 105

Instance size N

1.2
9± 0.0

7

0.85± 0.14

0.79± 0.21

−0.27± 0.65

0.03± 0.59

1.5
3±

0.1
4

1.5
1±

0.1
1

(b) ε = 1.25%

Strong finite
size effects

Weak finite
size effects

FIG. 5. Illustration of impact of solver-related overhead on
scaling behavior of [TTε]Med, as defined in Eq. (2), using a cer-
tain type of Ising instances, relevant for near-term quantum
devices (see Ref. [25] for details). Note, that the finite size
effects diminish significantly beyond the gray-colored region
(N ≳ 2000), as demonstrated with SBM results. However,
such system sizes are currently beyond the capabilities of cor-
rect quantum annealing devices.

quantum advantage claims. Let us also mention that the
results of [21] were recently also disputed in [61], where it
was claimed that the superior performance of BF-DCQO
is not due to the quantum routine, as a modified algo-
rithm with the quantum routine replaced by a classical
solver exhibits a similar performance. Finally, for the
sake of completeness, we tested the performance of D-
Wave’s newest quantum annealer, the Advantage2 1.6
based on the Zephyr topology. The results are presented
in Fig. 4. Since the considered instances are not native to
the topology of the QPU, an embedding procedure must
be carried out. Fig. 4(c) shows the distribution of chain
lengths in the embedding, with a tail extending to very
long chains. This, unsurprisingly, results in a very poor
performance, even after cherry-picking the best result out
of 35 random instances, and 5 independent shots of 210

samples each. We stress that this is just a single manifes-
tation of a more general issue regarding claims of quan-
tum advantage — the necessity of embedding problem
instances onto the hardware graph of a quantum device,
often significantly reduces the performance, and thus one
should be very careful when making such claims on the
basis of experiments with hardware-native problems only.

V. SCALING BEHAVIOR IN SMALL
INSTANCES REGIME

Quantum advantage is usually demonstrated by show-
ing that a quantum algorithm exhibits more favorable
scaling with respect to the problem size than a refer-
ence classical algorithm. Results derived from theoret-
ical considerations, such as those in the oracle query
complexity paradigm, are unambiguous. However, when
the scaling of heuristic methods is investigated through
experiments on quantum hardware, one must account
for the fact that, due to the limited number of qubits
available in both digital and analog quantum devices,
the accessible instance sizes are severely restricted and

9

do not fully meet the requirements for asymptotic scal-
ing. In particular, the scaling behavior of classical al-
gorithms in the problem-size range accessible to current
quantum devices—on the order of hundreds of variables
for digital hardware and thousands for annealers—may
be strongly affected by finite-size effects. Classical algo-
rithms implemented on hardware with timescales compa-
rable to quantum devices, such as GPU clusters or FP-
GAs, are especially susceptible to overheads that domi-
nate at small scales but become negligible for larger prob-
lem sizes. Therefore, despite the limited capabilities of
today’s quantum hardware, it is essential to investigate
sufficiently large problem sizes in order to establish ro-
bust scaling properties. Such a situation was identified
in [25] for the SBM, a heuristic inspired by nonlinear
Hamiltonian dynamics [35–37]. The study demonstrated
that the scaling properties of this method—specifically
its time-to-solution—cannot be reliably inferred when re-
stricted to problem sizes corresponding only to the qubit
counts of current quantum annealers. See Fig. 5 for
a summary of relevant results.

VI. SUMMARY

Quantum computing has the potential to become one
of the next disruptive technologies. However, realizing
this potential requires not only technological progress but
also the identification of (potentially industry-relevant)
use cases where quantum computing can deliver a signif-
icant advantage over existing classical methods. In this
work, we argue that such an advantage should be re-
flected in a shorter time-to-solution achieved by a quan-
tum algorithm. From this perspective, we (re)examined
recent claims of quantum advantage and found that, un-
der a proper definition of runtime and with an appropri-
ate choice of the classical reference, none of them demon-
strate a genuine runtime supremacy. In particular, we
analyzed two recent milestone results:

Quantum Annealing (approximate QUBO).
Prior work [19] proxied runtime by the annealing time.
However, a careful runtime measurements show the me-
dian TTε is essentially flat over the tested sizes. This
is due to the readout per shot being ≈ 200µs while the
annealing durations are only 0.5–27µs. Measurement er-
rors are too large to draw meaningful conclusions; thus
no scaling can be inferred, cf. Fig. 1. Furthermore, this
“supremacy” would not survive against stronger classical
baseline (such as SBM) even if the annealing time would
faithfully reflect the device’s runtime, as shown in [25].

SBM achieves robust scaling far beyond the system sizes
attainable by current quantum annealers, cf. Fig. 5.
Gate-based oracle query (restricted Simon’s

problem). Although there is an exponential separation
in query-complexity scaling, wall-clock performance fa-
vors a tuned classical GPU baseline: for N = 29, and
the “restriction” w = 7 [20], classical runtime is ≈ 0.05s,
and the quantum ≈ 2s (∼ 100× slower). The projected
crossover of classical and quantum runtimes is at N ≈ 60
lies beyond the current capabilities of noise-limited de-
vices, cf. Fig. 2.
BF-DCQO hybrid algorithm. Finally, we scruti-

nized reported gains for solving HUBO [21] and show
they are based on estimates that neglect robust tim-
ing protocols and cherry-picking statistics. With such
methodology one can produce arbitrary supremacy by de-
sign, cf. Fig. 3. It is worth noting that the problem
instances considered in [21] were specifically designed to
align with IBM’s Heron architecture [62], and purport-
edly to be “challenging” for classical methods. We found
that on those instances, the high-quality physics-inspired
methods produces diverse solutions and therefore re-
quires much richer statistics to substantiate any claim
of supremacy. Cherry-picking the best out of a few runs
(5 therein) is not sufficient, cf. App. A3.

In conclusion, across all cases, a practical runtime
advantage on current NISQ hardware remains elusive.
Credible claims should not omit dominant overheads
(readout, thermalization, transpilation, etc.), must em-
ploy a proper metric such as TTε with all the required
optimizations, and should benchmark against state-of-
the-art, parallel classical solvers impartially selected on
a case-by-case basis reflecting the problem class.

In contrast, in [19], all advantages were given to quan-
tum annealing (such as avoiding dense instances and thus
eliminating the need for embedding, allowing a relatively
large ϵ > 1%, and using annealing time as a proxy for the
actual runtime), yet this approach still could not compete
for at least “limited supremacy” with a highly optimized
classical algorithm executed on a single GPU [25].

ACKNOWLEDGMENTS

This project was supported by the National Science
Center (NCN), Poland, under Projects: Sonata Bis 10,
No. 2020/38/E/ST3/00269 (B.G) Quantumz.io Sp. z o.o
acknowledges support received from The National Centre
for Research and Development (NCBR), Poland, under
Project No. POIR.01.01.01-00-0061/22.

[1] R. P. Feynman, Simulating physics with computers, Int
J Theor Phys 21, 467–488 (1982).

[2] D. Deutsch, Quantum theory, the Church-Turing princi-
ple and the universal quantum computer, Proc. R. Soc.
Lond. A 400, 97 (1985).

[3] IonQ, IonQ Roadmap (2025).
[4] IBM, IBM Quantum Roadmap (2025).
[5] Quantinuum, Quantinuum Roadmap (2025).
[6] D-Wave, The D-Wave Clarity Roadmap (2025), accessed:

2025-01-30.

https://doi.org/https://doi.org/10.1007/BF02650179
https://doi.org/https://doi.org/10.1007/BF02650179
https://doi.org/10.1098/rspa.1985.0070
https://doi.org/10.1098/rspa.1985.0070
https://ionq.com/blog/ionqs-accelerated-roadmap-turning-quantum-ambition-into-reality
https://www.ibm.com/roadmaps/quantum/
https://www.quantinuum.com/press-releases/quantinuum-unveils-accelerated-roadmap-to-achieve-universal-fault-tolerant-quantum-computing-by-2030
https://www.dwavesys.com/media/xvjpraig/clarity-roadmap_digital_v2.pdf

10

[7] H.-Y. Huang, S. Choi, J. R. McClean, and J. Preskill,
The vast world of quantum advantage, arXiv 2508.05720
(2025).

[8] D. R. Simon, On the power of quantum computation,
SIAM J. Comput. 26, 1474 (1997).

[9] P. Shor, Algorithms for quantum computation: discrete
logarithms and factoring, in Proceedings 35th Annual
Symposium on Foundations of Computer Science (1994)
pp. 124–134.

[10] L. J. Stockmeyer, The polynomial-time hierarchy, Theor.
Comput. Sci. 3, 1 (1976).

[11] O. Lanes, M. Beji, A. D. Corcoles, C. Dalyac, J. M. Gam-
betta, L. Henriet, A. Javadi-Abhari, A. Kandala, A. Mez-
zacapo, C. Porter, and et al., A Framework for Quantum
Advantage (2025), arXiv:2506.20658 [quant-ph].

[12] A. Abbas, A. Ambainis, B. Augustino, A. Bärtschi,
H. Buhrman, C. Coffrin, G. Cortiana, V. Dunjko, D. J.
Egger, B. G. Elmegreen, and N. Franco et al., Challenges
and opportunities in quantum optimization, Nat. Rev.
Phys. 6 (2024).

[13] F. Meier and H. Yamasaki, Energy-consumption advan-
tage of quantum computation, PRX Energy 4 (2025).

[14] K. Bertels, E. Turki, T. Sarac, A. Sarkar, and I. Ashraf,
Quantum computing – a new scientific revolution in the
making, arXiv:2106.11840 (2024).

[15] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin,
R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao,
and D. A. Buell et al., Quantum supremacy using a pro-
grammable superconducting processor, Nature 574, 505
(2019).

[16] Y. A. Liu, X. L. Liu, F. N. Li, H. Fu, Y. Yang, J. Song,
P. Zhao, Z. Wang, D. Peng, H. Chen, and et al., Clos-
ing the ”quantum supremacy” gap: achieving real-time
simulation of a random quantum circuit using a new Sun-
way supercomputer, in Proc. - Int. Conf. High Perform.
Comput. Netw. Storage Anal., SC ’21 (Association for
Computing Machinery, New York, NY, USA, 2021).

[17] F. Pan, K. Chen, and P. Zhang, Solving the sampling
problem of the Sycamore quantum circuits, Phys. Rev.
Lett. 129, 090502 (2022).

[18] A. Morvan, B. Villalonga, X. Mi, S. Mandrà, A. Bengts-
son, P. V. Klimov, Z. Chen, S. Hong, C. Erickson, and
I. K. Drozdov et al., Phase transitions in random circuit
sampling, Nature 634, 328 (2024).

[19] H. Munoz-Bauza and D. Lidar, Scaling advantage in ap-
proximate optimization with quantum annealing, Phys.
Rev. Lett. 134, 160601 (2025).

[20] P. Singkanipa, V. Kasatkin, Z. Zhou, G. Quiroz, and
D. A. Lidar, Demonstration of algorithmic quantum
speedup for an abelian hidden subgroup problem, Phys.
Rev. X 15 (2025).

[21] P. Chandarana, A. G. Cadavid, S. V. Romero,
A. Simen, E. Solano, and N. N. Hegade, Runtime
quantum advantage with digital quantum optimization,
arXiv:2505.08663 (2025).

[22] Z. Zhu, A. J. Ochoa, and H. G. Katzgraber, Efficient
cluster algorithm for spin glasses in any space dimension,
Phys. Rev. Lett. 115, 077201 (2015).

[23] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimiza-
tion by Simulated Annealing, Science 220, 671 (1983).

[24] CPLEX, IBM ILOG, Users manual for CPLEX (2024).
[25] J. Paw lowski, P. Tarasiuk, J. Tuziemski, L. Pawela, and

B. Gardas, Closing the quantum-classical scaling gap in
approximate optimization, arXiv:2505.22514 (2025).

[26] S. Boettcher, Analysis of the relation between quadratic
unconstrained binary optimization and the spin-glass
ground-state problem, Phys. Rev. Res. 1, 033142 (2019).

[27] G. F. Newell and E. W. Montroll, On the Theory of the
Ising Model of Ferromagnetism, Rev. Mod. Phys. 25, 353
(1953).

[28] M. Mohseni, M. M. Rams, S. V. Isakov, D. Eppens,
S. Pielawa, J. Strumpfer, S. Boixo, and H. Neven,
Sampling diverse near-optimal solutions via algorithmic
quantum annealing, Phys. Rev. E 108 (2023).

[29] NVIDIA, Nsight systems user guide (2025).
[30] Intel, Intel vtune profiler (2025).
[31] AMD, AMD profiler (2025).
[32] D-Wave, D-wave QPU solver parameters (2025).
[33] H. Munoz Bauza and D. Lidar, Scaling Advantage in

Approximate Optimization with Quantum Annealing -
Spin-Glass Instances (2025).

[34] D-Wave, D-wave operation and timing (2025).
[35] H. Goto, Bifurcation-based adiabatic quantum compu-

tation with a nonlinear oscillator network, Sci. Rep. 6,
21686 (2016).

[36] H. Goto, K. Endo, M. Suzuki, Y. Sakai, and Taro et al.,
High-performance combinatorial optimization based on
classical mechanics, Sci. Adv. 7, eabe7953 (2021).

[37] H. Goto, K. Tatsumura, and A. R. Dixon, Combinatorial
optimization by simulating adiabatic bifurcations in non-
linear hamiltonian systems, Sci. Adv. 5, eaav2372 (2019).

[38] T. Koch, D. E. B. Neira, Y. Chen, G. Cortiana, D. J.
Egger, R. Heese, N. N. Hegade, A. G. Cadavid, and et
al., Quantum optimization benchmark library – the in-
tractable decathlon, arXiv:2504.03832 (2025).

[39] T. F. Rønnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov,
D. Wecker, J. M. Martinis, D. A. Lidar, and M. Troyer,
Defining and detecting quantum speedup, Science 345,
420–424 (2014).

[40] E. Alessandroni, S. Ramos-Calderer, I. Roth, E. Traversi,
and L. Aolita, Alleviating the quantum big-m problem,
npj Quantum Inf. 11 (2025).

[41] M. Larocca, S. Thanasilp, S. Wang, K. Sharma, J. Bia-
monte, P. J. Coles, L. Cincio, J. R. McClean, Z. Holmes,
and M. Cerezo, Barren plateaus in variational quantum
computing, Nat. Rev. Phys. 7, 174–189 (2025).

[42] S. Schulz, D. Willsch, and K. Michielsen, Learning-
driven annealing with adaptive hamiltonian modifica-
tion for solving large-scale problems on quantum devices,
arXiv:2502.21246 (2025).

[43] R. Kothari, T. Lee, M. Szegedy, and I. Newman, Query
Complexity , G - Reference,Information and Interdis-
ciplinary Subjects Series (World Scientific Publishing
Company Pte Limited, 2025).

[44] A. Ambainis, Understanding quantum algorithms via
query complexity, arXiv:1712.06349 (2017).

[45] D. Deutsch and R. Jozsa, Rapid solution of problems by
quantum computation, Proceedings: Mathematical and
Physical Sciences 439, 553 (1992).

[46] L. K. Grover, A fast quantum mechanical algorithm for
database search, in Proc. Annu. ACM Symp. Theory
Comput. (1996) pp. 212–219.

[47] E. M. Stoudenmire and X. Waintal, Opening the black
box inside grover’s algorithm, Phys. Rev. X 14, 041029
(2024).

[48] T. Hoefler, T. Häner, and M. Troyer, Disentangling hype
from practicality: On realistically achieving quantum ad-
vantage, COMMUN ACM 66, 82 (2023).

https://arxiv.org/abs/2508.05720
https://arxiv.org/abs/2508.05720
https://doi.org/10.1137/S0097539796298637
https://doi.org/10.1137/S0097539796298637
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/https://doi.org/10.1016/0304-3975(76)90061-X
https://doi.org/https://doi.org/10.1016/0304-3975(76)90061-X
https://arxiv.org/abs/2506.20658
https://arxiv.org/abs/2506.20658
https://arxiv.org/abs/2506.20658
http://dx.doi.org/10.1038/s42254-024-00770-9
http://dx.doi.org/10.1038/s42254-024-00770-9
http://dx.doi.org/10.1103/PRXEnergy.4.023008
https://arxiv.org/abs/2106.11840
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1145/3458817.3487399
https://doi.org/10.1145/3458817.3487399
https://doi.org/10.1103/PhysRevLett.129.090502
https://doi.org/10.1103/PhysRevLett.129.090502
https://doi.org/10.1038/s41586-024-07998-6
https://doi.org/10.1103/PhysRevLett.134.160601
https://doi.org/10.1103/PhysRevLett.134.160601
http://dx.doi.org/10.1103/PhysRevX.15.021082
http://dx.doi.org/10.1103/PhysRevX.15.021082
https://arxiv.org/abs/2505.08663
https://doi.org/10.1103/PhysRevLett.115.077201
https://www.ibm.com/docs/en/icos/22.1.1?topic=optimizers-users-manual-cplex
https://arxiv.org/abs/2505.22514
https://link.aps.org/doi/10.1103/PhysRevResearch.1.033142
https://doi.org/10.1103/RevModPhys.25.353
https://doi.org/10.1103/RevModPhys.25.353
http://dx.doi.org/10.1103/PhysRevE.108.065303
https://docs.nvidia.com/nsight-systems/UserGuide/index.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://rocm.docs.amd.com/en/latest/
https://docs.dwavequantum.com/en/latest/quantum_research/solver_parameters.html
https://doi.org/10.7910/DVN/PCLEHG
https://doi.org/10.7910/DVN/PCLEHG
https://doi.org/10.7910/DVN/PCLEHG
https://docs.dwavequantum.com/en/latest/quantum_research/operation_timing.html
http://dx.doi.org/10.1038/srep21686
http://dx.doi.org/10.1038/srep21686
https://www.science.org/doi/abs/10.1126/sciadv.abe7953
https://doi.org/10.1126/sciadv.aav2372
https://arxiv.org/abs/2504.03832
https://doi.org/10.1126/science.1252319
https://doi.org/10.1126/science.1252319
http://dx.doi.org/10.1038/s41534-025-01067-0
https://doi.org/10.1038/s42254-025-00813-9
https://arxiv.org/abs/2502.21246
https://books.google.pl/books?id=2gt7swEACAAJ
https://books.google.pl/books?id=2gt7swEACAAJ
https://arxiv.org/abs/1712.06349
http://www.jstor.org/stable/52182
http://www.jstor.org/stable/52182
https://dl.acm.org/doi/10.1145/237814.237866
https://dl.acm.org/doi/10.1145/237814.237866
https://link.aps.org/doi/10.1103/PhysRevX.14.041029
https://link.aps.org/doi/10.1103/PhysRevX.14.041029
https://cacm.acm.org/research/disentangling-hype-from-practicality-on-realistically-achieving-quantum-advantage/

11

[49] A. Javadi-Abhari, M. Treinish, K. Krsulich, C. J. Wood,
J. Lishman, J. Gacon, S. Martiel, P. D. Nation, L. S.
Bishop, A. W. Cross, B. R. Johnson, and J. M. Gam-
betta, Quantum computing with qiskit, arXiv:2405.08810
(2024).

[50] IBM, IBM Quantum compute resources (2025).
[51] S. Chowdhury, N. A. Aadit, A. Grimaldi, E. Raimondo,

A. Raut, P. A. Lott, J. H. Mentink, M. M. Rams,
F. Ricci-Tersenghi, M. Chiappini, L. S. Theogarajan,
T. Srimani, G. Finocchio, M. Mohseni, and K. Y. Cam-
sari, Pushing the boundary of quantum advantage in
hard combinatorial optimization with probabilistic com-
puters, arXiv:2503.10302 (2025).

[52] J. Alman, R. Duan, V. V. Williams, Y. Xu, Z. Xu, and
R. Zhou, More asymmetry yields faster matrix multipli-
cation, arXiv:2404.16349 (2024).

[53] X. Yi, A Study of Performance Programming of CPU,
GPU accelerated Computers and SIMD Architecture,
arXiv:2409.10661 (2024).

[54] R. Kastner, J. Matai, and S. Neuendorffer, Parallel Pro-
gramming for FPGAs, arXiv:1805.03648 (2018).

[55] J. Hou, A. Barzegar, and H. G. Katzgraber, Direct com-
parison of stochastic driven nonlinear dynamical systems
for combinatorial optimization, Phys. Rev. E 112, 035301
(2025).

[56] T. Aonishi, T. Nagasawa, T. Koizumi, M. D. S. H. Gu-
nathilaka, K. Mimura, M. Okada, S. Kako, and Y. Ya-
mamoto, Highly Versatile FPGA-Implemented Cyber
Coherent Ising Machine, IEEE Access 12, 175843–175865
(2024).

[57] J. Paw lowski, J. Tuziemski, P. Tarasiuk, A. Przy-
bysz, R. Adamski, K. Hendzel, L. Pawela, and
B. Gardas, VeloxQ: A fast and efficient QUBO solver,
arXiv:2501.19221 (2025).

[58] D. Delahaye, S. Chaimatanan, and M. Mongeau, Simu-
lated annealing: From basics to applications, in Hand-
book of Metaheuristics, edited by M. Gendreau and J.-Y.
Potvin (Springer International Publishing, Cham, 2019)
pp. 1–35.

[59] The authors did not respond to our request to share their
HUBO instances.

[60] J. Tuziemski, J. Paw lowski, P. Tarasiuk, L. Pawela,
and B. Gardas, Recent quantum runtime (dis)advantages
– code repository, https://github.com/quantumz-io/

quanutm-runtime-disadvantage (2025), GitHub reposi-
tory.

[61] P. Farré, E. Ordog, K. Chern, and C. C. Mc-
Geoch, Comparing Quantum Annealing and BF-DCQO,
arXiv:2509.14358 (2025).

[62] IBM, IBM Quantum Platform - Processor types (2025).
[63] T. Zhang and J. Han, Quantized simulated bifurcation

for the Ising model, in 2023 IEEE 23rd International
Conference on Nanotechnology (NANO) (2023) pp. 715–
720.

[64] J. Fulman, Random matrix theory over finite fields: a
survey, arXiv:0003195 (2001).

[65] C. Chamberland, G. Zhu, T. J. Yoder, J. B. Hertzberg,
and A. W. Cross, Topological and subsystem codes on
low-degree graphs with flag qubits, Phys. Rev. X 10
(2020).

[66] N. Dattani, Quadratization in discrete optimization and
quantum mechanics, arxiv:1901.04405 (2019).

[67] T. Kanao and H. Goto, Simulated bifurcation for higher-
order cost functions, Appl. Phys. Express. 16, 014501

(2022).
[68] D. J. Earl and M. W. Deem, Parallel tempering: Theory,

applications, and new perspectives, Phys. Chem. Chem.
Phys. 7, 3910 (2005).

[69] A. Russkov, R. Chulkevich, and L. N. Shchur, Algo-
rithm for replica redistribution in an implementation of
the population annealing method on a hybrid super-
computer architecture, Comput. Phys. Commun. 261,
107786 (2021).

[70] J. Machta, Population annealing with weighted averages:
A monte carlo method for rough free-energy landscapes,
Phys. Rev. E 82, 026704 (2010).

[71] S. V. Romero, A.-M. Visuri, A. G. Cadavid, E. Solano,
and N. N. Hegade, Bias-field digitized counterdiabatic
quantum algorithm for higher-order binary optimization,
arxiv:2409.04477 (2024).

https://arxiv.org/abs/2405.08810
https://arxiv.org/abs/2405.08810
https://quantum.cloud.ibm.com/computers
https://arxiv.org/abs/2503.10302
https://arxiv.org/abs/2404.16349
https://arxiv.org/abs/2409.10661
http://arxiv.org/abs/1805.03648
https://link.aps.org/doi/10.1103/9vbb-h73q
https://link.aps.org/doi/10.1103/9vbb-h73q
https://doi.org/10.1109/access.2024.3504008
https://doi.org/10.1109/access.2024.3504008
https://arxiv.org/abs/2501.19221
https://doi.org/10.1007/978-3-319-91086-4_1
https://doi.org/10.1007/978-3-319-91086-4_1
https://github.com/quantumz-io/quanutm-runtime-disadvantage
https://github.com/quantumz-io/quanutm-runtime-disadvantage
https://arxiv.org/abs/2509.14358
https://quantum.cloud.ibm.com/docs/en/guides/processor-types
https://doi.org/10.1109/NANO58406.2023.10231308
https://doi.org/10.1109/NANO58406.2023.10231308
https://arxiv.org/abs/math/0003195
http://dx.doi.org/10.1103/PhysRevX.10.011022
http://dx.doi.org/10.1103/PhysRevX.10.011022
https://arxiv.org/abs/1901.04405
http://dx.doi.org/10.35848/1882-0786/acaba9
http://dx.doi.org/10.35848/1882-0786/acaba9
https://doi.org/10.1039/B509983H
https://doi.org/10.1039/B509983H
https://doi.org/https://doi.org/10.1016/j.cpc.2020.107786
https://doi.org/https://doi.org/10.1016/j.cpc.2020.107786
https://doi.org/10.1103/PhysRevE.82.026704
https://arxiv.org/abs/2409.04477

A1

Appendix A1: Simulated Bifurcation Machine

To demonstrate that the results for classical algorithms are less sensitive to runtime definition changes we consider
a discretized version of Simulated Bifurcation Machine algorithm [25, 35–37], first introduced as dSB in Ref. [36]. The
algorithm is based on a non-linear Hamiltonian system, whose motion is governed by the following equations:

q̇i = a0pi,

ṗi = − [a0 − a(t)] qi + c0

 N∑
j=1

Jijf(qj) + hi

 ,
(A11)

where f(x) = sign(x) is the signum function. The original formulation of dSB is modified to include a ternary
discretization scheme [63], replacing sign with

f(x) =

{
0 |x| ≤ ∆(t),

sign(x) |x| > ∆(t),
(A12)

where ∆(t) = 0.7 t
T is a time-dependent threshold and T is the total time of the evolution.

The nonlinearity predominantly stems from perfectly inelastic walls that are inserted at |qi| = 1, and after hitting
a wall (|qi| > 1), the particle position qi is set to sign(qi) and its momentum to pi = 0. The system’s evolution
depends on a set of hyperparameters. Hyperparameters a0 and c0 are typically set to a0 = 1 and c0 = 0.7a0

σ
√
N

, where σ

is the standard deviation of off-diagonal matrix elements of J . The system undergoes bifurcations, which are caused
by a change of the linear time-dependent function a(t) = t

T . Bifurcations change the system’s energy landscape to one
approximately encoding the local minima of the Ising term. This mechanism allows to find low-energy solutions of
the binary optimization problem by binarizing the final system’s state, taking si = sign(qi). The SBM is a stochastic
system sensitive to initial conditions, a large number of independent replicas can be integrated simultaneously from
different starting points, enabling massive parallelization. The remaining hyperparameters are ∆t - time step, and Ns

– number of steps, which determine jointly the total evolution time T = Ns∆t. Since SBM is a stochastic algorithm
it needs to be executed a number of times, which we denote as number of replicas Nr (this can be done in parallel).
For each replica the timestep δt is chosen randomly, for details see [25].

Appendix A2: Benchmarking classical algorithm on pseudo-random simulated oracles

The Simon’s problem for a function that simulates behavior of an oracle can be solved using a classical algorithm.
We have used a solver that not only confirms existence of a non-zero period, but also finds the period. The series of
tests and benchmarks we have performed require simulation of oracle-like 2-to-1 functions. Given the number of bits
n, a function f : {0, 1}n 7→ {0, 1}n with period p ∈ {0, 1}n \ {0}n needs to match the following property:

∀x,y∈{0,1}n f(x) = f(y)⇐⇒ y = x⊕ p. (A21)

Given a 1-to-1 function g : {0, 1}n 7→ {0, 1}n and ordering ≺ over {0, 1}n, one can define a function

f(x) = g(min
≺

(x, x⊕ p)). (A22)

that meets the requirements. The ≺ used in our benchmarks was the lexicographic ordering of bit tuples. The other
possible orderings can be achieved by comparing h(x) and h(x⊕ p) for 1-to-1 functions h : {0, 1}n 7→ {0, 1}n instead.

Since we can build the right function for any given period, properties of the period, such as number of set bits,
can be assigned arbitrarily. The last step to consider is construction of 1-to-1 functions such as g. To include all fb
functions from (4), we have implemented affine functions over GF(2) field:

g(x) = Ax⊕ b for A ∈ {0, 1}n×n, rankGF(2) A = n, b ∈ {0, 1}n. (A23)

Notably, Ax is also intended to be computed in GF(2). Requirement that rankGF(2) A = n is equivalent to A being
invertible in GF(2), which is crucial to g being a bijection.

A2

ALG. 1. Simulated Bifurcation Machine.

Input:

J, h – coupling matrix and local fields vector specifying an instance of the Ising model,

∆t – time step,

Ns – number of steps,

a(t) – pump function,

f(x) – discretization function,

a0, c0 – hyperparameters.

Output:

E, q – energy and its corresponding state of the found minimum.

n = length(h)

q1 ← {rand(−1, 1)}n

p1 ← {rand(−1, 1)}n

for j = 1, . . . , Ns do

qi+1 ← a0∆tpi

pi+1 ←
{

[a0 − a(j∆t)] qi + c0
(∑N

j=1 Jijf(qj) + hi

)}
∆t

for i = 1, . . . , n do

if qi+1,j ≥ |1| then
qi+1,j ← sign(qi+1,j)

pi+1,j ← 0

end if

end for

end for

x = sign(xNs+1)

E = 1
2
xTJx + hTx

return E, x

Pseudo-random generation of A and b is straightforward to implement. Constraint on A needs to be considered –
probability that a pseudo random {0, 1}n×n matrix will be invertible in GF(2) decreases with n. However, as shown
in [64], it converges to a constant that exceeds 1/4, which makes it practically viable to generate matrices in a loop
until finding a matrix with rank n.

Wider selection of g functions (and order-altering h) can be achieved by applying complex strategies, including
cryptographic schemes such as AES with a fixed key unknown to the solver. The proposed choice of skipping h and
using affine g is a compromise that ensures the oracle is non-trivial, and includes all cases described in (4).

The classical Alg. 2 is oblivious to the inner implementation of the oracle. The oracle-like function is applied for
all the x vectors such that either

(
x1, . . . , x⌊n/2⌋

)
or
(
x⌊n/2⌋+1, . . . , xn

)
are all zeros. For any period p, both higher

⌈n/2⌉ and lower ⌊n/2⌋ bits of p will be tested – so there is exactly one pair xi, xj such that f(xi) = f(xj), yielding

p = xi ⊕ xj . The total number of vectors to evaluate is 2⌈n/2⌉ + 2⌊n/2⌋ − 1. In our scenario, the complexity is in

Θ(n2 2n/2). That cost is reached both by evaluating of the linear functions, and by sorting evaluation results, which
involves comparisons of n-bit vectors.

1. Polynomial scaling for restricted Simon’s problem with fixed w

The proposed classical algorithm can be further optimized for solving restricted Simon’s problem with w < ⌈n/2⌉.
A period p with at most w set bits can always be decomposed into p = xi ⊕ xj such that xi and xj have at most w
set bits in total. Retaining the core concept from the general approach, this can be achieved by xi with ⌈n/2⌉ lowest
bits of p, and xj with the remaining ⌊n/2⌋ highest bits.

In order to find the decomposition in a single pass, we can constrain both xi and xj to have at most w set bits, rather
than w bits set in total. This approach remains highly efficient for parallel computations, as demonstrated by the
runtime measurements from Fig. 2. Constrained vectors can be generated with Alg. 3. The required precomputation

of S(m, k) =
∑k

v=0

(
m
v

)
values involves Θ(n2) computational and memory cost, and is calculated once per n, and

reusable across multiple solver calls.

A3

ALG. 2. Classical solver to Simon’s problem.

Input:

n – number of bits,

f – {0, 1}n 7→ {0, 1}n function that evaluates oracle.

Output:

p ∈ {0, 1}n – oracle period, zeros when there is none.

x1 ← {0}n

for i = 1, . . . , 2⌈n/2⌉ − 1 do

xi+1 ← (⌈n/2⌉ lowest bits of i, 0 . . .)

end for

for i = 1, . . . , 2⌊n/2⌋ − 1 do

xi+2⌈n/2⌉ ← (0 . . . , ⌊n/2⌋ lowest bits of i)

end for

for i = 1, . . . , 2⌈n/2⌉ + 2⌊n/2⌋ − 1 do

yi ← f(xi)

end for

(j1, . . . , j2⌈n/2⌉+2⌊n/2⌋−1)← SortingPermutation(y1, . . . , y2⌈n/2⌉+2⌊n/2⌋−1) ▷ done by sorting indices with y as key

for i = 1, . . . , 2⌈n/2⌉ + 2⌊n/2⌋ − 2 do

if yji = yji+1 then

return xji ⊕ xji+1

end if

end for

return {0}n

The adjusted solver for restricted Simon’s problem described in Alg. 4 is a specialized version of Alg. 2 where only
vectors xi with up to w set bits are constructed and used in duplicate search. For small fixed w, specifically w ≤ n/4,
the total number of vectors processed is

v(n, w) = S(⌊n/2⌋, w) + S(⌈n/2⌉, w) ≤

≤ 2S(⌈n/2⌉, w) ≤ 2 ⌈n/2⌉
(⌈n/2⌉

w

)
= (A24)

= 2 ⌈n/2⌉
w∏
i=1

⌈n/2⌉ − i + 1

i
≤ 2 ⌈n/2⌉w+1.

The most dominant component to Alg. 4 complexity is sorting an array of v(n, w) bit vectors of length n. This
operation is Θ(v(n, w) · log(v(n, w)) · n). For small or fixed w, the bound from Eq. A24 applies, so the complexity
is in the class O(wnw+2 log n). This shows that the proposed classical solver for restricted Simon’s problem has
a polynomial complexity for fixed w. The polynomial behavior can be observed in Fig. 2.

A4

ALG. 3. Computing the i-th vector within limit of w set bits.

Input:

n – number of bits,

w ≤ n – maximum number of set bits,

i ∈
{

0, . . . ,
(∑w

v=0

(
n
v

))
− 1

}
– index of vector.

S(m, k) =
∑k

v=0

(
m
v

)
– precomputed values for m = {0, . . . , n} and k = {0, . . . m}.

Output:

x ∈ {0, 1}n – the i-th vector meeting the constraint in lexicographic order.

x← {0}n

v ← w

for b = 1, . . . , n do

if i ≥ S(n− b, v) then

xb ← 1

i← i− S(n− b, v)

v ← v − 1

end if

end for

return x

ALG. 4. Classical solver to restricted Simon problem.

Input:

n – number of bits,

f – {0, 1}n 7→ {0, 1}n function that evaluates oracle,

w ≤ n – maximum number of set bits in oracle period,

S(m, k) =
∑k

v=0

(
m
v

)
– precomputed values for m = {0, . . . , n} and k = {0, . . . m}.

Output:

p ∈ {0, 1}n – oracle period, zeros when there is none.

x1 ← {0}n

for i = 1, . . . , S (⌈n/2⌉, min {w, ⌈n/2⌉}) do

t← ALG3(⌈n/2⌉,min {w, ⌈n/2⌉} , i, S)

xi+1 ← (⌈n/2⌉ lowest bits of t, 0 . . .)

end for

for i = 1, . . . , S (⌊n/2⌋, min {w, ⌊n/2⌋}) do

t← ALG3(⌈n/2⌉,min {w, ⌊n/2⌋} , i, S)

xi+2⌈n/2⌉ ← (0 . . . , ⌊n/2⌋ lowest bits of t)

end for

for i = 1, . . . , 2⌈n/2⌉ + 2⌊n/2⌋ − 1 do

yi ← f(xi)

end for

(j1, . . . , j2⌈n/2⌉+2⌊n/2⌋−1)← SortingPermutation(y1, . . . , y2⌈n/2⌉+2⌊n/2⌋−1) ▷ done by sorting indices with y as key

for i = 1, . . . , 2⌈n/2⌉ + 2⌊n/2⌋ − 2 do

if yji = yji+1 then

return xji ⊕ xji+1

end if

end for

return {0}n

A5

Appendix A3: Detailed analysis of HUBO instances from Ref. [21]

1. HUBO instance construction

We begin with providing a more detailed description of the HUBO instances used in Section IV of the main text.
These instances are designed to be challenging, yet well suited for the IBM quantum computers, thus the starting
point in their construction is the heavy-hex graph C0 of IBM Heron architecture [65]. Two conflict graphs are then

constructed: C
(2)
0 and C

(3)
0 , with vertices corresponding to the edges of C0 in the case of C

(2)
0 , and to the triangles and

three-qubit paths in the case of C
(3)
0 . Edges in the conflict graphs connect vertices that share a vertex in C0, which

means that the operations on qubits encoding these interactions cannot be executed simultaneously. By applying
graph coloring to the conflict graphs, one obtains partitions of the edges of C0 into sets of non-conflicting edges,

P2q = {P (1)
2q , P

(2)
2q , . . . , P

(M2)
2q } and P3q = {P (1)

3q , P
(2)
3q , . . . , P

(M3)
3q }, where M2 and M3 are the number of colors used in

the coloring of C
(2)
0 and C

(3)
0 , respectively. Each set P

(i)
2q and P

(i)
3q contain two- and three-body interactions that can

be executed in parallel on the quantum hardware.
Interaction sets are then included in the HUBO Hamiltonian (5) by updating the G2 and G3 sets: G2 ← G2 ∪

{P (i)
2q }i=1,...,S2q

and G3 ← G3 ∪ {P (i)
3q }i=1,...,S3q

. The parameters S2q ≤ M2 and S3q ≤ M3 control the number of
sets of two- and three-body interactions included in the Hamiltonian, and thus directly affect the complexity of its

topology. The final step is the SWAP operation, carried out using the first two-body interaction set P
(1)
2q , which maps

C0 → C1 by permuting all qubits pairs (q1, q2) ∈ P
(1)
2q . This iteration can then be repeated, successively increasing

the number of interactions. After the interaction topology is prepared, the couplings are sampled from one of two
distributions: (i) Cauchy, with density function f(x) = 1/[π(1 + x2)], and (ii) symmetrized Pareto, which starts from
density function f(x) = α/xα+1, but the samples are symmetrized by multiplying them by a Bernoulli distributed
random sign with probability 1/2.

Like the authors of Ref. [21], we select two types of instances: (i) S2q = 1, S3q = 4, single SWAP and Cauchy
distributed couplings, (ii) S2q = 1, S3q = 6, single SWAP and symmetrized Pareto distributed couplings. We also
considered reduced initial couplings graphs, to obtain instances smaller than the full heavy-hex IBM Heron QPU.
In the end, we generated 50 random instances per type and size N ∈ [80, 100, 130, 156]. To ensure transparency and
reproducibility, we make publicly available a GitHub repository containing all generated instances together with the
Python code used for their generation [60].

ALG. 5. Building conflict graph for 2-body interactions.

Input:

C = (V,E) — connectivity graph

Output:

C(2) – conflict graph where vertices represent 2-body interactions.

C(2) ← ({1, . . . , |E|}, ∅) ▷ Initialize conflict graph

for i = 1, . . . , |E| − 1 do

for j = i + 1, . . . , |E| do
if E[i] ∩ E[j] ̸= ∅ then

Add edge (i, j) to C(2) ▷ Interactions share a qubit

end if

end for

end for

return C(2)

A6

ALG. 6. Building conflict graph for 3-body interactions.

Input:

C = (V,E) — connectivity graph

Output:

C(3) – conflict graph where vertices represent 3-body interactions.

I ← ∅
for v ∈ V do

Nv ← {u ∈ V : (v, u) ∈ E} ▷ Neighbors of v

for (u,w) ∈ {(u,w) : u,w ∈ Nv ∧ (u,w) ∈ E} do ▷ All pairs of neighbors

I ← I ∪ {(v, u, w)}
end for

end for

C ← ({1, . . . , |I|}, ∅) ▷ Initialize conflict graph

for i < j ≤ |I| do
if I[i] ∩ I[j] ̸= ∅ then ▷ Interactions share a qubit

Add edge (i, j) to C

end if

end for

return C

ALG. 7. HUBO instance generation

Input:

C0 – starting topology graph

S2q – number of two-body interaction sets to include,

S3q – number of three-body interaction sets to include,

nswap – number of SWAP iterations,

dist – coupling distribution

Output:

J,K – dictionaries with two-body and three-body interactions defining the HUBO instance

G2 ← ∅, G3 ← ∅
C ← C0

for n = 0, 1, . . . , nswap do

C(2) ← BuildConflictGraph(C, 2-body), C(3) ← BuildConflictGraph(C, 3-body)

P2q ← GraphColoring(C(2)), P3q ← GraphColoring(C(3))

for i = 1, . . . , S2q do

G2 ← G2 ∪ P
(i)
2q

end for

for i = 1, . . . , S3q do

G3 ← G3 ∪ P
(i)
3q

end for

if swap < nswap then

C ← ApplySWAP(C,P
(1)
2q) ▷ Permute qubit pairs from first 2-body set

end if

end for

for (m,n) ∈ G2 do

Jmn ← SampleCoupling(dist)

end for

for (p, q, r) ∈ G3 do

Kpqr ← SampleCoupling(dist)

end for

return J,K

A7

2. Performance of Simulated Bifurcation and Simulated Annealing on HUBO instances

In its usual formulation, both SBM and SA are designed to solve problems with up to second-order interactions.
To apply them to HUBO instances, we first need to use some reduction technique to convert higher-order terms into
quadratic ones. We choose a standard reduction method for third-order Ising interactions [66]:

±sisjsk → 3± (s1 + s2 + s3 + 2saux) + 2saux (si + sj + sk) + sisj + sisk + sjsk, (A31)

which introduces one auxiliary spin saux per third-order term, and preserves the spectrum of the original problem.
In the GitHub repository [60], we provide both HUBO instances and their QUBO counterparts after the reduction.
We also note, that SA can be extended to directly handle higher-order interactions fairly easily, and while in principle
SBM can be too [67], it is much more involved. Thus, we only consider the HUBO-native version of SA, which we
discuss in greater detail in App. A4.

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
fr

ac
ti

on

(a) SBM, S2q = 1, S3q = 4, Cauchy (b) SA QUBO, S2q = 1, S3q = 4, Cauchy

Nrep = 210

Nrep = 212

Nrep = 214

Nrep = 216

R ≥ 0.90

R ≥ 0.95

R ≥ 0.99

(c) SA HUBO, S2q = 1, S3q = 4, Cauchy

80 100 130 156

Number of variables N

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
fr

ac
ti

on

(d) SBM, S2q = 1, S3q = 6, Sym. Pareto

80 100 130 156

Number of variables N

(e) SA QUBO, S2q = 1, S3q = 6, Sym. Pareto

80 100 130 156

Number of variables N

(f) SA HUBO, S2q = 1, S3q = 6, Sym. Pareto

FIG. A1. Success fraction as a function of instance size, for 50 considered instances of each type. Panels (a) and (d) show
results for SBM, (b) and (e) for SA in QUBO form, and (c) and (f) for SA in HUBO form. The top row (a-c) corresponds
to instances with S2q = 1, S3q = 4, Cauchy distributed couplings, while the bottom row (d-f) to instances with S2q = 1,
S3q = 6, symmetrized Pareto distributed couplings. These results show that, when it comes pure solution quality, these
instances are challenging for Simulated Bifurcation. However, the success fraction can be significantly improved by increasing
the number of replicas evolved in parallel, for which SBM is particularly well suited. SA, both in QUBO and HUBO form,
performs significantly better, with the QUBO-native version being the best for Cauchy instances, and HUBO-native for Pareto
instances.

We start by analyzing the success fraction, defined as the fraction of instances for which a given algorithm found
solution better than or equal to a certain threshold. The results are shown in Fig. A1, for three selected thresholds,
R ∈ {0.90, 0.95, 0.99}, and as a function of instance size N . We see a first hint that these instances are indeed
challenging, since the success fraction decreases rapidly with both instance size and the threshold approximation
ratio. Interestingly, Simulated Bifurcation seems to struggle much more than Simulated Annealing, at least when it
comes to pure solution quality. However, when discussing approximate optimization algorithms, one should always
be mindful of the time-quality trade-off. Let us now consider the runtime of the algorithms, to see a different
picture emerge. In Fig. A2, we show the approximation ratio R, averaged over 50 couplings realizations and 10 (5)

A8

independent runs of SBM (SA), as a function of runtime, for each considered instance type and size. Immediately,
we can notice that while QUBO SA reaches better solutions eventually, SBM is able to reach good solutions close to
an order of magnitude faster. Similar conclusions can be drawn when comparing SBM to HUBO SA in the case of
Cauchy instances, while the Pareto instances seem to be “easy” for HUBO SA. Nevertheless, even in this case, the
performance of SBM is still respectable, especially when considering the potential for further improvent via extending
it to natively handle higher-order interactions [67].

Crucially, this is a result of a statistically sound benchmarking procedure, being aware of, and taking into account
the variability of instances due to random coupling selection. The dangers of cherry-picking results, which were
discussed in the main text, here are clearly visible in the insets of Fig. A2, which show the rather broad distribution
of best approximation ratios obtained for each instance type and size. To stress it again here, in Fig. A3 we reproduce
Fig. 3 from the main text, but with the addition of results from an optimized, GPU-based implementation of HUBO
SA. This shows that not only the choice of baseline algorithm matters, but also the specific implementation can
influence the results, and one should always strive to use the best available version of a given algorithm.

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

A
p

p
ro

x
im

at
io

n
ra

ti
o
R

(a) Cauchy, S2q = 1, S3q = 4, N = 78 (b) Cauchy, S2q = 1, S3q = 4, N = 100 (c) Cauchy, S2q = 1, S3q = 4, N = 130 (d) Cauchy, S2q = 1, S3q = 4, N = 156

SA HUBO Nrep = 216

SA QUBO Nrep = 210

SBM Nrep = 210

SBM Nrep = 212

SBM Nrep = 214

0.01 0.1 1 10 100

Runtime [s]

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
p

p
ro

x
im

at
io

n
ra

ti
o
R

(e) Sym. Pareto, S2q = 1, S3q = 6, N = 80

0.01 0.1 1 10 100

Runtime [s]

(f) Sym. Pareto, S2q = 1, S3q = 6, N = 100

0.01 0.1 1 10 100

Runtime [s]

(g) Sym. Pareto, S2q = 1, S3q = 6, N = 131

0.01 0.1 1 10 100

Runtime [s]

(h) Sym. Pareto, S2q = 1, S3q = 6, N = 156

0.96 0.98 1.00

Best R
0

50

100

150

200

P
r(
R

)

0.96 0.98 1.00

Best R
0

25

50

75

100

P
r(
R

)

0.96 0.98 1.00

Best R
0

20

40

60

80

P
r(
R

)

0.96 0.98 1.00

Best R
0

20

40

60

80

P
r(
R

)

0.90 0.95 1.00

Best R
0

20

40

60

80

P
r(
R

)

0.90 0.95 1.00

Best R
0

20

40

P
r(
R

)

0.90 0.95 1.00

Best R
0

20

40

P
r(
R

)

0.90 0.95 1.00

Best R
0

20

40

P
r(
R

)
FIG. A2. Approximation ratio R as a function of runtime, averaged over 50 instances and 10 (5) independent runs of SBM
(SA), for each instance type and size. Shaded area corresponds to one standard deviation, and insets show the distribution of R
obtained, by aggregating best values for a given instance type and size. We can clearly see the biggest advantage of SBM over
SA – its ability to efficiently evolve many replicas simultaneously, while keeping the runtime low. In terms of quality-runtime
trade-off, it holds its ground even againts the HUBO SA variant, which does not suffer overheads from rank reduction. In
particular, SBM is able to, on average, reach solutions of reasonable quality, R ≈ 0.95 for Cauchy instances and R ≈ 0.90 for
Pareto instances, close to an order of magnitude faster than SA, except for large Pareto instances, which seems to be “easy”
for the HUBO SA. This is promising, given that it is possible to extend SBM so that it can handle higher-order interactions
natively [67]. Finally, insets reveal broad distribution of approximation ratios over random coupling selection for a fixed
topology, which further highlights the importance of conducting a proper statistical analysis before drawing any conclusions.

Appendix A4: Simulated Annealing for QUBO add HUBO

Simulated Annealing (SA) is one of the most widely used algorithms for finding approximate solutions to combina-
torial optimization problems [23]. It relies on thermal fluctuations to probabilistically escape local minima during the
search process and has inspired more sophisticated variants such as parallel tempering [68], parallel annealing [69],
and population annealing [70], among others [57].

In principle, SA can be applied to higher-order interactions of any order k, although it often becomes inefficient
once the interaction order exceeds k = 3. While the method is guaranteed to converge to a local optimum, in practice

A9

100 130 156

Number of variables N

0.975

0.980

0.985

0.990

0.995

1.000

A
p

p
ro

x
im

at
io

n
ra

ti
o
R

0.6s

0.5s

0.1s
0.3s 6.0s

2.4s

1.1s
1.0s

6.0s

1.3s

0.3s

4.2s

(a)
SA [21]

BF-DCQO [21]

SBM

SA (GPU)

80 100 130 156

Number of variables N

10−2

10−1

100

101

T
im

e-
to

-r
at

io
T

T
R

[s
]

0.95

0.97

0.95 0.94

0.96

0.98
0.96

0.95

0.96 0.98
0.96

0.95

(b)

CPLEX [21]

BF-DCQO [21]

SBM

SA (GPU)

FIG. A3. Reproduction of Fig. 3 from the main text, with additional results from an optimized, GPU-based implementation of
Simulated Annealing natively handling third-order interactions (cf. ALG. 9). This simulation demonstrates that an optimized
HUBO SA method is already sufficient to outperform the BF-DCQO hybrid approach of Ref. [21].

convergence is limited by the chosen number of steps or runtime. As a result, the gap from the global optimum can
remain large, especially for dense graphs [71]. Here we briefly outline the algorithm and provide pseudo-code for both
QUBO and HUBO problems.

The key advantage of SA is the simplicity of its concept. It operates on a batch of trajectories, often initialized as
pseudo-random spin configurations. For all the scheduled temperatures T , we perform a fixed number of passes over
all variables of all trajectories. For each variable, we compute δ – the energy change that would result from flipping
its value to the opposite sign. If δ < 0, the flip is accepted. Otherwise, it is accepted with probability exp(−δ/T).

The key performance aspects of SA implementation involve: parallelization strategy, data structures to store ma-
trices, optimized recomputation of δ values. When the batch of trajectories sufficiently large, parallelizing over
trajectories is effective, and avoids any potential data races, regardless of the specific approach to δ computation.
While J can be stored efficiently in either dense or sparse format, the higher-order interaction tensor K is typically
very sparse, including in the instances used in this paper. The proposed implementation uses CUSPARSE data
structures and the cusparseSpMM routine for sparse-dense matrix multiplications in Alg. 9.

In the quadratic case, described as Alg. 8, δ values can be updated incrementally after each accepted flip. This
makes it feasible to keep the full δrv matrix in memory – it is computed once, and updated as flips occur. For cubic
problems, this optimization is not efficient, since processing slices of K involves higher dimensionality than in the case
of J . For that reason, we recompute δr vector for each variable v. This approach guarantees that we always use δ
values in sync with states as they are stored in the memory. As shown in Alg. 9, focusing on one variable at time is
more efficient than updating the entire matrix at once. This mitigates the overhead of more frequent δ recomputation.

For the technical implementation purposes, we assume that 2- and 3-body interactions are presented in symmetric
arrays, i.e. Jij = Jji and Kijk = Kjik = Kikj for i, j, k ∈ {1, n}, n being the number of variables. We also assume
Jii = 0 and Kiik = 0, since such interactions can be represented by lower-order terms. This makes it possible to
rewrite the cost function from Eq. (3) as:

P (s) =

(
1

6

(
n∑

i=1

(Kis)si

)
+

1

2
Js + h

)⊤

s. (A41)

This formulation underlies the δrv update cost formulas presented in Alg. 8 and δr for Alg. 9.

Appendix A5: Reproducibility

To ensure the reproducibility of our results, we provide a GitHub repository [60]. It contains structured HUBO
instances for three-body Ising models (along with generation code), a Python client for Simulated Bifurcation Machine
experiments, and a CUDA-optimized Julia implementation of Simulated Annealing. The repository also includes a
Python program for executing quantum circuits on IBM Brisbane, a Julia solver for Simon’s problem with various
oracle configurations, and all data and scripts used to generate the paper’s figures.

A10

Appendix A6: Hardware

All classical benchmarks in this work were performed on a workstation equipped with dual Intel(R) Xeon(R)
Platinum 8462Y+ CPUs, 4 NVIDIA H100 SXM GPUs, and 1TB of RAM. All results were obtained using a single
GPU, unless stated otherwisee.

ALG. 8. Simulated annealing for quadratic optimization

Input:

n ∈ N – number of variables,

J ∈ Rn×n – symmetric matrix of 2-body interactions,

h ∈ Rn – magnetic field,

m ∈ N – number of trajectories (starting from initial states) to process,

num steps ∈ N – number of steps for consequent temperatures,

num passses ∈ N – number of passes over variables per temperature,

T0, T1 – temperatures in the initial and the final step.

Output:

s ∈ {−1, 1}m×n – spectrum of near-optimal states.

s← m pseudo-random states for n-variable problem ({−1, 1}m×n matrix)

β ← num steps-long geometric sequence from 1/T0 to 1/T1

δ ← −2 s⊙
(
sJ + h⊤) ▷ δrv is the energy change from flipping variable v in state r

for step = 1, . . . , num steps do

for pass ∈ {1, . . . , num passses} do
for v ∈ {1, . . . , n} do

for r ∈ {1, . . . , m} do ▷ parallelized with no need for atomic operations

if δrv < 0 or Rand() < exp(−δrv βstep) then ▷ Rand yielding a pseudo-random number from (0, 1) range

srv ← −srv
δrv ← −δrv
for w ∈ {1, . . . , n} do

δrw ← δrw − 4 Jvw srv srw ▷ Jvv is assumed to be 0

end for

end if

end for

end for

end for

end for

return s

A11

ALG. 9. Simulated annealing for third order HUBO optimization

Input:

n ∈ N – number of variables,

K ∈ Rn×n×n – tensor of 3-body interactions, symmetric under any permutation of indices,

J ∈ Rn×n – symmetric matrix of 2-body interactions,

h ∈ Rn – magnetic field,

m ∈ N – number of trajectories (starting from initial states) to process,

num steps ∈ N – number of steps for consequent temperatures,

num passes ∈ N – number of passes over variables per temperature,

T0, T1 – temperatures in the initial and the final step.

Output:

s ∈ {−1, 1}m×n – spectrum of near-optimal states.

s← m pseudo-random states for n-variable problem ({−1, 1}m×n matrix)

β ← num steps-long geometric sequence from 1/T0 to 1/T1

for step = 1, . . . , num steps do

for pass ∈ {1, . . . , num passes} do
for v ∈ {1, . . . , n} do

δ ← −2
(
s⊤

)
v
⊙

(
1
2

(sKv ⊙ s) 1n + s(Jv)⊤ + hv

)
▷ Kv – v-th matrix of K. Jv,

(
s⊤

)
v

– v-th rows

for r ∈ {1, . . . , m} do ▷ parallelized with no need for atomic operations

if δr < 0 or Rand() < exp(−δr βstep) then ▷ Rand yielding a pseudo-random number from (0, 1) range

srv ← −srv
end if

end for

end for

end for

end for

return s

	Recent quantum runtime (dis)advantages
	Abstract
	Introduction
	Quantum advantage in algorithm runtime
	Runtime for annealing quantum devices
	Runtime for digital quantum devices
	Runtime for classical-quantum algorithms

	Supremacy in the oracle query complexity framework
	Appropriate choice of a classical reference algorithm
	Scaling behavior in small instances regime
	Summary
	Acknowledgments
	References
	Simulated Bifurcation Machine
	Benchmarking classical algorithm on pseudo-random simulated oracles
	Polynomial scaling for restricted Simon's problem with fixed w

	Detailed analysis of HUBO instances from Ref. ChandaranaKipuAdvantage
	HUBO instance construction
	Performance of Simulated Bifurcation and Simulated Annealing on HUBO instances

	Simulated Annealing for QUBO add HUBO
	Reproducibility
	Hardware

