2306.13030v1 [cs.CR] 22 Jun 2023

arxXiv

Online Self-Supervised Learning in Machine
Learning Intrusion Detection for the Internet of
Things

Mert Nakip, Student Member, IEEE, and Erol Gelenbe Fellow, IEEE

Abstract—This paper proposes a novel Self-Supervised Intru-
sion Detection (SSID) framework, which enables a fully online
Machine Learning (ML) based Intrusion Detection System (IDS)
that requires no human intervention or prior off-line learning.
The proposed framework analyzes and labels incoming traffic
packets based only on the decisions of the IDS itself using
an Auto-Associative Deep Random Neural Network, and on an
online estimate of its statistically measured trustworthiness. The
SSID framework enables IDS to adapt rapidly to time-varying
characteristics of the network traffic, and eliminates the need
for offline data collection. This approach avoids human errors in
data labeling, and human labor and computational costs of model
training and data collection. The approach is experimentally
evaluated on public datasets and compared with well-known ML
models, showing that this SSID framework is very useful and
advantageous as an accurate and online learning ML-based IDS
for IoT systems.

Index Terms—Self-Supervised Learning, Random Neural Net-
work (RNN), Auto-Associative Deep RNN, Botnet Attacks, In-
trusion Detection, Machine Learning, Internet of Things

I. INTRODUCTION

Botnet attacks can lead to thousands of infected devices
[1] compromising the devices of victims and turning them
into “bots” via malware [2]], which in turn cause Distributed
Denial-of-Service (DDoS) attacks. The malicious bots, i.e.
compromised devices, can generate fraud information, cause
data leaks, and spread malware. It is reported that 27.7% of
all global website traffic in 2021 was generated by bots with
malicious intent, and is growing with a 7.3% increase reported
between 2018 and 2021 [3]].

Botnet attacks severely challenge resource-constrained de-
vices and Internet of Things (IoT) networks [4], as an at-
tack propagates over the victim network increasing network
congestion, power consumption, and processor and memory
usage of IoT devices over time. Therefore, it is crucial to
detect malicious network traffic and identify compromised
IoT devices during an ongoing Botnet attack. While detecting
malicious traffic allows reactive actions to alleviate the effects
of the attack and stop it, identifying compromised IoT devices

This research has been supported by the European Commission H2020
Program through the IoTAC Research and Innovation Action, under Grant
Agreement No. 952684.

M. Nakip and E. Gelenbe are with Institute of Theoretical and Applied
Informatics, Polish Academy of Sciences (PAN), Gliwice, Poland (e-mails:
mnakip @iitis.pl, and seg@iitis.pl)

E. Gelenbe is also with Lab. I3S, Université Cote d’Azur, Nice, France,
and Yasar University, Izmir, Turkey

paves the way for preventive actions against the spread of
malware and Botnet attack.

On the other hand, as the majority (approximately 52%)
of IoT connections are to low cost and low maintenance
devices deployed in massive IoT networks [5], developing
and implementing complex and advanced security methods is
challenging as well. To this end, early research [|6] developed
various types of lightweight Machine Learning (ML)-based
Intrusion Detection Systems (IDS) for IoT networks, showing
that machine ML based IDS anomaly detection is very promis-
ing in detecting zero-day attacks based on unknown intrusions
that often target vulnerable devices and networks.

Since the decisions of anomaly-based IDS are highly de-
pendent on the characteristics of the normal traffic used
for parameter optimization (i.e. learning), accurate decisions
become more difficult when the normal behavior of network
traffic changes over time due to both internal and external
influences. For example, new device(s) may be added to the
IoT network causing a considerable change in aggregated
network traffic. Therefore, anomaly-based IDS could greatly
benefit from the ability to adapt in real time to time-varying
characteristics of network traffic, ideally through sequential
online learning [7]], [8]. However, the effectiveness of online
learning is often limited by its inability to collect and label
sufficient data, as well as by the need to select appropriate
time intervals for parameter updates.

In this paper a novel fully online Self-Supervised Intrusion
Detection (SSID) framework is proposed. SSID learns from
arriving traffic packets, measures the trustworthiness of the
IDS, including its generalization ability and accuracy on traffic
packets it uses for learning. It can then decide when to update
the neural weights of its learning algorithm, keeping itself up-
to-date with a high intrusion detection accuracy.

The SSID framework can be used with any anomaly-
based IDS that requires parameter optimization, providing
fully online self-supervised learning of parameters in parallel
with real-time detection requiring no human intervention.
It also eliminates the need for labeled or unlabeled offline
data collection, and offline training or parameter optimization.
Therefore, the proposed framework contrasts sharply with
much of existing work [9]-[15] that has implemented self-
supervised learning for intrusion detection, often utilizing
offline (small-sized) labeled or unlabeled training data and
pseudo-labeling. Accordingly, as its main advantages, the
SSID framework

o Enables IDS to easily adapt time varying characteristics

of the network traffic,

« Eliminates the need for offline data collection,

o Prevents human errors in data labeling (online or offline),
and

o Avoids human labor and computational costs for model
training and data collection through prior experiments.

We also evaluate the performance of the SSID framework
for two tasks, malicious traffic detection and compromised
device identification, using Deep Random Neural Network
(DRNN), Multi-Layer Perceptron (MLP), and the state-of-
the-art Compromised Device Identification System (CDIS) on
Kitsune and Bot-IoT datasets. The results revealed that the
intrusion detection systems trained under the SSID framework
achieve considerably high performance compared to the same
systems with offline and quasi-online (incremental and se-
quential) learning, although the IDS trained via SSID requires
no offline dataset, external parameter optimization or human
intervention.

The remainder of this paper is organized as follows:
Section [[Il reviews the related work on intrusion detection.
Section and Section respectively propose the SSID
framework and present the methodology enabling the self-
supervised learning for IDS. Section [V] evaluates the SSID
framework for malicious traffic detection and compromised
device identification on public datasets, and compares its
performance against the state-of-the art methods. Finally,
Section V]| summarizes this paper and provides some insights
for the future work.

II. RELATED WORK

We now briefly review recent related work on intrusion de-
tection in three categories of the work that: 1) detect malicious
traffic during Botnet-based DDoS (in short Botnet) attacks, 2)
identifies compromised network nodes, and 3) performs self-
supervised learning for intrusion detection.

A. DDoS Botnet Attack Detection

In [16]], Tuan et al. conducted a comparative study for
performance evaluation of ML methods aiming to classify
Botnet attack traffic. In this work, the authors evaluated
the performances of Support Vector Machine (SVM), MLP,
Decision Tree (DT), Naive Bayes (NB), and unsupervised
ML methods (such as K-means clustering) on two datasets
(including KDD’99) revealing that unsupervised ML methods
achieve the best performance with 98% accuracy. In [17]], Shao
et al. created an ensemble of Hoeffding Tree and Random
Forest (RF) models with online learning using both normal and
attack traffic. In [[18]], Shafiq et al. developed a feature selection
technique as a preprocessing algorithm for an ML-based botnet
attack detector. This algorithm ranks features according to their
Pearson correlation coefficients and greedily maximizes the
detector’s performance with respect to area under Receiver
Operating Characteristic (ROC) curve in the Bot-IoT dataset.
In [19]], Doshi et al. developed an attack detection algorithm
comprised of feature extraction from the network traffic and
ML classifier. In the place of the ML classifier, the authors
used each of K-Nearest Neighbour (KNN), SVM, DT, and

MLP methods; then, they evaluated the performance of this
algorithm on a dataset collected within the same work. Letteri
et al. [20] developed an MLP based Mirai Botnet detector
specialized for Software Defined Networks. The authors fed 5
metrics, including the used communication protocol, to MLP.

In [21]], Banerjee and Samantaray performed experimental
work to deploy a network of honeypots that attracts botnet
attacks and to detect those attacks via ML methods, such
as DT, NB, Gradient Boosting, and RF. In reference [22],
McDermott et al. developed the Bidirectional LSTM-based
method which is developed for packet-level botnet attack
detection by performing text recognition on multiple features
including source and destination IP addresses of a packet. In
addition, Tzagkarakis et al. [23]] developed a sparse represen-
tation framework with parameter tuning using only normal
traffic for botnet attack detection.

Meidan et al. [24] developed an ML-based attack detection
technique which is trained using only normal traffic and tested
for Mirai and Bashlite botnet attacks on an IoT network with
nine devices. The authors also published the data collected
in this study under the name N-BaloT dataset. In order to
detect Botnet attack in N-BaloT dataset, Htwe et al. [25]] used
Classification and Regression Trees with feature selection, and
Sriram et al. [26] performed a comparative study using 7
different ML methods (including NB, KNN, and SVM). In
Reference [27], Soe et al. developed a Botnet attack detection
algorithm comprised of two sequential phases first to train
utilized ML method and perform feature selection, then to
perform attack detection. The authors used MLP and NB
within this architecture, and they evaluated the performance
on N-BaloT dataset. In [28]], Parra et al. developed a cloud
based attack detection method using Convolutional Neural
Network (CNN) for phishing and using Long-Short Term
Memory (LSTM) for Botnet attacks. The authors evaluated
the performance of this method also on the N-BaloT dataset
achieving 94.8% accuracy. CNN was also used by Liu et al.
[29]] with features that are processed by the triangle area maps
based multivariate correlation analysis algorithm.

B. Compromised Device Identification

Some recent work [30]-[35] focused on detecting com-
promised IoT devices during Botnet attacks, while Kumar
et al. [30] detected Mirai-like bots scanning the destination
port numbers in packet headers using an optimization-based
technique for subsets of all IoT packets. Chatterjee et al.
[31]] identified malicious devices in IoT networks via evidence
theory-based analysis. To this end, they analyzed traffic flows
and selected the rarest features from a large number of commu-
nication features, including number of connections, transport
layer protocol, and source/destination ports. In [36], in order to
detect 10T botnet in an Industrial IoT network, Nguyen et al.
developed a dynamic analysis technique utilizing various ML
models, such as SVM, DT, and KNN, based on the features
generated from the executable files. In Reference [37]], Hristov
and Trifonov developed a compromised device identification
algorithm using wavelet transformation and Haar filter on
the metrics indicating the processor, memory and network

[nitial Learning ~ Online Learning

Online Learning

UPDATE
when IDS is not
trustworthy enough

Online Learning

Phase { = 0 Phase 1 - Phase | — 1 Phase
: : P ' :U dati . . ! .
‘{J dv' vP ' ! ';Pzr:rrllztgers :Updatmg :Updatlng
pdating Parameters . . wP t
I Continuous (Uninterupted) Detectibn ——— Yurameters >
Time >

Initial Set-up of IDS

Fig. 1. Detection and learning processes of IDS within the Fully Online Self-Supervised Intrusion Detection (SSID) framework

interface card usage of an IoT device. In [35]], Prokofiev
et al. used Logistic Regression to determine if the source
device is a bot based on 10 metrics regarding the traffic
packets. The performance of logistic regression is tested for a
botnet that spreads through brute-force attacks. Nguyen et al.
[32] detected compromised devices by an anomaly detection
technique combining federated learning with language analysis
for individual device types identified prior to detection. In
order to evaluate the performance of this technique, the authors
collected a dataset by installing 33 IoT devices, 5 of which
were malicious, and showed that detection performance is
around 94% for positive and 99% for negative samples.
More differently, in Reference [33], Abhishek et al. de-
tected not compromised devices but compromised gateways
monitoring the downlink channels in an IoT network and
performing binary hypothesis test. In [38], Trajanovski and
Zhang developed a framework consisting of honeypots to
identify the indicators of compromised devices and botnet
attacks. Bahsi et al. in [39] addressed the scalability issues for
ML-based Bot detection algorithms by minimizing the number
of inputs of ML model via feature selection. In [34]], for mobile
IoT devices, Taneja proposed to detect compromised devices
taking into account their location, such that if a location
change or current location of an IoT device is classified as
unusual behavior, the device is considered compromised.

C. Self-Supervised Learning for Intrusion Detection

Song and Kim [9] developed self-supervised learning al-
gorithm for anomaly-based IDS in in-vehicle networks. In
this algorithm, LSTM is used to generated noisy pseudo data
as normal network traffic while Reduced Inception-ResNet
is used to make binary classification and detect unknown
(zero-day) attacks. Wang et al. [[10] applied and adapted
Bootstrap Your Own Latent (BYOL) self-supervised learning
approach, which has been proposed in [40], for intrusion
detection. For anomaly detection, Zhang et al. [11]] developed
deep adversarial training architecture by extending the well-
known bidirectional Generative Adversarial Network (GAN)
model. This architecture jointly learns from normal data and
generated latent features. Caville et al. [[13]] developed a Graph

Neural Network (GNN) based network-level IDS. This IDS
was trained with a self-supervised learning approach using
both positive and negative samples for offline training with an
encoder graph created using an extended version of the well-
known GraphSAGE framework. Wang et al. [[15]] developed an
IDS with unsupervised learning combined with transformer
based self-supervised masked context reconstruction, which
improves the learning by magnifying the abnormal intrusion
behaviours. Abououf et al. [|[I14] developed a lightweight IDS
architecture based on LSTM Auto Encoder (LSTM-AE) to
perform detection on IoT nodes. This model is trained offline
and unsupervised in an encoder-decoder architecture using a
pre-collected dataset in the cloud.

In this work, we propose a novel learning framework, called
SSID, for ML-based intrusion detection. In sharp contrast to
existing studies, our SSID framework 1) eliminates the need
for an additional generative model for training (although this
is a common and well-known approach to self-supervised
learning), 2) does not need training data collected offline (but
can still use if available), and 3) paves the way for learning
fully online on independent network nodes.

III. SYSTEM DESIGN OF THE SELF-SUPERVISED
INTRUSION DETECTION FRAMEWORK

As the main contribution of this paper, we propose the
novel SSID framework to enable fully online self-supervised
learning of the parameters of IDS with no need for human
intervention. This section now presents the system design
of this framework and states the preliminaries and some
assumptions. To this end, we first briefly present the detection
process within the SSID framework (shown in Figure [I)
and the general IDS structure. Next, we explain the learning
process performed in our framework.

A. Intrusion Detection Process

As shown in Figure E], within the SSID framework, there
are two main operations performed, intrusion detection and
learning. Intrusion detection is the main operation performed
by IDS and is not modified by SSID. That is, intrusion
detection (as an operation) is defined only by a particular

IDS algorithm used in SSID. Therefore, in this section, we
may only present the IDS with a general structure with
regard to the requirements of SSID. On the other hand, we
can say that our SSID framework ensures that IDS makes
accurate decisions by updating its parameters with online
self-supervised learning, and it performs intrusion detection
uninterruptedly and continuously.

We may note that regarding the communication (data trans-
fer) between intrusion detection and online self-supervised
learning processes in SSID, first, the parameters of IDS are
updated for detection during the initial learning and at the end
of each learning phase. In addition, the decisions made by
IDS are provided to use in any learning phase since the data
collection within both initial and online learning phases is per-
formed in a self-supervised fashion which enables automatic
labeling of the packet samples as benign or malicious.

The SSID framework does not consider a specific algorithm
for IDS or have strict requirements for it, except that it is based
on ML or some other function with learnable parameters and
has a certain range of inputs and outputs. In addition, although
the SSID framework can also be used with both anomaly
and signature based detection algorithms, the anomaly based
algorithms shall perform better as the real-time network traffic
contains only the normal “benign” traffic until an attack
occurs. Therefore, we now present the general structure of
IDS shown in Figure 2] that is taken into account during our
analysis.

Machine Learning based

2m __ | Intrusion Detection System |, y;

Traffic Metrics

. with W learnable parameters
Z; > (i.e. weights and biases)

Intruision Probability

Fig. 2. Overall structure of the IDS.

As shown in Figure [2] for each packet i (or bucket of pack-
ets), the IDS estimates the probability that packet ¢ is malicious
based on the provided traffic metrics. Accordingly, the input
of the IDS is the vector of M metrics that are observed (or
calculated) for the actual traffic packet i. This vector of M
observed metrics is denoted by x; = [z},...,2", ... xM],
and x; € [0,1]™. The output of the IDS, which is namely the
intrusion decision and denoted by y;, is the probability that
packet 4 is malicious and takes value in [0, 1].

The structure of IDS is comprised of an ML model (which
can also be considered a function with learnable parameters)
with W parameters. Therefore, the ML-based IDS is a learned
function that maps the metrics observed for the actual traffic
packet ¢ to the intrusion probability for that packet, i.e. f :

x; + f(z;) for f(x;) =y, so that f:[0,1]™ —[0,1].

B. Online Self-Supervised Learning

In parallel with attack detection, our SSID framework
provides online self-supervised learning of IDS parameters,

as shown on the upper process line in Figure [I] As seen in
that figure and Figure [3| which shows the learning process in
SSID, the online self-supervised learning process starts with
the initial learning phase (namely, / = 0) and continues with
successive online learning phases.

Since network traffic characteristics may vary with time and
substantially affect the IDS detection performance, it is crucial
to update the parameters of the IDS onlineconcurrently with
its real-time operation. The parameter updates performed by
online learning ensure that the IDS is a trustworthy detector,
by improving its performance and keeping it up-to-date with
regard to the most recent traffic characteristics. Online learning
also avoids having to collect and label large datasets for offline
training, and thus it saves both time and resources. On the
other hand, when ground-truth datasets are already available,
the IDS can also be pre-trained, and its performance may be
validated using traffic from other IoT networks.

In the remainder of this subsection, in order to clearly
present the SSID framework, we shall only explain the main
functionalities of both the initial and online learning phases
through the block diagram of Figure 3] Then, Section
presents the detailed comprehensive methodology that includes
details regarding all the blocks in Figure [3]

1) Initial Learning: The initial learning phase in SSID can
be considered a special case of the proposed methodology of
self-supervised learning, which allows IDS to be used from its
initial setup and updates the parameters of the IDS frequently
achieving the desired performance gradually and quickly.

In detail, as shown in the top block of Figure [3] during the
initial learning phase in SSID, the parameters of the IDS are
updated (using any desired algorithm) for each packet that is
selected for learning via our self-supervised packet selection
methodology. Whether the parameters of the IDS are updated
or not, SSID checks the trust based completion criterion of
the initial learning phase [= 0 aiming to complete this phase
as soon as the IDS is trained enough to make trustworthy
decisions. To this end, it first calculates the trustworthiness of
the IDS, namely the “trust coefficient” denoted by I" € [0, 1],
which indicates the confidence of SSID in any decision made
by the IDS. Since the IDS does not have any information
about the network traffic patterns yet, SSID cannot judge the
decisions of the IDS and starts the initial learning process with
I' = 0 meaning that there is no trust in the decisions of the
IDS.

Subsequently, SSID checks the trust criterion to complete
the initial learning phase [= 0 by measuring if SSID’s trust in
the IDS is greater than a threshold ©, is the minimum desired
trust level:

if I' > ©, complete initial learning and set [=1 (1)

Thus if I' > ©, the initial learning phase has been completed,
and the next packet will be considered for the first phase [= 1
of continuous on-line learning.

2) Online Learning: After the initial learning is completed,
the parameters of IDS are updated via an online learning phase
[> 1 when the trust of SSID in the IDS is unacceptably low.
As the lower block in Figure [3] shows, the parameters of the

INITIAL LEARNING

1
1 1
1 1
1 1
— —
: ¢ UPDATE i In‘tg’;;ﬁ?e‘gg isf]
A . L 1
: Self-Supervised [selected AD's | Check | satisfied I—1 1
Ly Packet PARAMETERS Completion . :
1 Selection else Criterion else Continue |
' —> »| Initial Learning ,
LTt T 1 1 =0 :
! '1=0 L .
1
: Arrival of :
. .
i
! Packet® vy~ e e e
: : : ONLINE LEARNING !
bmmm e = ' . .
1 . 1
' i Collect Packet if UI;I:)A,;I‘E > Cu(rjrsgfp}l)::; S; s '
» : . 7 >
t [Self-Supervised [selected Sfmpl?s “gotﬂllle | Check |satisfied "lp g AMETERS 1=1+1 :
> Packet carning batc Update o 1
! Selection Criterion 1 ontinue !
: clse —> ese »| Current Phase :
- 1=1 '
1 1
1 1

Fig. 3. Block diagram of the learning process in the SSID framework for online self-supervised learning of the parameters of IDS

IDS are updated for a collected batch of packets when the
trustworthiness of the IDS is not acceptable anymore. When
SSID is in the online learning phase ! > 1, each packet
1 selected by our self-supervised packet selection method is
collected into the batch of training packets, denoted by B'.

Then, SSID checks the trust-based criterion to update the
parameters of the IDS. Inversely with the initial learning phase,
SSID now updates the parameters of the IDS if I' < ©, at least
K packets are collected for learning (i.e. |B;| > K), and there
is no attack detected by the IDS:

1 i

if ' < © and |B'| > K and 5 > owi<y
j=i—I41

update parameters and set [=1+ 1

2

where I is the number of packets to calculate the average of
the intrusion decisions, v is the intrusion threshold, and K
is provided by the user considering properties of the network
and learning algorithm. Limit of minimum K packets is added
only to provide practical efficiency for training.

That is, SSID waits for a considerable decrease in the trust-
worthiness of the decisions of IDS to update the parameters
since I' is known to be already greater than © at the end of
the initial learning phase [= 0. In this way, the learning is
performed when it is essential.

On the other hand, if an intrusion is detected where the
average output of the IDS is greater than ~, SSID clears the
batch of collected packet samples, B':

1 d

if - Y v >, empty B 3)
j=i—1I

With this cleanup, SSID aims to prevent the IDS from learning

any false negative instances since false negative outputs are
very likely to occur just before an attack is detected.

IV. METHODOLOGY OF SELF-SUPERVISED LEARNING FOR
INTRUSION DETECTION

We now present our proposed methodology to train the
utilized IDS in a self-supervised fashion enabling the fully
online property of SSID. In other words, this section explains
the details of the learning process in SSID, which are shown as
subblocks in Figure 3] Recall that the learning process in SSID
is independent of the learning (parameter update) algorithm
and ML model used in the IDS; therefore, it can be used
with any learning algorithm and any ML model that learns
the normal network traffic.

A. Self-Supervised Packet Selection

As the first operation of the learning process in SSID, each
packet ¢ is decided to be used in learning the parameters of
the IDS. We now present the methodology to select packets,
which are observed during real-time detection, to be used in
an upcoming learning phase. The packet selection is executed
in a self-supervised manner that only considers the output of
the IDS together with SSID’s trust in it.

Let p; and p; respectively be the probability of selecting
packet ¢ to be used as a benign or malicious packet sample
in the training of IDS, and ¢; be the probability of rejecting
7 to be used in training. That is, we select the packet 7 as the
sample of a benign packet with probability p;” or that of an
attack packet with probability p;r to use it in training, or the
packet ¢ is not included in the training set with probability g;.
Also, recall that y; € [0, 1] is the output of IDS for packet i.

Since we assume that there are no packet labeling mecha-
nisms or labor to prepare packet data for learning, we select
each packet i based on the output of IDS (which is the
estimation of the probability of packet ¢ being malicious)
considering how trustworthy IDS is. Therefore, we shall also
define a trust coefficient I' to measure the trustworthiness of
IDS at any time based on the representativeness of the packet

samples that IDS learned until the end of the last learning
phase and the generalization ability of IDS from these samples.
Accordingly, we start by defining pj as

p;” = (trust in IDS) (est. prob. of packet i being malicious)
pi =Ty @)
We further define p;” similarly to pj':
p;, = (trust in IDS) (est. prob. of packet ¢ being normal)

pi =T (1—wi) Q)
Subsequently, since
Pl 4=, (©6)
the probability ¢; of not selecting the packet ¢ for training is:
% = 1- +p)
= 1-T. 7

Recall that SSID starts with I' = 0 since the IDS does not
have yet any information about the network traffic patterns
at the initial learning phase. That is, the output of the IDS is
calculated using the initially set parameter values (if available)
and will not be able to achieve accurate detection for the
particular traffic. In addition, for selecting the first packet, the
parameters of the IDS are updated for the first time using
p; =1, p =0, and ¢; = 0. Thus, SSID selects the first
packet to learn as a benign sample.

B. Trustworthiness of IDS

Now, we determine the trust coefficient I" for the IDS in the
SSID framework. Through this coefficient, we aim to include
both the effects of changes in the normal behavior of network
traffic over time and the generalization ability of the IDS into
the packet selection model for learning.

To this end, we first define the factor of “representative-
ness”, denoted by C.p, for the traffic packets that are learned
by the IDS. The representativeness factor C,., takes a value
in the range of [0, 1] and measures how much the packets used
for learning (during all of the past learning phases) represent
the total observed traffic. In addition, we define the factor of
“generalization ability”, denoted by Cjey,, of the IDS. The
generalization factor Cy.,, takes a value in the range of [0, 1]
and is calculated only at the end of each parameter update
since it is the only time when the parameters of the IDS are
updated. These two factors shall respectively be presented in
Section [V=Cl and Section [V-D}

Accordingly, in order to evaluate the trustworthiness of the
intrusion decisions, we determine the trust coefficient I" by
combining the representativeness of packets learned with the
generalization ability of the IDS simply as the multiplication
of Crep and Cyen:

T = Crep Cyen 8)

In this way, I' simultaneously measures how much the IDS
is able to learn and generalize from provided traffic packets
and how much these packets reflect actual traffic patterns.
That is, through this trust coefficient, we evaluate how much
information the IDS can generalize from the traffic packets
provided to make decisions for the upcoming traffic.

C. Representativeness of the Traffic that is Learned

In order to calculate the representativeness of the packet
traffic used during the earlier learning phases, we compare the
learned traffic with the total observed traffic through Kullback-
Leibler (KL)-Divergence [41[]. Therefore, there are two sets of
traffic packets for comparison, the packets used in the previous
learning phases up to and including [(where [is the latest
completed learning phase) and the normal packets that are
observed by IDS during continuous detection.

During this comparison, we assume that the packet traffic
consists of two main properties, inter-transmission time (71"
and the packet length (PL) since these properties can be
considered as the basis of traffic metrics, which are the inputs
of the IDS. We further assume that packet arrivals — any
sample collected from the network traffic — has a Poisson
distribution so that the inter-transmission time 77 is an
Exponentially-distributed random variable. The packet length
PL is also assumed to be an Exponentially-distributed random
variable because the header length is considerably larger than
the message length for the majority of IoT applications. In
addition, T'T" and PL are considered to be independent. On the
other hand, for particular applications, these assumptions and
the traffic model can be changed and the below methodology
can easily be adapted for the new traffic model with a new set
of assumptions.

Furthermore, let ST and SF'L respectively denote the sets
of the inter-transmission times and lengths of all packets
learned at the end of [, and ST7 and ST respectively denote
the same of all normal packets observed during continuous
detection. In addition, according to our assumptions, SlTT and
STT have exponential distributions with means of 1/); and
1/, while SF'L and ST also have exponential distributions
with means of 1/y; and 1/p,.

1) KL-Divergence for Inter-Transmission Times: For the
set of inter-transmission times, Dy (SIT||STT) is KL-
Divergence from S7T to SIT measuring the information
gain achieved if S77 would be used instead of S{T which
has been used during the learning phases of SSID. Note
that small KL-Divergence means low information gain, and
Dk (SIT||SIT) = 0 shows that ST and S/ provide the
same amount of information. Accordingly, using the definition
of KL-Divergence [41]], we first calculate Dy, (SIT||SET),
which can shortly be denoted by DLT | as

I e J(x;00)
Dih = [mf(zaAo)ZOQ(m)dI &)
;Ao
= Ef@n,) [109(]}((33;/\[)))]

Ao
= By [log(57) —2(h0 =)

where f(x;\,) and f(x; \;) denote the probability distribution

functions of SI7 and S/7 respectively with parameters A,

and);. This leads to the result of

/\o ()‘0 - >\l)

P v
2) KL-Divergence for Packet Lengths: Similarly with trans-

mission times, for the set of packet lengths, Dy 1, (STL||SPL)

D, = log((10)

is KL- Divergence from S/°F to SPF, which is shortly denoted
by DL, and is calculated as

< o J (s o) -
/_ S log(e d

Ef(a1p0) [ZOQ(MH

PL
DKL

(1)

o
= Ef(ac;,uo) [log(ﬁ) _m(:uo_,u/l)]
where f(z; u,) and f(x; 1;) denote the probability distribution
functions of SI’F and ST respectively with parameters /i,
and ;. This results in:

Mo (Mo _Ml)
DFL = jog(22) — 2 T2
KL g(m) Lo

12)

3) Representativeness Factor based on Normalized KL-
Divergence: For both transmission times and packet lengths,
we now obtained the KL-Divergence between the set of
observed packets and the set of packets learned; that is, we
measure the representativeness of the packets that have already
been used to train the IDS. However, the KL-Divergence
cannot directly be used as a representativeness factor because
of the following reasons: 1) It has no upper bound but the
representativeness factor C,., € [0,1]. 2) KL-Divergence
is decreasing function of the similarity between two sets
but we need an increasing function of that as the name
“representativeness” suggests. 3) This factor should be the
combination of DXL and DLEL.

Therefore, in order to obtain the representativeness factor,
we first normalize each of DXL and DEL as

DY = € PKE (14)

which solve the issues 1) and 2) stated above. Each of these
normalized divergence measures can also be written in terms
of only the traffic parameters:

oy (o—Ap)
PL _ log(32)— =51
DKL norm — € [Ro]
Al A1=2o0)
e } (15)
B
Similarly,
_ log(“") (ho—pp)
DKL norm = € [Ho }
1 _ (m—ro)
= |:u— e Ho :| (16)
Ho
TT PL
Then, we combine D3 _,. . and Dyf_, - into the
“representativeness factor” Ci.c;, as
TT PL
CT@P = ClDKL—nm’m + CQDKL—nm“m (17)

where ¢; < 1 and ¢ < 1 are positive constants that satisfy
c1+co = 1.

In order to weigh transmission times and packet lengths
equally, we take c; = co = 0.5. That is, we take their average:
Crep =

[DKL norm +DKL norm} (18)

We can rewrite Ci.p only in terms of the traffic parameters
using (I3)) and (16):
)\l _(A=2X0) M (o)
c,.epzi{/\—o e e | a9

D. Generalization Ability of IDS

As stated above, we consider the generalization ability of
the IDS as one of two factors that define the trustworthiness
of intrusion decisions. To this end, the aim of this subsection
is to determine the generalization ability of the IDS in simple
terms to make its computation as easy as possible using the
available measures during the execution of SSID. Accordingly,
we start with the basic definition of generalization [42]:

Generalization = Data + Knowledge

stating that the generalization depends on the “Data”, which is
denoted by A and refers to the adequacy of the packet samples
that are used for learning, and the “Knowledge”, which is
denoted by « and refers to the knowledge of the IDS obtained
from packets learned. Therefore, we define the generalization
factor Cger, as

Cyen =c3A+cak (20)

where c3 and ¢4 are positive constants such that c3,cqy < 1,
and C3 + Cq = 1

1) Data Adequacy (A): We evaluate the adequacy of the
packet samples that are used for learning with respect to the
number of learnable parameters in the IDS. Although there is
no hard rule for determining the adequacy of the learning data
(i.e., the number of training samples required) for a given ML
model, most studies have shown its relationship to the total
number of learnable parameters in the model and taken the
minimum number of required training samples as a multiple
of the number of parameters [43]].

Therefore, we first define the counterpart of A (namely the
inadequacy of data), denoted by A, as the ratio of the number
of learnable parameters in the IDS to the total number of
packet samples used for learning up to and including learning

phase [:
w

A= (1) 1)
o 1B
where Zi«:o | B¥| is the total number of packet samples that
are sequentially used to learn model parameters until the end
of learning phase . Clearly, A takes value in [0, 1]. While TV
is a constant number and | B!| > 1 for any learning phase (in
which a learning is performed), lim;_,.(A) = 0. In addition,
A =1 when Y4 _,|B*| < W.
We can then define the adequacy of learning data as

A=1—A= Pmm(zl;jzfll?”’l)} (22)

As a result (lim;_, o, (A) = 1), and as expected, the adequacy
of the aggregated data consisting of packet samples used in
the learning stages increases over time. Also, recall and note
that we already include the representativeness of these packet
samples directly in the trust coefficient of the IDS.

2) Knowledge (k): We consider knowledge to be the mea-
sure of the ML model’s expected performance for the upcom-
ing traffic packets. Subsequently, we measure the knowledge
(i.e. expected performance) of the IDS based on its perfor-
mance on the packet samples used for learning and on the
online available validation data.

To this end, in this paper, we consider the worst-case
scenario when there is no validation data available. Let (1)
denote the empirical error measured at the end of learning
phase [on both packet samples learned and validation data
(if available), such that 0 < £(I) < 1. We then define the
knowledge ~ as the counterpart of the exponentially weighted
moving average of empirical errors for all learning phases up
to and including the /-th phase:

s

k=0

|_\

l k+l) g) (23)

where the multiplier is set as 1/2 to keep the value of x in
[0, 1]. That is, if the empirical training error decreases with the
successive learning phases (i.e. £(1) is the decreasing function
of 1), the knowledge of the IDS increases converging to its
maximum.

In practice, at the end of each learning phase [, x can easily
be updated using only its previous value and the empirical
error £(1) as

(24)

3) Generalization Factor: We now easily calculate the
generalization factor Cy., combining the “data adequacy”
A (22) and “knowledge” x (23) using the definition of the
generalization factor (20):

qun = (25)

[zi: %,(z KD g (1)

k=0

c3 [1 — min(

)]+
Sheo BRI

We particularly set c3 = ¢4 = 0.5 representing that the data
and knowledge are equally important for generalization:

Ogen = (26)
min(W/ Y5 |BE 1) + Y (1/2) 0D £(k)
2
V. RESULTS

We now evaluate the performance of SSID framework for
two different intrusion detection tasks to identify malicious
traffic packets and compromised devices.

A. IDS Used in the SSID Framework

We first present the structure of IDS that we used within
the SSID framework during the performance evaluation. This
particular IDS structure is displayed in Figure] which is
mainly comprised of an ML model and a decision maker com-
ponent. The input of this IDS is the vector of M network traffic

metrics, xz; = [z, ..., 2" xM], and the output, y; is a

PRI R 0x)

decision indicating the probability of intrusion corresponding
to current traffic.

&;
z} —> . . >
. Machine Learning o
om based. _ i | Decision i
L Auto-Associative Y Maker
M Memory N
T, —> >
with W learnable parameters
(i.e. weights and biases)
ha'd ha'ed

Observed metrics
for the actual
traffic

Expected metrics
for benign traffic

Probability of
intrusion

Fig. 4. Particular structure of IDS used within the SSID framework during
performance evaluation

An IDS structure that can learn only from normal traffic
when no attack traffic is available in the network may provide
higher performance under self-supervised learning. Therefore,
in the IDS structure shown in Figure @] the ML model is used
to create an Auto-Associative Memory (AAM) that is used
to reconstruct benign traffic metrics — which are the expected
metrics according to the norm of the actual traffic learned
by the AAM - from observed metrics, which may be the
indicators of malicious traffic. The vector of expected metrics,
which is the output of ML-based AAM, for packet ¢ is denoted
by #; = [#},...,2™,...,#M]. In order words, the ML-based
AAM is a learned function that maps the noisy or disordered
metrics to the normal metrics, i.e. foam : i — foam(z;) for
faam (i) = &, s0 that foam : [0, 1M — [0, 1]

Within this IDS, based on the output of ML-based AAM,
the decision maker measures the deviation of the actual metrics
x; from the expected metrics &;. The main criterion for this
decision maker is that it requires no human intervention or
parameter settings based on offline data.

Furthermore, since we use an anomaly-based algorithm that
learns only the benign traffic, we take the learning error as the
mean of estimated attack probabilities for packets in learning
batch B':

|B'|

\Bl Zyz

We should note that since the purpose of this section is to
evaluate the impact of the SSID framework on the performance
of an IDS, we use well-known and state-of-the-art methods
for the specific implementation of the IDS as they are. These
methods are mainly based on two ML models, Deep Random
Neural Network (DRNN) and Multi-Layer Perceptron (MLP).

27)

1) Traffic Metrics and Decision Maker: For malicious
traffic detection, we implement the metrics and the simple
decision maker of the IDS developed in [44]. Accordingly,
in order to capture the signatures of Botnet attacks especially
Mirai, as the inputs of AAM, we use M = 3 normalized met-
rics that measure the total size and average inter-transmission
times of the last 500 packets and the number of packets in
the last 100 seconds. In addition, the output of the IDS is
calculated as

M
vi= g7 D o =, (28)
m=1

For compromised device identification, we implement
CDIS developed in [§] for each IP address in the considered
network. This CDIS works in time windows of length 10
seconds. In each time window, there are M = 6 normalized
metrics as the inputs of the CDIS implemented for IP address
1, which measure the average size and number of packets
received from a single source, maximum size and number of
packets received from any single source, and total size and
number of packets transmitted in this window. Then, for each
window, the output of CIDS is calculated as

max

m.__ gm
mE{l,...,JV[}(|$Z i D

Yi = (29)

2) AAM Using the Deep Random Neural Network: The
IDS architecture shown in Figure E] uses the DRNN [45],
[46], which is an extension of the RNN [47], [48] with
dense feedback loops between clustered neuronal somas, and
an overall feed-forward structure between layers of dense
clusters as the ML model. Due to its auto-associative learming
we call it the Auto-Associative DRNN (AADRNN) based
AAM. Earlier research has shown that a DRNN-based IDS
has a lightweight architecture and offers high accuracy when
used with unsupervised auto-assiciative training with normal
(benign) traffic [7], (8], [44], [49]-[51]. The DRNN-based
IDS was also evaluated with offline [44], incremental [7]
and sequential [8]] learning to detect malicious traffic and
compromised devices during Botnet attacks. G-Networks [52],
which generalize the RNN, and the simple RNN itself were
also used with offline learning to detect zero-day [51] and
SYN DoS [53] attacks.

In the DRNN-based IDS, we use a DRNN model consists of
M layers. The hidden layers (the first M — 1 layers) contains
M neural clusters, the output layer is comprised of M linear
neurons. Each DRNN cluster has the following activation
function, which is unique to DRNN model:

pr+AT)+ A" +A

Ch) = T A (30)
pr+AH)+ A" +A\" A+
(2\~ + A) A A

where A is the input of the given cluster, p is the probability
that any neuron received trigger transmits a trigger to some
other neuron, and *™ and A\~ are respectively the rates of
external Poisson flows of excitatory and inhibitory input spikes
to any neuron.

At any learning stage [, we perform learning using the
packet samples collected in B;. For the particular structure
of IDS, during the initial learning stage of SSID (i.e. [= 0),
we create an AAM from the DRNN model trained via learning
algorithm, which has been developed in [45], [46] and used for
IDS in [44]. During the online learning stage of SSID, we use
the specifically designed algorithms for each of the AADRNN-
based IDS and CDIS. These are respectively incremental
learning algorithm for IDS presented in [7] and sequential
learning algorithm for CDIS presented in [8].

3) AAM using Multi-Layer Perceptron: During the perfor-
mance evaluation of the SSID framework, we also use MLP,
which is one of the most popular feed-forward neural networks
used for various tasks such as signal processing, forecasting,
anomaly detection, etc. As also reviewed in Section [[I} various
works [16], [[19], [20], [27] used MLP to develop different IDS
methods.

Similar to the DRNN, the MLP model that we use is also
comprised of M layers with M neurons each. Each neuron
has sigmoid activation function as

1
C(A) = 11 e A

where A is an input to the neural activation.

In both the initial and online learning stages, the parameters
of the MLP are updated using the state-of-the-art optimizer
Adam [54]. In each online learning phase, incremental learning
is applied by starting parameter optimization from the con-
nection weight values already in use at the beginning of this
phase.

€1y

B. Parameter Settings for SSID

We set the parameters of SSID as follows: © = 0.95, I =
10, K = 100, and v = 0.25. That is, SSID aims to keep
the trust in the IDS above 0.95 while it considers a packet as
malicious if the output of the IDS is above 0.25. In addition,
we want to update parameters using at least K = 100 packets
for computational efficiency.

C. Performance Evaluation for Malicious Traffic Detection

We first evaluate the performance of SSID for malicious
traffic detection during Mirai Botnet attack. To this end, we
use the well-known Kitsune dataset [55]], [[56]], which contains
764, 137 packet transmissions of both normal and attack traffic
cover a consecutive time period of roughly 7137 seconds.

Figure [5] displays the ROC curve, where the x-axis of this
figure is plotted in logarithmic scale. We see that AADRNN-
based IDS trained under our novel SSID framework achieves
significantly high TPR above 0.995 even for very low FPR
about 1075,

In more detail, in Figure [6] we present the predictions
and I' of SSID with respect to time. This figure reveals an
important fact that while the IDS is completely indecisive at
the beginning, SSID framework enables it to learn the normal
traffic very quickly. As a result, SSID makes significantly
low false alarms although it learns — fully online — during
real-time operation based only on its own decision using

ROC Curve

0.999

0.998

TPR

0.997
0.996

0.995 .
106 105 10 107 1072 107! 10°
FPR

Fig. 5. ROC curve for the performance of AADRNN-based IDS under the
SSID framework for malicious traffic detection

no external (offline collected) dataset. We also see that T’
accurately reflects the trustworthiness of decisions made by
AADRNN. In addition, although I' slightly decreases as a
result of random packet selection, especially after attack starts,
the parameters of AADRNN are not updated by SSID as the
traffic is detected as malicious.

1

g
©

o
)

USRI U Y

o
'S

—Ground Truth
—SSID
— T of SSID

o
o

Probability of Intrusion (y;)

0 1000 2000 3000 4000 5000 6000 7000
Time (secs)

o

Fig. 6. Predictions of SSID and the value of trust coefficient I" with respect
to time

1) Comparison with Incremental and Offline Learning:
We further compare the performance of AADRNN under
SSID with the performance of AADRNN with incremental
and offline learning. All methods with offline learning are
trained using the first 83,000 benign traffic packets while the
AADRNN with incremental learning is trained periodically for
the window of 750 packets using AADRNN’s own decision,
where the first 750 packets received are assumed to be normal
packets during the cold-start of the network.

Figure displays the performancs of SSID and the
AADRNN, with incremental and offline learning. The re-
sults in this figure first reveal that the fulyy online trained
AADRNN using the SSID framework achieves competitive
results with the AADRNN which is trained offline using
approximately 83,000 packets. We also see that the SSID
significantly outperforms the AADRNN with incremental
learning with respect to all performance metrics. Also note
that the SSID learned from a total of 4,161 packets while
also conducting real-time attack detection.

In contrast with offline and incremental learning, SSID
framework assumes only that the first packet is known to be

10

100 - g4 298]

.
g0 S 00.77 2282 99.79

99.5

99 -

Performance

98.5

EmSSID
B AADRNN with Offline Learning 98.19
[JAADRNN with Incremental Learning

I} I E— I}

98

Accuracy TPR TNR

Fig. 7. Performance comparison between the AADRNN under SSID and the
AADRNN with incremental and offline learning

benign so the duration of cold-start equals the transmission
of a single traffic packet. That is, using no offline dataset
or requiring no cold-start, the SSID framework is able train
an ML-based IDS to achieve considerably high performance
which is highly competitive against the ML models trained on
significantly large dataset.

2) A Different ML Model — MLP — under the SSID Frame-
work: In order to further analyze the impact of the proposed
SSID framework on the performance of a different ML model,
we evaluate the performance of the well-known MLP under the
SSID framework (called SSID-MLP) and compare it with the
performance of MLP with offline and incremental learning,
respectively. The results of this performance evaluation is
presented in Figure [§]

99.98 100

99.82
99.66 I

Fig. 8. Performance comparison between the SSID-MLP and the MLP with
incremental and offline learning

100 -

99.83 99.82

99.81 9979
99.5 -
99

99.69
. B SSID-MLP
EEMLP with Offline Learning
EWMLP with Incremental Learning|
98 [__§

8.5~
Accuracy

Performance

Figure [8| shows that SSID-MLP achieves slightly higher
Accuracy and TPR than MLP with offline learning, although
MLP with offline learning raises no false alarms at all (i.e.
with 100% TNR). Moreover, we see that SSID-MLP signif-
icantly outperforms the MLP model that is also trained via
incremental learning periodically for every 750 packets based
on its own output.

3) Comparison of Different ML Models: We further com-
pare the performance of AADRNN under SSID (called SSID-
AADRNN for clarity) and SSID-MLP with those of some
well-known ML models, including KNN and Lasso with
offline learning. Figure [0 displays the performance of all

11

T
100
100 - 99.98 99.98]
99.94
99.9 - |
5}
O
3
99.8 - |
:
S
)
A, 99.7 i
99.6 - EESSID-AADRNN BEMLP with Offline Learning 7
B SSID-MLP KNN with Offline Learning
BB AADRNN with Offline Learning @ Lasso with Offline Learnin
99 5 [] []] | T | [] [] [] [T] [[—] [] []
Accuracy TPR TNR
Fig. 9. Performance comparison between the ML models under the SSID framework and those with offline learning
compared models with respect to Accuracy, TPR and TNR. Mirai SYN DoS
The results in this figure show that SSID-MLP achieves 100 100[— —
the second-best performance with respect to all performance -
metrics. In addition, both SSID-MLP and SSID-AADRNN & 8° 80
achieve highly competitive results with the offline trained ML § 60 : 60
models, while the SSID framework completely eliminates the g v i
need for data collection and labeling. § 40 40
<
@ 20 20
D. Performance Evaluation for Compromised Device ldentifi-
cation 0 0 :
SSID-CDIS CDIS SSID-CDIS CDIS

We now evaluate the performance of CDIS under the
SSID framework, in short SSID-CDIS, on six (6) different
attacks, from the two (2) distinct datasets Kitsune [56] and
Bot-IoT . For each dataset, the performance of SSID-CDIS
is compared with the original CDIS technique with sequential
learning. Using the same methods as in [8]], compromised
device identification is performed for a 10 seconds long
time window. The performance is evlaued using the Balanced
Accuracy [58].

Figure [I0] displays the performance of SSID-CDIS and its
comparison with CDIS to identify compromised IP addresses,
for each of the Mirai Botnet and SYN DoS attacks in the
Kitsune dataset. Specifically it shows that while the SSID
framework provides the same performance as sequential learn-
ing to identify compromised devices during a Mirai Botnet
attack, it significantly improves the overall performance of
CDIS during a SYN DoS attack. The box plot on the right
of Figure shows that SSID-CDIS achieves 100% median
balanced accuracy when there is only one outlier IP address
with around 85% accuracy. On the other hand, the sequentially

Fig. 10. Performance comparison of the CDIS trained under the SSID
framework with that under sequential learning on Kitsune dataset

trained CDIS has two outlier IP addresses with performances
of 50% and 1%, respectively.

Figure [[1] exhibits the performance of the SSID-CDIS
system, and compares it with CDIS, to identify compromised
IP addresses during DDoS and DoS attacks, using different
communication protocols available in the Bot-IoT dataset.
These results show that the SSID framework achieves higher
identification performance, as compared to the use of CDIS
sequential learning for the majority of attack types.

Starting with the box plot displayed at the far left of this
figure, we observe the following results:

1) For the DDoS HTTP attack, the overall performance
is almost the same for SSID and CDIS with sequen-
tial learning. However, as expected, performance varies
slightly for individual IP addresses.

DDoS HTTP DoS HTTP DDoS TCP DDoS UDP
100/ -+ - - — =
: H H ' Q
: . +
80F | . L
> + H
2)
1 ; T
pu}] '
8 60 ' i
£ H
8 Il
L
2 a0
<
[
0
20
0 . . .
SSID-CDIS CDIS SSID-CDIS ~ CDIS SSID-CDIS ~ CDIS SSID-CDIS ~ CDIS
Fig. 11. Performance comparison of the CDIS trained under the SSID

framework with that under sequential learning on Bot-IoT dataset

2) For the DoS HTTP attack, using SSID improved the
performance by 2% on average with a minimum of 75%
balanced accuracy.

3) For the DDoS TCP attack, SSID significantly im-
proved the median accuracy by 18%, where SSID-CDIS
achieves 91% median accuracy. In addition, while the
balance accuracy of CDIS with sequential learning is
below 80% (with a minimum of 49%) for 9 out of 13
unique IP addresses, the balance accuracy of SSID-CDIS
is equal to 79% for only 2 IP addresses and above 80%
for the rest.

4) Similar to the results for the DDoS TCP attack, SSID
was seen to provide significant performance improve-
ment to identify compromised devices during a DDoS
UDP attack. The median accuracy increased by 11%,
achieving above 88% balanced accuracy for all IP ad-
dresses.

VI. CONCLUSIONS AND FURTHER WORK

This paper has proposed a novel Self-Supervised Intrusion
Detection (SSID) framework which is designed to train any
given IDS (whose parameters are calculated using the network
traffic) fully online with no need for human intervention
or prior offline training. The SSID framework comprises
two successive learning stages, namely initial learning and
online learning. Initial learning aims to quickly adapt the IDS
parameters to the network where the IDS is deployed. Online
learning aims to update the parameters whenever it is required
to ensure high detection accuracy of the IDS.

During the real-time operation of the IDS, in parallel to
detection, the SSID framework performs the following main
tasks:

o It continually estimates the trustworthiness of intrusion
decisions to identify normal and malicious traffic. It also
measures the ability of the IDS to learn and generalize
from data provided by SSID and the extent to which
this data can represent the current online network traffic
patterns.

o In order to provide training data for the IDS, the SSID
framework selects and labels network traffic packets in
a self-supervised manner based only on the decisions

of IDS, and on the trust of SSID with regard to those
decisions.

o The SSID framework determines when the IDS parame-
ters need to be updated, based on the trustworthiness of
the IDS, the selected training packets, and the latest state
of network security.

Thus the proposed SSID framework eliminates the need for
offline data collection, it prevents human errors in data labeling
avoiding labor and computational costs for model training
and data collection through experiments. Its most important
advantage is in terms of performance, and it enables IDS to
easily adapt to the time varying characteristics of the network
traffic.

We also evaluated the performance of the SSID framework
for two tasks: malicious traffic detection and compromised
device identification to enhance the security of an IoT net-
work. For malicious traffic detection, two different ML mod-
els, DRNN and MLP, have been deployed with the SSID
framework and tested on the Kitsune dataset. The results we
obtain reveal that the ML models trained under the SSID
framework without offline training also achieve considerably
high performance compared to the same models with offline
and incremental learning.

For compromised device identification, the performance of
the state-of-the-art CDIS has been tested under sequential
learning and the SSID framework on data from six (6) dif-
ferent cyberattacks provided by the two publically available
Kitsune and Bot-IoT datasets. The results show that the use
of SSID significantly improves the performance of CDIS for
the majority of cases considered.

Future work will evaluate the use of SSID for adapting a
pre-trained IDS for use across different networks whose traffic
has not be learned a priori, which seems to be a promising
approach for fast, self-supervised, and successful adaptation
of the IDS parameters of various networks. It would also be
interesting to examine security assurance methods targeting
distributed systems that combine the SSID framework with
Federated Learning and attack prevention or mitigation al-
gorithms. It seems that a successful integration of the SSID
framework with Federated Learning may provide secure, dis-
tributed and self-supervised online learning for collaborative
systems.

REFERENCES

[1] C. Douligeris and A. Mitrokotsa, “DDoS attacks and defense mech-
anisms: classification and state-of-the-art,” Computer networks, no. 5,
pp. 643-666, 2004.

[2] D. Goodin, “100,000-strong Botnet built on router 0-day could
strike at any time,” Ars Technica, December 2017. [Online].
Available: https://arstechnica.com/information- technology/2017/12/
100000- strong- botnet- built-on-router-0-day-could- strike- at-any-time/|

[3] Imperva, “2022 Imperva Bad Bot Report,” p. 1-37, 2022. [Online].
Available: https://www.imperva.com/resources/resource-library/reports/
bad-bot-report/

[4] B. Tushir, H. Sehgal, R. Nair, B. Dezfouli, and Y. Liu, “The impact
of dos attacks onresource-constrained iot devices: A study on the mirai
attack,” arXiv preprint arXiv:2104.09041, 2021.

[5] Cisco, Cisco Annual Internet Report (2018-2023), Mar. 2020.
[Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/
executive-perspectives/annual- internet-report/white-paper-c11-741490.
html

https://arstechnica.com/information-technology/2017/12/100000-strong-botnet-built-on-router-0-day-could-strike-at-any-time/
https://arstechnica.com/information-technology/2017/12/100000-strong-botnet-built-on-router-0-day-could-strike-at-any-time/
https://www.imperva.com/resources/resource-library/reports/bad-bot-report/
https://www.imperva.com/resources/resource-library/reports/bad-bot-report/
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

H. Liu and B. Lang, “Machine learning and deep learning methods for
intrusion detection systems: A survey,” applied sciences, vol. 9, no. 20,
p. 4396, 2019.

M. Nakip and E. Gelenbe, “Botnet attack detection with incremental
online learning,” in Security in Computer and Information Sciences:
Second International Symposium, EuroCybersec 2021, Nice, France,
October 25-26, 2021, Revised Selected Papers. Springer, 2022, pp.
51-60.

E. Gelenbe and M. Nakip, “Traffic based sequential learning during
botnet attacks to identify compromised IoT devices,” IEEE Access,
vol. 10, pp. 126 536-126 549, 2022.

H. M. Song and H. K. Kim, “Self-supervised anomaly detection for in-
vehicle network using noised pseudo normal data,” IEEE Transactions
on Vehicular Technology, vol. 70, no. 2, pp. 1098-1108, 2021.

Z. Wang, Z. Li, J. Wang, and D. Li, “Network intrusion detection
model based on improved byol self-supervised learning,” Security and
Communication Networks, vol. 2021, pp. 1-23, 2021.

X. Zhang, J. Mu, X. Zhang, H. Liu, L. Zong, and Y. Li, “Deep anomaly
detection with self-supervised learning and adversarial training,” Pattern
Recognition, vol. 121, p. 108234, 2022.

H. Kye, M. Kim, and M. Kwon, “Hierarchical detection of network
anomalies: A self-supervised learning approach,” IEEE Signal Process-
ing Letters, vol. 29, pp. 1908-1912, 2022.

E. Caville, W. W. Lo, S. Layeghy, and M. Portmann, “Anomal-e: A self-
supervised network intrusion detection system based on graph neural
networks,” Knowledge-Based Systems, vol. 258, p. 110030, 2022.

M. Abououf, R. Mizouni, S. Singh, H. Otrok, and E. Damiani, “Self-
supervised online and lightweight anomaly and event detection for iot
devices,” IEEE Internet of Things Journal, vol. 9, no. 24, pp. 25285-
25299, 2022.

W. Wang, S. Jian, Y. Tan, Q. Wu, and C. Huang, “Robust unsuper-
vised network intrusion detection with self-supervised masked context
reconstruction,” Computers & Security, vol. 128, p. 103131, 2023.

T. A. Tuan, H. V. Long, R. Kumar, I. Priyadarshini, N. T. K. Son et al.,
“Performance evaluation of botnet ddos attack detection using machine
learning,” Evolutionary Intelligence, pp. 1-12, 2019.

Z. Shao, S. Yuan, and Y. Wang, “Adaptive online learning for IoT botnet
detection,” Information Sciences, vol. 574, pp. 84-95, 2021.

M. Shafiq, Z. Tian, A. K. Bashir, X. Du, and M. Guizani, “Corrauc: A
malicious bot-iot traffic detection method in IoT network using machine-
learning techniques,” IEEE Internet of Things Journal, vol. 8, no. 5, pp.
3242-3254, 2021.

R. Doshi, N. Apthorpe, and N. Feamster, “Machine learning ddos
detection for consumer internet of things devices,” in 2018 IEEE Security
and Privacy Workshops (SPW). 1EEE, 2018, pp. 29-35.

I. Letteri, M. Del Rosso, P. Caianiello, and D. Cassioli, “Performance
of botnet detection by neural networks in software-defined networks,”
in ITASEC, 2018.

M. Banerjee and S. Samantaray, “Network traffic analysis based IoT
botnet detection using honeynet data applying classification techniques,”
International Journal of Computer Science and Information Security
(IJCSIS), vol. 17, no. 8, 2019.

C. D. McDermott, F. Majdani, and A. V. Petrovski, “Botnet detection
in the Internet of Things using deep learning approaches,” in 2018
international joint conference on neural networks (IJCNN). 1EEE,
2018, pp. 1-8.

C. Tzagkarakis, N. Petroulakis, and S. Ioannidis, “Botnet attack detec-
tion at the IoT edge based on sparse representation,” in 2019 Global
IoT Summit (GloTS). 1EEE, 2019, pp. 1-6.

Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Breiten-
bacher, and Y. Elovici, “N-baiot—network-based detection of IoT botnet
attacks using deep autoencoders,” IEEE Pervasive Computing, vol. 17,
no. 3, pp. 12-22, 2018.

C. S. Htwe, Y. M. Thant, and M. M. S. Thwin, “Botnets attack detection
using machine learning approach for IoT environment,” in Journal of
Physics: Conference Series, vol. 1646, no. 1. IOP Publishing, 2020, p.
012101.

S. Sriram, R. Vinayakumar, M. Alazab, and K. Soman, “Network flow
based IoT botnet attack detection using deep learning,” in /EEE INFO-
COM 2020-IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS). IEEE, 2020, pp. 189-194.

Y. N. Soe, Y. Feng, P. I. Santosa, R. Hartanto, and K. Sakurai, “Machine
learning-based IoT-botnet attack detection with sequential architecture,”
Sensors, vol. 20, no. 16, p. 4372, 2020.

G. D. L. T. Parra, P. Rad, K.-K. R. Choo, and N. Beebe, “Detecting
Internet of Things attacks using distributed deep learning,” Journal of
Network and Computer Applications, vol. 163, p. 102662, 2020.

[29]

(30]

(31]

(32]

[33]

[34]

[35]

(36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

J. Liu, S. Liu, and S. Zhang, “Detection of IoT botnet based on deep
learning,” in 2019 Chinese Control Conference (CCC). IEEE, 2019,
pp. 8381-8385.
A. Kumar and T. J. Lim, “Early detection of mirai-like iot bots in large-
scale networks through sub-sampled packet traffic analysis,” in Future
of Information and Communication Conference. Springer, 2019, pp.
847-867.
M. Chatterjee, A. S. Namin, and P. Datta, “Evidence fusion for malicious
bot detection in iot,” in 2018 IEEE International Conference on Big Data
(Big Data), 2018, pp. 4545-4548.
T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan, and
A.-R. Sadeghi, “Diot: A federated self-learning anomaly detection sys-
tem for iot,” in 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS), 2019, pp. 756-767.
N. V. Abhishek, T. J. Lim, B. Sikdar, and A. Tandon, “An intrusion
detection system for detecting compromised gateways in clustered iot
networks,” in 2018 IEEE International Workshop Technical Committee
on Communications Quality and Reliability (COR). 1EEE, 2018, pp.
1-6.
M. Taneja, “An analytics framework to detect compromised iot devices
using mobility behavior,” in 2013 International Conference on ICT
Convergence (ICTC), 2013, pp. 38-43.
A. O. Prokofiev, Y. S. Smirnova, and V. A. Surov, “A method to
detect internet of things botnets,” in 2018 IEEE Conference of Russian
Young Researchers in Electrical and Electronic Engineering (EICon-
Rus). 1EEE, 2018, pp. 105-108.
T. N. Nguyen, Q.-D. Ngo, H.-T. Nguyen, and G. L. Nguyen, “An
advanced computing approach for iot-botnet detection in industrial
internet of things,” IEEE Transactions on Industrial Informatics, vol. 18,
no. 11, pp. 8298-8306, 2022.
A. Hristov and R. Trifonov, “A model for identification of compromised
devices as a result of cyberattack on iot devices,” in 2021 International
Conference on Information Technologies (InfoTech), 2021, pp. 1-4.
T. Trajanovski and N. Zhang, “An automated and comprehensive frame-
work for iot botnet detection and analysis (iot-bda),” IEEE Access, vol. 9,
pp. 124360-124 383, 2021.
H. Bahsi, S. Nomm, and F. B. La Torre, “Dimensionality reduction for
machine learning based iot botnet detection,” in 2018 15th International
Conference on Control, Automation, Robotics and Vision (ICARCV),
2018, pp. 1857-1862.
J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya,
C. Doersch, B. Avila Pires, Z. Guo, M. Gheshlaghi Azar et al.,
“Bootstrap your own latent-a new approach to self-supervised learning,”
Advances in neural information processing systems, vol. 33, pp. 21 271—
21284, 2020.
S. Kullback and R. A. Leibler, “On information and sufficiency,” The
annals of mathematical statistics, vol. 22, no. 1, pp. 79-86, 1951.
O. Bousquet, S. Boucheron, and G. Lugosi, “Introduction to statistical
learning theory,” Advanced Lectures on Machine Learning: ML Summer
Schools 2003, Canberra, Australia, February 2-14, 2003, Tiibingen,
Germany, August 4-16, 2003, Revised Lectures, pp. 169-207, 2004.
A. Alwosheel, S. van Cranenburgh, and C. G. Chorus, “Is your dataset
big enough? sample size requirements when using artificial neural
networks for discrete choice analysis,” Journal of choice modelling,
vol. 28, pp. 167-182, 2018.
M. Nakip and E. Gelenbe, “Mirai botnet attack detection with auto-
associative dense random neural network,” in 2021 IEEE Global Com-
munications Conference (GLOBECOM). IEEE, 2021, pp. 01-06.
E. Gelenbe and Y. Yin, “Deep learning with random neural networks:
1,” in 2016 International Joint Conference on Neural Networks (IJCNN),
2016, pp. 1633-1638.
E. Gelenbe and Y. Yin, “Deep learning with dense random neural net-
works: II,” in International Conference on Man—Machine Interactions.
Springer, 2017, pp. 3-18.
E. Gelenbe, “Random neural networks with negative and positive signals
and product form solution,” Neural Computation, vol. 1, no. 4, pp. 502—
510, 1989.

, “Learning in the recurrent random neural network,”
Computation, vol. 5, no. 1, pp. 154-164, 1993.
O. Brun et al., “Deep learning with dense random neural networks
for detecting attacks against IoT-connected home environments: I,” in
International ISCIS Cyber-Security Workshop. Springer, Cham, 2018,
pp. 79-89.
O. Brun, Y. Yin, and E. Gelenbe, “Deep learning with dense random
neural network for detecting attacks against iot-connected home envi-
ronments: II,” Procedia Computer Science, vol. 134, pp. 458463, 2018.

Neural

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

E. Gelenbe and M. Nakip, “G-networks can detect different types
of cyberattacks,” in 2022 30th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS). IEEE, 2022, pp. 9-16.

E. Gelenbe, “G-networks: a unifying model for neural and queueing
networks,” Annals of Operations Research, vol. 48, no. 5, pp. 433—461,
1994.

S. Evmorfos et al., “Neural network architectures for the detection of
syn flood attacks in IoT systems,” in Proceedings of the 13th ACM
International Conference on PErvasive Technologies Related to Assistive
Environments, 2020, pp. 1-4.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An
ensemble of autoencoders for online network intrusion detection,” in
The Network and Distributed System Security Symposium (NDSS) 2018,
2018.

“Kitsune Network Attack Dataset,” August 2020. [Online]. Available:
https://www.kaggle.com/ymirsky/network-attack-dataset-kitsune

N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards
the development of realistic botnet dataset in the internet of things
for network forensic analytics: Bot-IoT dataset,” Future Generation
Computer Systems, vol. 100, pp. 779-796, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X 18327687
K. H. Brodersen, C. S. Ong, K. E. Stephan, and J. M. Buhmann,
“The balanced accuracy and its posterior distribution,” in 2010 20th
international conference on pattern recognition. 1EEE, 2010, pp. 3121-
3124.

https://www.kaggle.com/ymirsky/network-attack-dataset-kitsune
https://www.sciencedirect.com/science/article/pii/S0167739X18327687

	Introduction
	Related Work
	DDoS Botnet Attack Detection
	Compromised Device Identification
	Self-Supervised Learning for Intrusion Detection

	System Design of the Self-Supervised Intrusion Detection Framework
	Intrusion Detection Process
	Online Self-Supervised Learning
	Initial Learning
	Online Learning

	Methodology of Self-Supervised Learning for Intrusion Detection
	Self-Supervised Packet Selection
	Trustworthiness of IDS
	Representativeness of the Traffic that is Learned
	KL-Divergence for Inter-Transmission Times
	KL-Divergence for Packet Lengths
	Representativeness Factor based on Normalized KL-Divergence

	Generalization Ability of IDS
	Data Adequacy ()
	Knowledge ()
	Generalization Factor

	Results
	IDS Used in the SSID Framework
	Traffic Metrics and Decision Maker
	AAM Using the Deep Random Neural Network
	AAM using Multi-Layer Perceptron

	Parameter Settings for SSID
	Performance Evaluation for Malicious Traffic Detection
	Comparison with Incremental and Offline Learning
	A Different ML Model – MLP – under the SSID Framework
	Comparison of Different ML Models

	Performance Evaluation for Compromised Device Identification

	Conclusions and Further Work
	References

