
Citation: Gelenbe, Erol Title. Journal

Not Specified 2024, 1, 0.

https://doi.org/

Received:

Revised:

Accepted:

Published:

Copyright: © 2025 by the authors.

Submitted to Journal Not Specified

for possible open access publication

under the terms and conditions

of the Creative Commons Attri-

bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Minimizing Delay and Power Consumption at the Edge
Erol Gelenbe1,2,3∗ 0000-0001-9688-2201

1 Institute of Theoretical & Applied Informatics, Polish Academy of Sciences (IITiS-PAN), 44100 Gliwice PL
2 Université Côte d’Azur CNRS I3S, France
3 Dept. of Engineering, King’s College London, UK
* Correspondence: seg@iitis.pl

Abstract: Edge computing systems must offer low latency, at low cost and with limited power 1

consumption, for sensors and new applications, including the IoT, smart vehicles, smart homes, and 2

6G. Thus, substantial research has been conducted to identify optimum task allocation schemes in 3

this context, using non-linear optimization, machine learning and market-based algorithms. Prior 4

work mainly focuses on two methodologies: (i) formulating non-linear optimizations that lead to 5

NP-hard problems, which are processed via heuristics, and (ii) using AI-based formulations such 6

as Reinforcement Learning that are then tested with simulations. These prior approaches have 7

two shortcomings: (a) there is no guarantee that optimum solutions are achieved, and (b) they do 8

not provide an explicit formula for the fraction of tasks that are allocated to the different servers 9

to achieve a specified optimum. This paper offers a radically different and mathematically based 10

principled method that explicitly computes the optimum fraction of jobs that should be allocated 11

to the different servers to (1) minimize the average latency (delay) of the jobs that are allocated to 12

the edge servers, and (2) minimize the average energy consumption of these jobs at the set of edge 13

servers. These results are obtained with a mathematical model of a multiple-server edge system that 14

is managed by a task distribution platform, whose equations are derived and solved using methods 15

from stochastic processes. This approach is of low computational cost, and provides simple linear 16

complexity formulas to compute the fraction of tasks that should be assigned to the different servers 17

so as to achieve minimum latency and minimum energy consumption. 18

Keywords: Edge Computing; Sensor Networks; edge Computing; Latency Minimization; Reducing 19

Energy Consumption; G-Networks; Analytical Solution 20

1. Introduction 21

The advent of the Internet of Things (IoT), and related technologies such as smart 22

homes, smart vehicles, 5th Generation Networks (5G) and beyond 5G, increase the need for 23

high throughput, low task delays, and low energy consumption through the development of 24

systems that provide computing and communication services at the edge [1,2]. While radio 25

access networks (RAN) and mobile base stations can massively increase the bandwidth 26

and throughput that is offered to end users through these technologies, applications 27

are also being moved from Cloud Computing platforms to the edge of the Internet [3– 28

5] to achieve high throughput with low latency and lower energy consumption [6,7]. 29

Motivated by these developments, much research has been conducted to allocate tasks 30

in edge systems in a manner that attempts to minimize latency and energy consumption 31

using non-linear optimization techniques [8,9] leading to NP-hard problems which are 32

processed with various heuristics and approximations, or with AI-based approaches [10,11] 33

such as Reinforcement Learning. These previous approaches have some shortcomings: (a) 34

there is no guarantee that optimum solutions are achieved, and (b) they do not provide 35

a clear indication of the fraction of tasks that should be allocated to the different servers 36

to achieve a specified optimum. Also, the parameters that are used by these methods 37

must be measured and updated to construct the required algorithms; the methods are 38

Version January 3, 2025 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://doi.org/10.3390/1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://orcid.org/0000-0001-9688-2201
https://www.mdpi.com/journal/notspecified

Version January 3, 2025 submitted to Journal Not Specified 2 of 18

computationally costly, with additional overhead and energy consumption for lightweight 39

edge systems. In addition, these approaches do not provide insight into the key parameters, 40

such as the task allocation rates or proportion of tasks that should be sent to different 41

servers, to guarantee that the system will operate at or near its optimum point. 42

Thus, this paper proposes a radically different, mathematically based and principled 43

approach that explicitly computes the optimum fraction of jobs that should be allocated to 44

the different servers to either (1) minimize the average latency (delay) of the jobs that are 45

allocated to the edge servers, or (2) minimize the average energy consumption of the jobs 46

that use the edge servers. To achieve these objectives, this paper develops a mathematical 47

model of a multiple-server system that is managed by a task Dispatching Platform (DP). The 48

model equations are derived and solved using methods from stochastic processes. We then 49

use this theoretical framework to explicitly derive the optimum workload distribution that 50

minimizes latency. The paper then uses a similar approach to derive an explicit expression 51

for the share of workload that should be allocated to each edge server that minimizes the 52

system’s additional energy consumption per task. The analytical approach we develop 53

has a low computational cost, and provides detailed insight into the fraction of tasks that 54

are allocated to the different servers, to achieve minimum latency and minimum energy 55

consumption. 56

1.1. The Main Results Presented in this Paper 57

After the review of related work on the design of task-dispatching algorithms that 58

optimize edge performance discussed in Section 1.2, the architecture of an edge system 59

that includes a Decision Platform (DP) that dispatches incoming external tasks to a set of 60

n servers is presented in Section 2. Then the notation and symbols used in the paper are 61

summarized in Section 2.1. All the proofs related to the theoretical developments in the 62

paper are presented in detail in separate Appendix Sections that are clearly linked to the 63

sections where the results are presented. 64

A novel mathematical model of an edge system composed of the DP that sends tasks 65

to n servers is presented in Section 3. The Key Product Form Result for this model is 66

stated and proved in Theorem 1, and Lemma 1 shows that its solution accounts for the 67

processing of all the tasks that enter the system. Then, in Section 4, we show how the 68

decision variables Ci, 1 ≤ i ≤ n that combine the requests from the n servers with the task 69

assignment decisions that are made by the DP to each server, affect the average latency of 70

externally arriving tasks at the DP. 71

Then, Section 5 derives the task allocation policy that minimizes the average response 72

time for all tasks being processed at the n servers in the system. Section 6 discusses the 73

power consumption of edge servers, based on power measurements that were made on 74

NUCs and other processors, and we derive policy that depends on the known parameters 75

of each server, to share the tasks between servers to guarantee that the average energy 76

consumption for incoming tasks at the edge is minimized. 77

Finally, Section 7 provides conclusions and directions for further work. 78

1.2. Related Work 79

There has been considerable work on the design of algorithms for distributed system 80

management and task distribution to reduce response times for tasks and maximize data 81

transfer throughputs [12,13]. Real-time techniques have been developed to this effect [14], 82

and various heuristics have often been tested in simulated environments to balance load 83

and reduce response times [15,16]. Energy consumption has been of increasing concern 84

over the last decade, due to the steady increase that has been observed over that period in 85

the power consumption of ICT [5,17,18]. 86

Recent research in this area has been primarily motivated by the need for low-cost 87

distributed systems that offer computation and data-intensive applications close to the 88

network edge to achieve low latency [19] for mobile technologies, the IoT and smart vehicles 89

[20]. Another motivation is the need for distributed computing facilities that locally serve 90

Version January 3, 2025 submitted to Journal Not Specified 3 of 18

small-scale applications such as smart homes [21], and in some recent work [22] a system 91

has been considered where tasks which arrive to an edge server are either directly executed 92

there, or off-loaded to a different server. 93

As early as the 1990s, the research community proposed AI-based dynamic network 94

management techniques [23–26] that was later facilitated by the introduction of Software 95

Defined Networks [27] to achieve improvements in network performance and security 96

[28,29]. Attempts have been made to use Reinforcement Learning or more broadly Machine 97

Learning [30–32], as a tool to reduce latency and achieve power savings for tasks that are 98

sensitive to “quality of service” [33]. Other work has integrated security needs by managing 99

tasks and flows of data so that insecure servers and networks may be dynamically avoided 100

[34,35]. Market-based bidding techniques and games to design low computational cost 101

algorithms that have been shown to offer fast solutions at low cost during simulations 102

[36,37]. Some practical experiments have tested AI in distributed edge systems using 103

Software Defined Networks to reduce latency and improve power consumption [38]. Since 104

edge systems often fulfil multiple functions and support a variety of users, the resulting 105

optimization problems are often NP-hard and heuristic approximations have often been 106

investigated [39]. 107

2. system Description 108

We consider an edge distributed computing system composed of a Dispatching Plat- 109

form (DP) which resides on a separate server, together with n machines or servers, S1, ... , Sn, 110

that together form a cluster that is accessible through the Internet. Each Si receives local 111

tasks to execute, as well as tasks that are allocated to it by the DP. External Tasks to be 112

executed by the edge system are received by the DP, and assigned to the servers based on 113

requests from the servers. 114

................S1 Sn

DP
Task Dispatching Platform

pnp1 ana1

ln

Local Task
Arrival Rate
to S1 l1

Task Execution
Requests by MBS L
to Edge
System

Mobile Base Station
or « End User » of

the EDGE SYSYTEM

Local Task
Endings at S1

Completed Task Results Return
from Edge System to MBS

Local Task
Endings at Sn

Figure 1. Architecture of an edge system that allocates incoming tasks to a set of locally connected
servers for edge Computing [40]. It is composed of a Dispatching Plaform (DP) that dynamically
exploits the n distinct servers’ available capacity to allocate tasks, so as to minimize average task
delay, or to minimize total power consumption. Each server has its own incoming local flow of tasks,
and also requests and receives tasks from the DP.

The Base Station or External User shown in Figure 1 sends tasks to the DP, where they 115

are stored in an input queue as they wait for task requests from the n edge servers. 116

• When any Si completes the current task that it is executing, it makes a task request 117

from the DP with probability 1 ≤ pi ≤ 1. If the DP task input queue is empty, then the 118

Version January 3, 2025 submitted to Journal Not Specified 4 of 18

request is simply rejected by the DP. If the DP task input queue contains at least one 119

task, then the DP assigns the task to Si with probability 0 ≤ ai ≤ 1. 120

• Thus, when Si terminates an ongoing task, a task from the incoming pool is dispatched 121

by the DP to Si with probability Ci = piai, provided that the input queue at the DP is 122

not empty. If the DP queue is empty, obviously no task can be sent. This is equivalent 123

to assuming that when a server Si informs the DP that it has terminated a task, then 124

the DP allocates a task to Si with probability 0 ≤ Ci ≤ 1, if the DP has a task waiting 125

at its input. If there are no tasks waiting at the DP, then the request from Si is rejected. 126

• Note that task endings at the different servers occur asynchronously among each other, 127

and the decision of the DP is simply to send or not to send a new task to Si. 128

• Thus, each server has a queue of tasks, some of which have been sent by the DP and 129

others are local tasks that it receives and executes. 130

External tasks arrive at the DP at rate Λ > 0 (tasks per second), while each Si receives 131

“locally generated tasks”, e.g. from its local owner or user, or as part of its operating system, 132

at rate: 133

λi ≥ 0, λ =
n

∑
i=1

λi . (1)

The average execution time of each task at Si is denoted by µ−1
i . 134

The DP’s objective is to minimize the total average waiting time at the DP, and the 135

average response time at all the n servers. However, it also aims to reduce the overall 136

energy consumption of the system. On the other hand, each Si must execute all the tasks it 137

has received locally, as well as those that it has requested from the DP and that the DP has 138

allocated to it. The Si may need to generate income from the external tasks it receives from 139

the DP. On the other hand, it also needs to provide low latency (i.e. low response time) for 140

all the tasks it receives. The DP, as well as all the Si’s, also aim to keep the overall average 141

energy consumption as low as possible, both because of the cost of the energy and also 142

achieve greater sustainability. 143

2.1. Summary of Notation and Symbols and Abbreviations 144

In this sub-section, we present and define all the symbols that are used throughout 145

this paper. 146

• t ≥ 0 is the real-valued time variable. 147

• DP is the task dispatching platform that transfers tasks from the end users to the 148

servers. 149

• Si denotes a server that receives tasks assigned by the DP, as well as “locally generated 150

tasks”, e.g. from its local owner or user or as part of its operating system. 151

• Λ > 0 is the rate of arrival of external tasks to the DP. 152

• λi is the rate of arrival of locally generated tasks to Si. 153

• µi > 0 is the average service rate for tasks at the server Si. Thus, the average service 154

time per task at Si is 1
µi

. 155

• We define: ρi =
λi
µi

, λ = ∑n
i=1 λi, and µ = ∑n

i=1 µi . 156

• 0 ≤ pi ≤ 1 is the probability that, when Si completes the current task that it is 157

executing, it requests to receive a task from the DP. 158

• 0 ≤ ai ≤ 1 is the probability that the DP accepts Si’s request, when the DP’s input 159

queue is non-empty. 160

• Ci = piai is the probability that when Si asks for a new task from the DP, it receives it 161

provided that a new task is available at the DP. 162

• y(t) ≥ 0 is the non-negative integer-valued length of the queue of externally arriving 163

tasks waiting at the Dispatching Platform (DP) at time t. 164

• yi(t) ≥ 0 is the integer-valued total number (queue length) of all the tasks that are in 165

the queue at Si at time t. 166

• k is a particular value of y(t). 167

Version January 3, 2025 submitted to Journal Not Specified 5 of 18

• ki is a particular value of yi(t), and we define the vectors: 168

Y(t) = (y(t), y1(t), . . . , yn(t)),

K = (k, k1, . . . , kn) ,

• The following vectors are related to K = (k, k1, . . . , kn), wherek ≥ 0, ki ≥ 0: 169

K−0 = (k − 1, k1, . . . , kn) i f k > 0,

K+0 = (k + 1, k1, . . . , kn), (2)

K−i = (k, k1, . . . , ki − 1, . . . , kn) i f ki > 0,

K+i = (k, k1, . . . , ki + 1, . . . , kn) .

• Φi is the fraction of external user tasks that the DP allocates to Si. 170

• Φ+
i is the fraction of external user tasks that the DP allocates to Si to minimize the 171

average task response time of the edge system. 172

• Φ∗
i is the fraction of external user tasks that the DP allocates to Si to minimize the 173

average energy consumption per external task assigned to the edge system. 174

• Xi = λi + ΦiΛ is the total arrival rate of tasks to server Si, i.e. the load of Si. 175

• Xi1 is the upper bound for the linear approximation of the power consumption of Si, 176

and Xi1 < µi 177

• qi =
λi+ΦiΛ

µi
is the utilization rate of server Si. If qi < 0, it can be interpreted as the 178

probability that Si is busy processing tasks. 179

• RDP is the average response time at the DP for externally arriving tasks. 180

• RS is the average response time of all tasks at the n servers. 181

• πi0 is the power consumption of server Si when the server is idle, i.e. when Xi = 0. 182

• πiM is the maximum power consumption of server Si. It is attained when Xi is just 183

under the value µi. 184

• αi > 0 is the approximate linear increase in power consumption of Si as a function of 185

the load Xi. 186

• πi(Xi) = πi0 + αiXi is the approximate power consumption of Si when its load is Xi, 187

for Xi < µi. 188

• π′
i is the derivative of πi(Xi) with respect to Φi. 189

• π′′
i is the second derivative of πi(Xi) with respect to Φi. 190

• E is the average energy consumption of the externally arriving tasks that are assigned 191

by the DP to the different servers, and E == ∑n
i=1 Φiπi(Xi)µ

−1
i . 192

3. Analytical Solution for the Dispatching Platform (DP) and its n servers 193

In this section, we construct a G-Network with triggered customer movement [41]. 194

where the service times at all the Si are mutually independent and exponentially distributed 195

random variables, with parameter µi for Si, and the interarrival times of external tasks 196

to the DP is a Poisson process of rate Λ. The arrivals of local tasks at each Si constitute 197

mutually independent Poisson process with rate λi, and iare independent of all the service 198

times at the servers. Thus, in a small time interval of length ∆t, an external task arrival 199

occurs to the DP with probability Λ∆t + o(∆t), a local task arrives to any server Si with 200

probability λi∆t + o(∆t), and provided that there is a local task at Si (i.e. ki > 0), a local 201

task ends its service at Si with probability µi∆t + o(∆t). Here o(∆t) represents a function 202

that tends to zero with ∆t, i.e.: lim∆t→0
o(∆t)

∆t = 0. 203

Also, when a service completes at Si, the server will request to receive a new task from 204

the DP with probability pi, which will be allocated instantaneously with probability ai if 205

k > 0, or refused with probability (1 − ai), or accepted but not allocated with probability 206

Ci = piai when k = 0. Thus the following state transitions occur: 207

• K → K+0 with probability Λ∆t + o(∆t), 208

• K → K+i with probability λi∆t + o(∆t), 209

Version January 3, 2025 submitted to Journal Not Specified 6 of 18

• K+0 → K, with probability µiCi∆t + o(∆t) when ki > 0 (a task at Si departs but is 210

immediately replaced by a task from the DP), 211

• K+i → K, with probability µiCi∆t + o(∆t) when k = 0 (a task at Si departs, the request 212

for a new task is made and accepted, but the DP queue is empty (i.e. 1[k=0]), and 213

therefore the DP has no tasks to send to Si), 214

• K+i → K, with probability µi(1 − Ci)∆t + o(∆t) obtained from: 215

[µi(1 − pi) + µi pi(1 − ai)]∆t + o(∆t) = µi(1 − Ci)∆t + o(∆t), (3)

independently of the value of k or ki; note that these values refer to the quantities in 216

the vector K = (k, k1, . . . , kn). 217

• K → K, with probability 1 − (Λ + λi + µi1[ki > 0])∆t + o(δt) 218

Then, the probability p(K, t) = Prob[Y(t) = K] satisfies the following system (4) of 219

Chapman-Kolmogorov differential-difference equations: 220

dp(K, t)
dt

= −p(K, t)
[
Λ +

n

∑
i=1

(µi1[ki > 0] + λi)
]
+ Λp(K−0, t)1[k > 0]

+
n

∑
i=1

[
λi p(K−i, t)1[ki > 0] + µiCi p(K+0, t)1[ki > 0]

+µiCi p(K+i, t)1[k = 0] + µi(1 − Ci)p(K+i, t)
]

. (4)

We now state the following result, which we use throughout this paper. The proof of 221

Theorem 1 is detailed in Appendix 1. 222

Theorem 1 (Key Product Form Result) Assume that the arrival processes whose rates are 223

Λ, λ1, . . . , λn are all independent Poisson processes and that the service rates µi, 1 ≤ i ≤ n 224

are parameters of independent exponentially distributed random variables, which are also 225

independent of the inter-arrival times. Then if the system of simultaneous non-linear 226

equations: 227

q =
Λ

∑n
i=1 qiµiCi

, qi =
λi + qqiµiCi

µi
=

ρi
1 − qCi

, 1 ≤ i ≤ n , (5)

has a solution that satisfies 0 < q < 1, 0 < qi < 1, then this solution is unique, and: 228

lim
t→∞

Prob
[
x(t) = k, x1(t) = k1, . . . , xn(t) = kn

]
= qk(1 − q)

n

∏
i=1

qki
i (1 − qi), . (6)

where: 229

q = lim
t→∞

Prob
[
x(t) > 0

]
, qi = lim

t→∞
Prob

[
xi(t) > 0

]
. (7)

Note: The denominator of the expression for q in (5) represents the fact that each server 230

Si will notify the DP with probability pi, when Si’s ongoing job ends, that it is ready to 231

receive a task from the DP, and that the DP will respond by sending a task to Si with 232

probability ai, so that Ci = pi.ai. The rate at which such requests arrive to the DP from Si is 233

therefore qiµi pi, and the rate at whicch the DP sends tasks to Si is qiµiCi. Note that both of 234

the equations in (5) are non-linear, contrary to those of an ordinary “Jackson” (open) or 235

“Gordon-Newell” (closed) product-form queueing network [42,43]. 236

Corollary 1.1 From (6), it is easy to show that when q < 1 the average total number of jobs 237

in steady-state NDP in the input queue to the DP is: 238

NDP =
q

1 − q
, (8)

Version January 3, 2025 submitted to Journal Not Specified 7 of 18

and the average total number of jobs in steady-state Ni that are in the input queue of Si is: 239

Ni =
qi

1 − qi
. (9)

The expression for qi in (5) has the intuitive property that we now prove, namely when 240

the stationary solution exists, the total incoming flow of jobs to the DP and the servers Si is 241

identical to the outgoing flow of jobs whose service ends at the n servers, which we use in 242

the proof of Theorem 1 given in Appendix 1. 243

Lemma 1 Let us denote: 244

λ =
n

∑
i=1

λi . (10)

Then if 0 < qi < 1, 0 < q < 1 it follows that: 245

n

∑
i=1

qiµi = Λ + λ . (11)

Remark The expression (11) is an intuitive “flow conservation” identity in steady-state 246

for a stable system, which states that all the work which arrives at the DP, or which arrives 247

locally to the n servers, is eventually processed by one of the n servers. 248

Proof of Lemma 1 As a consequence of the expressions for q and qi in (5), we can write: 249

n

∑
i=1

qiµi =
n

∑
i=1

λi[1 +
∞

∑
l=1

(qCi)
l],

and using the expression for q in (5), we obtain: 250

n

∑
i=1

qiµi = λ +
Λ

∑n
j=1 qjµjCj

.
n

∑
i=1

λi
1 − qCi

= λ +
Λ

∑n
j=1 qjµjCj

.
n

∑
j=1

qjµjCj = λ + Λ, (12)

which completes the proof. QED 251

Corollary of Lemma 1 Since we assume that 0 < qi < 1, 1 ≤ i ≤ n: 252

Denoting ρi =
λi
µi

, we have : ρi < 1 − qCi, and hence Ci <
1 − ρi

q
. (13)

4. Minimizing the Average Response Time or Average Delay at the DP 253

The well-known “Little’s Fomula” [44] can be used to compute the average response 254

time of tasks entering through the DP, or for tasks entering the edge system composed of n 255

servers. Since Λ is the total arrival rate of such tasks, and qqiµiCi is the arrival rate of these 256

tasks to server Si. 257

Since Λ is the total arrival rate of such tasks„ if RDP denotes the average response time 258

of tasks at the DP before they are assigned to a server, by Little’s Formula and equation (8) 259

in Corollary 1.1 we have: 260

RDP =
NDP

Λ
=

1
Λ

q
1 − q

, (14)

and we would like to know how we should choose the Ci, i = 1, ..., n so as to minimize 261

RDP. To this effect, the following result is needed: 262

Theorem 2 Let 0 < qi < 1, and denote Di =
dq
dCi

, dij =
dDi
dCj

. It follows that Di < 0, dij < 0, 263

and dii > 0 for i , j = 1, ... n, j ̸= i. 264

The proof of Theorem 2 is given in Appendix II. 265

Version January 3, 2025 submitted to Journal Not Specified 8 of 18

Using (14), we can derive: 266

dRDP
dCi

=
1
Λ

Di
1 − q

,
d2RDP

dC2
i

=
1
Λ

dii(1 − q) + D2
i

(1 − q)2 . (15)

Then also using Theorem 2, we have dRDP
dCi

< 0 and d2RDP
dC2

i
> 0 for i = 1, ... , n. 267

Theorem 3 Using (14), (15) and Theorem 2, it follows that for fixed Λ, the average response 268

time RDP for a task that arrives from the MBS or an external user to the DP, until it is 269

assigned to one of the server input queues, is minimized with respect to 0 ≤ Ci ≤ 1 by 270

taking the largest possible value of Ci, which is Ci = 1. When all the Ci, 1 ≤ i ≤ n are set 271

to Ci = 1, then RDP attains its minimum value wth respect to the vector C = (C1, ... , Cn). 272

5. Minimizing the Average Response Time RS at the edge servers 273

The different edge servers will have different task processing rates µi and different 274

local task arrival rates λi. Therefore it is worth understanding how the DP should share the 275

tasks that it receives among the edge servers so as to achieve a minimim average response 276

time RS for all the tasks, both those that arrive locally to each server and those that are 277

assigned by the DP. Let Φi denote the proportion of incoming external tasks that the DP 278

assigns to server Si: 279

Φi =
qiµiCi

∑n
j=1 qjµjCj

,
n

∑
j=1

Φj = 1, (16)

so that the total arrival rate of tasks arriving to reach Si is λi + ΛΦi. As a result, when 280

q < 1, qi < 1, i = 1, ... , n, in steady-state the average number of tasks NS at the n servers 281

can be obtained from (6) in Theorem 1 as: 282

NS =
n

∑
i=1

Ni =
n

∑
i=1

qi
1 − qi

, where qi =
λi + ΛΦi

µi
, (17)

and by Little’s Theorem we have: 283

RS =
1

Λ + λ

n

∑
i=1

qi
1 − qi

=
1

Λ + λ

n

∑
i=1

λi + ΛΦi
µi − λi − ΛΦi

, where λ =
n

∑
i=1

λi . (18)

We can now state the following result whose proof is given in Appendix III. 284

Theorem 4 Let 0 ≤ q < 1, 0 ≤ qj < 1 f or 1 ≤ j ≤ n. Then the average response time 285

at steady-state for all tasks that are processed by the n servers, denoted by RS, attains its 286

global minimum with respect to the vector Φ = (Φ1, ... , Φn), when Φj is equal to Φ∗
j : 287

Φ∗
j =

µj − λj

Λ
− µ − Λ − λ

Λ

√
µj
µ1

[∑n
i=1

√
µi
µ1
]
, 1 ≤ j ≤ n, where µ =

n

∑
j=1

µj ,

=

√
µj
µ1

[∑n
i=1

√
µi
µ1
]
+

1
Λ
[
µj − λj − (µ − λ)

√
µj
µ1

[∑n
i=1

√
µi
µ1
]

]
, 1 ≤ j ≤ n . (19)

Communication Overhead and Computational Cost: From (19), we see that the terms: 288

µ and

√
µj
µ1

[∑n
i=1

√
µi
µ1
]
, (20)

Version January 3, 2025 submitted to Journal Not Specified 9 of 18

can be computed in advance once and for all for a given set of n servers since they only 289

depend on the server speed parameters µi, i = 1, ... , n, and do not need to be re-computed 290

for each decision. Λ is known by the DP which locally monitors the external arrival rate of 291

tasks, and no communication is needed to update Λ. The parameters λj must be updated in 292

(19), and should be sent by each Sj to the DP (where the task assignment decision is taken) 293

each time λj changes. This boils down to a periodic communication overhead of at most a 294

total of n packets that are sent from the servers to the DP. From a computational standpoint, 295

obtaining (19) only requires four additions and subtractions and two multiplications for 296

each of the n values Φ∗
j . 297

Corollary 4.1 The minimum value of RS, denoted R∗
S is: 298

R∗
S =

1
Λ + λ

n

∑
j=1

λj + ΛΦ∗
j

µj − λj − ΛΦ∗
j
=

1
Λ + λ

n

∑
j=1

µj

µj −
√

µj
µ1

λj − ΛΦ∗
j

. (21)

Corollary 4.2 In many cases of interest, an edge system will be composed of the DP and 299

n identical servers Si which will in general have different local loads λi so that we will 300

have µi = µ, 1 ≤ i ≤ n. In this case, RS is minimized when: 301

Φ∗
i = Φ∗

1 +
λ1 − λi

Λ
, 2 ≤ i ≤ n, Φ∗

1 =
1
n
[1 +

∑n
i=2(λi − λ1)

Λ
] . (22)

6. Minimizing Energy Consumption 302

An important system performance metric of interest is the energy consumption of the 303

system. As an example, the measured power and energy consumption characteristics of an 304

Intel NUC processor [45] that is widely used in edge systems, are shown in Figure 2 based 305

on accurate measurements that were reported in [46]. 306

Let us note from (11) and (12) that Λ is the total arrival rate of external tasks to the DP; 307

these are in turn assigned by the DP to the n edge servers. Also, we define Xi = λi + ΛΦi, 308

where (as previously in this paper) λi is the local arrival rate of tasks to Si, and Φi is the 309

fraction of externally arriving tasks that are allocated by the DP to Si. 310

Figure 2. The curve on the left shows the power consumption that was measured on a NUC, versus
its overall arrival rate of workload. There is a substantial power consumption of close to 63% of its
maximum value when the NUC is idle. We observe that the power consumption attains its maximum
value of 30 Watts as the workload increases. The curve on the right shows the corresponding energy
consumption per arriving request, in Joules, as a function of the load.

Version January 3, 2025 submitted to Journal Not Specified 10 of 18

The left-hand curve in Figure 2 shows the rise of the power consumption as a function 311

of its load, expressed as the arrival rate of workload to the NUC, starting from a value of 312

roughly 19 Watts when the NUC is idle, and attaining a maximum value of approximately 313

30 Watts, when the NUC is fully loaded. The right-hand curve in Figure 2 shows the energy 314

consumption in Joules per arriving request as a function of the total arrival rate of tasks Xi 315

to server Si. 316

Indeed, the left-hand curve of Figure 2 and the different measurement curves shown 317

in Figure 3 also suggest the following representation for πi(Xi) of server Si, where Xi = 318

λi + ΛΦi, rising from the power consumption πi0 when Si, up to a maximum power 319

consumption denoted by πiM. Thus, these measurement results indicate that the power 320

versus workload characteristics of a server may be represented by a piece-wise linear 321

approximation consisting of a straight line from Xi = 0 to Xi = Xi1 with a positive slope, 322

and a second flat (nearly zero slope) straight line from Xi1 to higher values of Xi. Also, Xi1 323

is smaller than the maximum processing or service rate µi of server i. We therefore use this 324

observation to express the approximation for 0 ≤ Xi ≤ Xi1 with πi(Xi1) = πiM, as: 325

πi(Xi) = πi0, i f Xi = 0,

= πi0 + αiXi , i f 0 ≤ Xi ≤ Xi1 < µi , (23)

where αi > 0 is a positive constant that depends on the specific server being considered. 326

We can then define the first and second derivatives of πi(Xi) with respect to Φi: 327

π′
i =

dπi(Xi)

dΦi
, π′′

i =
d2πi(Xi)

dΦ2
i

, (24)

when i ̸= 1, we have for Xi < µi: 328

π′
i = αiΛ, π′′

i = 0, f or αi > 0, when 0 ≤ Xi < Xi1 . (25)

Also, since Φ1 = 1 − ∑n
i=2 Φi we have dΦ1

dΦi
= −1 for i ̸= 1. Thus, the first and second 329

derivatives of π1(X1) with respect to Φi for i ̸= 1 are: 330

dπ1(X1)

dΦi
= −α1Λ, f or α1 > 0,

d2π1(X1)

dΦ2
i

= 0, f or 0 ≤ X1 < X11 . (26)

6.1. Allocating Incoming Tasks to Minimize the Average Additional Energy Consumed by the 331

Servers 332

If the DP sends an externally arriving task to server Si, we know that the task will wait 333

for some time, and then that it will be processed during µ−1
i time units on average. If the 334

power consumption of Si is πi, and Φi is the probability that the DP has chosen to send the 335

task to Si, then the energy that is is consumed by the task is simply πi × µ−1
i . 336

Therefore, the expected average energy consumption E for executing a task sent from 337

the DP to the edge system composed of n servers is: 338

E =
n

∑
i=1

[Φi ×
πi(Xi)

µi
]. (27)

This leads us directly to the following result whose proof is given in Appendix IV. 339

Theorem 5 Assuming the power consumption characteristic given in (23), the proportion 340

of incoming traffic that should be allocated to server Si to minimize E for j = 2, ... , n is: 341

Φ+
j = Φ+

1
α1µj

αjµ1
+

1
2Λαj

[π10
µj

µ1
− πj0] , (28)

Version January 3, 2025 submitted to Journal Not Specified 11 of 18

WattsWatts

Load Load

Power

In

Watts

Straight

Line

Approximation

Watts

Load

Figure 3. We illustrate the measured characteristics of the power consumption Πi(Xi) along the
y-axis in Watts versus the load Xi along the x-axis in tasks/sec, for several different servers, showing
the approximately linear increase of power consumption at some rate αi > 0 which depends on
the characteristics of the different processors, between the zero load level (no task arrivals) which
corresponds to πi0 , up to close to the maximum value of the power consumption (that we denote by
πiM . Note that the value X1i cannot exceed the maximum processing rate of jobs µi of Si. The linear
characteristic is displayed as a straight red line on top of the measured data that is also shown in the
figure. The rightmost curve refers to the NUC whose characteristics are discussed in Figure 2.

where 342

Φ+
1 =

1 + 1
2Λ ∑n

i=2[
πi0
αi

− π10
µ1

µi
αi
]

1 + α1
µ1

∑n
i=2

µi
αi

. (29)

As would be expected, when all the servers are identical with πi0 = πi1, αi = α1, µi = µ1 343

for i = 2, ... , n, we have Φ+
1 = 1

n , and Φ+
j = Φ+

1 , 2 ≤ j ≤ n. 344

Communication Overhead and Computational Overhead: Since the parameters αj, µj, πi0 345

are fixed and can be known in advance for the servers Sj, j = 1, ... , n, the terms ∑n
i=2[

πi0
αi

− 346

π10
µ1

µi
αi
], 1 + α1

µ1
∑n

i=2
µi
αi

,
α1µj
αjµ1

, and 1
2αj

[π10
µj
µ1

− πj0] can be computed just one time in advance 347

for j = 2, ... , n. The only parameter in (28) and (29) which must be measured is Λ; it 348

is measured directly by the DP which uses it to compute the values of Φj that minimize 349

E. Therefore there is no communication overhead involved in choosing the fraction of 350

externally arriving tasks assigned to each server, so as to to minimize the additional 351

average energy consumption E. Considering the computational overhead, we note that the 352

computation of Φ+
i will involve an additional addition and two divisions. The computation 353

of each of the remaining Φ+
j involves one additional multiplication, one division and one 354

addition. Thus we see that the number of arithmetic operations needed to compute all of 355

the n values of Φ+
j is 3n for each new value of Λ. 356

7. Conclusions 357

edge computing systems, composed of clusters of processors, are particularly impor- 358

tant for supporting the low latency, high throughput and low power consumption needs 359

of mobile base stations and other communication systems. Their aim is to provide crucial 360

low latency and sustainable low energy consuming services for the Internet of Things, and 361

support the transition of communications to 5G and 6th Generation (6G) mobile networks. 362

Version January 3, 2025 submitted to Journal Not Specified 12 of 18

Thus considerable work has been devoted to the design of different types of algorithms for 363

configuring them, dynamically or statically, so as to optimize the allocation of tasks to edge 364

system servers. 365

Much prior this work has used Machine Learning including Reinforcement Learning, 366

non-linear optimization methods, and market based mechanisms, and some of these 367

methods have been tested in experimental environments. Though this work has been 368

extremely useful in generating experience about the manner in which edge systems can 369

be implemented, it has comes at the cost of extensive simulations and time-consuming 370

real-system experimentations. Furthermore, the machine learning-based approaches such 371

as our earlier work [10,46], does not provide insight into the fraction of tasks that should 372

be allocated to different servers to achieve optimality. 373

Thus in the present work, we have addressed the edge computing design process 374

through an analytical model that results in explicit formulas for optimal task allocation, 375

to minimize task latency, and minimize the energy consumption of the system as a whole. 376

We have shown that this approach leads to simple formulas that provide the optimum 377

share of externally rriving tasks that should be assigned to each edge server. We have also 378

observed that these formulas are computationally very simple and that they lead to very 379

low communication overhead. In future work we plan to prioritize the execution of locally 380

generated tasks and remote tasks and include the effect of different types of tasks being 381

executed in the system. 382

We also plan to implement the proposed algorithms in an experimental test-bed and 383

compare various machine learning based algorithms and other simple heuristics (such as 384

greedy algorithms) to see how close they can get to achieving the optimum performance 385

obtained via the analytical approach. 386

Author Contributions: Conceptualization, E.G.; relevant literature, E.G; problem definition, E.G.; 387

methodology, E.G; funding acquisition, E.G. 388

Funding: This research was funded by the European Union’s Horizon Europe research and innovation 389

programme, DOSS Project under Grant Agreement No 101120270, and by the UKRI Project No. 390

10034722 391

Data Availability Statement: The data presented in this study are available on request from the 392

author. 393

Acknowledgments: The author would like to thank the editors and anonymous reviewers for their 394

valuable comments and suggestions. 395

Conflicts of Interest: The author declares no conflict of interest. 396

Appendix 1: Proof of Theorem 1 (Key Product Form Result) 397

For the equations (4) in steady-state, we set dp(K,t)
dt = 0, and drop the dependency on t 398

to write: 399

p(K)
[
Λ +

n

∑
i=1

(µi1[ki > 0] + λi)
]

= Λp(K−0)1[k > 0] +
n

∑
i=1

[
λi p(K−i)1[ki > 0]

+µiCi p(K+0)1[ki > 0] + µiCi p(K+i)1[k = 0]

+µi(1 − Ci)p(K+i)
]
. (30)

Version January 3, 2025 submitted to Journal Not Specified 13 of 18

then divide both sides of (30) by p(K) and substitute the expression from (6), to obtain: 400

[
Λ +

n

∑
i=1

(µi1[ki > 0] + λi)
]
=

Λ
q

1[k > 0]

+
n

∑
i=1

[λi
qi

1[ki > 0] + µiCiq1[ki > 0] + µiCiqi1[k = 0]

+µi(1 − Ci)qi
]
,

Now substituting µiqi =
λi

1−qCi
from the expression for qi in (5), and the expression q = 401

Λ∑n
i=1 qiµiCi we have: 402

[
Λ +

n

∑
i=1

(µi1[ki > 0] + λi)
]
=

n

∑
i=1

qiµiCi1[k > 0]

+
n

∑
i=1

[
µi(1 − qCi)1[ki > 0] + µiCiq1[ki > 0] + µiCiqi1[k = 0]

+µi(1 − Ci)qi
]
,

or cancelling identical terms with opposite signs, and summing identical terms for k > 0 403

and k = 0], we get: 404

[
Λ +

n

∑
i=1

(µi1[ki > 0] + λi)
]
=

n

∑
i=1

qiµiCi1

+
n

∑
i=1

[
µi1[ki > 0] + µi(1 − Ci)qi

]
.

Now cancelling identical terms on both sides of the equation, and also canceling identical 405

terms with opposite signs on the right hand side, we remain with: 406

Λ +
n

∑
i=1

λi =
n

∑
i=1

µiqi.

However by Lemma 1, the right hand side and left hand side of the above equation are 407

identical, hence the solution (5), (6) has now been proved. The uniqueness of the solutons of 408

the non-linear equations (5) follows from the known uniqueness of the staionary solution of 409

the the Chapman-Kolmogorov differential-difference equations (4) [47,48]. This completes 410

the Proof of the Key Product Form (Theorem 1). QED 411

Appendix II: Proof of Theorem 2 412

We use (5) to derive: 413

Di = −
Λ[∑n

j=1 djiµjCj + qiµi]

[∑n
j=1 qjµjCj]2

,

= − q2

Λ
[

n

∑
j=1

djiµjCj + qiµi],

dji = ρj
DiCj + q1[i = j]

[1 − qCj]2
, (31)

=
q2

j

ρj
[DiCj + q1[i = j]]. (32)

Version January 3, 2025 submitted to Journal Not Specified 14 of 18

As a consequence, we can write: 414

Di = − q2

Λ
[

n

∑
j=1

q2
j

ρj
DiµjC2

j +
q2

i
ρi

qµiCi + qiµi],

= −q2
qiµi[1 +

qi
ρi

qCi]

Λ + q2 ∑n
j=1

q2
j

ρj
µjC2

j

= −q
qiµi[1 +

qi
ρi

qCi]

∑n
j=1 qjµjCj[1 + q

qj
ρj

Cj]
,

= −q
λi

(1−qCi)2

∑n
j=1

λjCj
(1−qCj)2

. (33)

Thus (33) tells thus that if q > 0 and all the qi > 0, then all the Di < 0. 415

Now substituting (33) back into (32), we have: 416

dji = q[
q2

j

ρj
1[i = j]−

q2
j

ρj

λiCj
(1−qCi)2

∑n
l=1

λlCl
(1−qCl)2

],

= q[
q2

j

ρj
1[i = j]−

q2
i µi

ρi

q2
j Cj
ρj

∑n
l=1

q2
l µlCl

ρl

],

= q
q2

i
ρi
[1[i = j]− µi

q2
j Cj
ρj

∑n
l=1

q2
l µlCl

ρl

]. (34)

Since the first term (which is non-negative) in (34) vanishes when i ̸= j, we can see that 417

dji < 0 for i ̸= j. 418

The last part of the proof must establish that dii > 0. Using (34) we write: 419

dii = q
q2

i
ρi
[1 −

q2
i µiCi

ρj

∑n
l=1

q2
l µlCl

ρl

],

so that dii > 0 is obvious as long as n > 1, 0 < ql < 1 and all Cl > 0. Hence under these 420

conditions, we have dii > 0. This completes the proof of Theorem 2. QED 421

Appendix III: Proof of Theorem 4. 422

We start from (16) and (18) to write: 423

RS =
1

Λ + λ

n

∑
i=1

λj + ΛΦi

µi − λi − ΛΦi
, with Φ1 = 1 −

n

∑
i=2

Φi , (35)

Version January 3, 2025 submitted to Journal Not Specified 15 of 18

so that for 2 ≤ i ≤ n we have dΦ1
dΦi

= −1 and: 424

dRS
dΦi

=
Λ(µi − λi − ΛΦi) + Λ(λi + ΛΦi)

(µi − λi − ΛΦi)2

1
Λ + λ

[
Λ(µ1 − λ1 − ΛΦ1) + Λ(λ1 + ΛΦ1)

(µ1 − λ1 − ΛΦ1)2] ,

=
Λ

Λ + λ
[

µi
(µi − λi − ΛΦi)2 − µ1

(µ1 − λ1 − ΛΦ1)2] , (36)

d2RS

dΦ2
i

=
Λ2

Λ + λ
[

µi
(µi − λi − ΛΦi)3 +

µ1

(µ1 − λ1 − ΛΦ1)3]. . (37)

Since qi < 1 for all 1 ≤ i ≤ n, it follows from (37) that d2RS
dΦ2

i
> 0. Therefore the minimum of 425

RS with respect to Φi , i = 1, ... , n is obtained from (36) when: 426

dRS
dΦi

= 0, or (µ1 − λ1 − ΛΦ∗
1)

√
µi
µ1

= µi − λi − ΛΦ∗
i . (38)

Using Φ∗
1 = 1 − ∑n

i=2 Φ∗
i , and summing both sides of (38) over 2 ≤ i ≤ n, we have: 427

(µ1 − λ1 − ΛΦ∗
1)

n

∑
i=2

√
µi
µ1

= µ − µ1 − λ + λ1 − Λ + ΛΦ∗
1 , or

ΛΦ∗
1 [1 +

n

∑
i=2

√
µi
µ1

] = (µ1 − λ1)[1 +
n

∑
i=2

√
µi
µ1

] + (µ − Λ − λ), or

ΛΦ∗
1 = µ1 − λ1 −

µ − Λ − λ

1 + ∑n
i=2

√
µi
µ1

, and Φ∗
i =

µi − λi
Λ

− µ − Λ − λ

Λ

√
µi
µ1

∑n
j=1

√
µj
µ1

, (39)

and the proof is complete QED. 428

Appendix IV: Proof of Theorem 5. 429

Let us use the notation E′
i , E′′

i , and π′
i to denote dE

dΦi
, d2E

dΦ2
i
, and dπi

dΦi
, 1 ≤ j ≤ n respec- 430

tively. Using the fact that ∑n
j=1 Φj = 1, we obtain the following expressions for i ̸= 1: 431

E′
i =

πi
µi

+ Φi ×
π

′
i

µi
− π1

µ1
− Φ1 ×

π′
1

µ1
, (40)

E′′
i =

π′
i

µi
+ Φi ×

π
′′
i

µi
+

π
′
i

µi
+

π′
1

µ1
+

π′
i

µi
+ Φ1 ×

π′′
1

µ1
, (41)

we see easily that E′′
i > 0 when 0 ≤ Xi < Xi1 for i ̸= 1. Thus, for i ̸= 1 the value Φ+

i of Φi 432

which minimizes E is attained by setting E′
i = 0 in (40), leading to: 433

Φ+
i

π
′
i

µi
= Φ+

1
π′

1
µ1

+
π1

µ1
− πi

µi
, or

Φ+
i = Φ1

α1µi
αiµ1

+ µi
π10 + α1λ1 + α1Φ+

1 Λ
αiΛµ1

−
πi0 + αiλi + αiΦ+

i Λ
αiΛ

,

2Φ+
i = 2Φ+

1
µiα1

µ1αi
+

λ1µiα1

Λµ1αi
− λi

Λ
+

µi
µ1

π10 − πi0

αiΛ
, yielding

Φ+
i = Φ+

1
µiα1

µ1αi
+

µi
µ1

π10 − πi0

αiΛ
. (42)

Version January 3, 2025 submitted to Journal Not Specified 16 of 18

Summing both sides of (42) from 2 to n we get: 434

1 − Φ+
1 = Φ+

1
α1

µ1

n

∑
2

µi
αi

+
π1

Λµ1

n

∑
2

µi
αi

−
n

∑
2

πi
Λαi

= Φ+
1

α1

µ1

n

∑
2

µi
αi

+
π1

Λµ1

n

∑
2

µi
αi

−
n

∑
2

πi0
Λαi

−
n

∑
2

Φ+
i , implying that :

2(1 − Φ+
1) = Φ+

1
α1

µ1

n

∑
2

µi
αi

+ (
π10

Λµ1
+ Φ+

1
α1

µ1
)

n

∑
2

µi
αi

−
n

∑
2

πi0
Λαi

, or

2(1 − Φ+
1) = 2Φ+

1
α1

µ1

n

∑
2

µi
αi

+
π10

Λµ1

n

∑
2

µi
αi

−
n

∑
2

πi0
Λαi

, that yields :

435

Φ+
1 =

1 + 1
2Λ ∑n

2 [
πi0
αi

− π10
µ1

µi
αi

]

1 + α1
µ1

∑n
2

µi
αi

. (43)

Finally, (42) and (43) provide us with the expression: 436

Φ+
i = Φ+

1
µiα1

µ1αi
+

π10µi
Λαiµ1

+ Φ+
1

α1µi
αiµ1

− πi0
Λαi

− Φ+
i , or

= Φ+
1

α1µi
αiµ1

+
1

2Λαi
[π10

µi
µ1

− πi0] . (44)

References 437

1. Juniper-Networks. Expel complexity with a Self-Driving Network: Soon, your network will adaptively meet your business goals 438

all by itself 2020. 439

2. Apostolos, J. Improving networks with artificial intelligence 2019. 440

3. Kompany, R. Huawei’s ’autonomous driving’ mobile networks strategy aims to increase automation and reduce costs. Knowledge 441

Centre 2018. 442

4. Weiss, P. Making the ICT sector energy efficient: The information and communication technology sector is a major energy 443

consumer, but it also offers the potential for savings... if used properly. Let’s work smarter, 2022. 444

5. Gelenbe, E. Electricity Consumption by ICT: Facts, Trends, and Measurements. Ubiquity 2023, 2023. https://doi.org/10.1145/36 445

13207. 446

6. Ishtiaq, M.; Saeed, N.; Khan, M.A. Edge Computing in IoT: A 6G Perspective, 2022, [arXiv:cs.NI/2111.08943]. 447

7. Al-Ansi, A.; Al-Ansi, A.M.; Muthanna, A.; Elgendy, I.A.; Koucheryavy, A. Survey on Intelligence Edge Computing in 6G: 448

Characteristics, Challenges, Potential Use Cases, and Market Drivers. Future Internet 2021, 13. https://doi.org/10.3390/fi1305011 449

8. 450

8. Nguyen, T.A.; Thang, N.K.; Trystram, D. One gradient Frank-Wolfe for decentralized online convex and submodular optimization. 451

In Proceedings of the ACML 2022 - 14th Asian Conference in Machine Learning, Hyderabad, India, 2022; pp. 1–33. 452

9. Sadatdiynov, K.; Cui, L.; Zhang, L.; Huang, J.Z.; Salloum, S.; Mahmud, M.S. A review of optimization methods for computation 453

offloading in edge computing networks. Digital Communications and Networks 2023, 9, 450–461. https://doi.org/https: 454

//doi.org/10.1016/j.dcan.2022.03.003. 455

10. Fröhlich, P.; Gelenbe, E.; Nowak, M. Reinforcement Learning and Energy-Aware Routing. In Proceedings of the Proceedings of 456

the 4th FlexNets Workshop on Flexible Networks Artificial Intelligence Supported Network Flexibility and Agility, New York, 457

NY, USA, 2021; FlexNets ’21, p. 26–31. https://doi.org/10.1145/3472735.3473390. 458

11. Safri, H.; Kandi, M.M.; Miloudi, Y.; Bortolaso, C.; Trystram, D.; Desprez, F. Towards Developing a Global Federated Learning 459

Platform for IoT. In Proceedings of the 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS), 460

2022, pp. 1312–1315. https://doi.org/10.1109/ICDCS54860.2022.00145. 461

12. Kim, C.; Kameda, H. An algorithm for optimal static load balancing in distributed computer systems. IEEE Trans. Computers 462

1992, 41, 381–384. 463

13. Topcuoglu, H.; Hariri, S.; Wu, M.Y. Performance-effective and low-complexity task scheduling for the Bera erogeneous computing. 464

IEEE Trans. Parallel Distributed Systems 2002, 13, 260–274. 465

14. Zhu, X.; Qin, X.; Qiu, M. Qos-aware fault-tolerant scheduling for real-time tasks on heterogeneous clusters. IEEE Trans. Computers 466

2011, 60, 800–812. 467

15. Tian, W.; Zhao, Y.; Zhong, Y.; Xu, M.; Jing, C. A dynamic and integrated load-balancing scheduling algorithm for cloud datacenters. 468

In Proceedings of the Proc. IEEE Int. Conf. Cloud Comput. Intell. Syst., 2011, pp. 311–315. 469

https://doi.org/10.1145/3613207
https://doi.org/10.1145/3613207
https://doi.org/10.1145/3613207
http://arxiv.org/abs/2111.08943
https://doi.org/10.3390/fi13050118
https://doi.org/10.3390/fi13050118
https://doi.org/10.3390/fi13050118
https://doi.org/https://doi.org/10.1016/j.dcan.2022.03.003
https://doi.org/https://doi.org/10.1016/j.dcan.2022.03.003
https://doi.org/https://doi.org/10.1016/j.dcan.2022.03.003
https://doi.org/10.1145/3472735.3473390
https://doi.org/10.1109/ICDCS54860.2022.00145

Version January 3, 2025 submitted to Journal Not Specified 17 of 18

16. Zhang, Z.; Zhang, X. A load balancing mechanism based on ant colony and complex network theory in open cloud computing 470

federation. In Proceedings of the Proc. 2nd Int. Conf. Industrial Mechatronics Automation, 2010, Vol. 2, p. 240–243. 471

17. Gelenbe, E.; Mahmoodi, T. Energy-aware routing in the cognitive packet network. Energy 2011, pp. 7–12. 472

18. Fröhlich, P.; Gelenbe, E.; Fiołka, J.; Checinski, J.; Nowak, M.; Filus, Z. Smart SDN Management of Fog Services to Optimize QoS 473

and Energy. Sensors 2021, 21, 3105. 474

19. Edge Resource Allocation Based on End-to-End Latency. HotEdge’20, USENIX Association, June 2020. 475

20. Sarah, A.; Nencioni, G.; Khan, M.M.I. Resource Allocation in Multi-access Edge Computing for 5G-and-beyond networks. 476

Computer Networks 2023, 227, 109720. https://doi.org/https://doi.org/10.1016/j.comnet.2023.109720. 477

21. Liu, H.; Li, S.; Sun, W. Resource Allocation for Edge Computing without Using Cloud Center in Smart Home Environment: A 478

Pricing Approach. Sensors 2020, 20, 6545. https://doi.org/10.3390/s20226545. 479

22. Zheng, K.; Jiang, G.; Liu, X.; Chi, K.; Yao, X.; Liu, J. DRL-Based Offloading for Computation Delay Minimization in Wireless- 480

Powered Multi-Access Edge Computing. IEEE Transactions on Communications 2023, 71, 1755–1770. https://doi.org/10.1109/ 481

TCOMM.2023.3237854. 482

23. Boyan, J.A.; Littman, M.L. Packet Routing in Dynamically Changing Networks: A Reinforcement Learning Approach. In 483

Proceedings of the Advances in Neural Information Processing Systems 6, [7th NIPS Conference, Denver, Colorado, USA, 1993]; 484

Cowan, J.D.; Tesauro, G.; Alspector, J., Eds. Morgan Kaufmann, 1993, pp. 671–678. 485

24. Tennenhouse, D.L.; Wetherall, D.J. Towards an active network architecture. Computer Communication Review 1996, 26, 5–18. 486

25. Tsarouchis, C.; Denazis, S.; Kitahara, C.; Vivero, J.; Salamanca, E.; Magana, E.; Galis, A.; Manas, J.L.; Carlinet, L.; Mathieu, B.; et al. 487

A policy-based management architecture for active and programmable networks. IEEE Network 2003, 17, 22–28. 488

26. Gelenbe, E.; Xu, Z.; Seref, E. Cognitive Packet Networks. In Proceedings of the 11th IEEE International Conference on Tools 489

with Artificial Intelligence, ICTAI ’99, Chicago, Illinois, USA, November 8-10, 1999. IEEE Computer Society, 1999, pp. 47–54. 490

https://doi.org/10.1109/TAI.1999.809765. 491

27. Masoudi, R.; Ghaffari, A. Software defined networks: A survey. J. Netw. Comput. Appl. 2016, 67, 1–25. 492

28. Tuncer, D.; Charalambides, M.; Clayman, S.; Pavlou, G. On the Placement of Management and Control Functionality in Software 493

Defined Networks. In Proceedings of the 2015 11th International Conference on Network and Service Management (CNSM), 494

2015, p. 360–365. https://doi.org/10.1109/CNSM.2015.7367383. 495

29. Montazerolghaem, A. Software-defined load-balanced data center: design, implementation and performance analysis. Cluster 496

Computing 2021, 24, 591–610. 497

30. Liu, X.; Qin, Z.; Gao, Y. Resource Allocation for Edge Computing in IoT Networks via Reinforcement Learning. In Proceedings of 498

the ICC 2019 - 2019 IEEE International Conference on Communications (ICC), 2019, pp. 1–6. https://doi.org/10.1109/ICC.2019.8 499

761385. 500

31. Wang, J.; Zhao, L.; Liu, J.; Kato, N. Smart Resource Allocation for Mobile Edge Computing: A Deep Reinforcement Learning 501

Approach. IEEE Transactions on Emerging Topics in Computing 2021, 9, 1529–1541. https://doi.org/10.1109/TETC.2019.2902661. 502

32. Huang, J.; Wan, J.; Lv, B.; Ye, Q.; Chen, Y. Joint Computation Offloading and Resource Allocation for Edge-Cloud Collaboration in 503

Internet of Vehicles via Deep Reinforcement Learning. IEEE Systems Journal 2023, 17, 2500–2511. https://doi.org/10.1109/JSYST. 504

2023.3249217. 505

33. You, C.; Huang, K.; Chae, H.; Kim, B.H. Energy-Efficient Resource Allocation for Mobile-Edge Computation Offloading. IEEE 506

Transactions on Wireless Communications 2017, 16, 1397–1411. https://doi.org/10.1109/TWC.2016.2633522. 507

34. Domanska et al., J. Research and Innovation Action for the Security of the Internet of Things: The SerIoT Project. In Proceedings 508

of the Recent Cybersecurity Research in Europe: Proceedings of the 2018 ISCIS Security Workshop, Imperial College London. 509

Lecture Notes CCIS No. 821, Springer Verlag, 2018, Vol. 821. 510

35. Gelenbe, E.; Domanska, J.; Fröhlich, P.; Nowak, M.P.; Nowak, S. Self-Aware Networks That Optimize Security, QoS, and Energy. 511

Proceedings of the IEEE 2020, 108, 1150–1167. https://doi.org/10.1109/JPROC.2020.2992559. 512

36. Rublein, C.; Mehmeti, F.; Towers, M.; Stein, S.; Porta, T.L. Online resource allocation in edge computing using distributed bidding 513

approaches. In Proceedings of the 2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS), July 514

2021. 515

37. Nguyen, D.; Le, L.; Bhargava, V. Price-Based Resource Allocation for Edge Computing: A Market Equilibrium Approach. IEEE 516

Transactions on Cloud Computing 2021, 9, 302–317. https://doi.org/10.1109/TCC.2018.2844379. 517

38. Zhao, Z.; Schiller, E.; Kalogeiton, E.; Braun, T.; Stiller, B.; Garip, M.T.; Joy, J.; Gerla, M.; Akhtar, N.; Matta, I. Autonomic 518

Communications in Software-Driven Networks. IEEE Journal on Selected Areas in Communications 2017, 35, 2431–2445. https: 519

//doi.org/10.1109/JSAC.2017.2760354. 520

39. Ben-Ameur, A.; Araldo, A.; Chahed, T. Multiple Resource Allocation in Multi-Tenant Edge Computing via Sub-modular 521

Optimization, 2023, [arXiv:cs.DC/2302.09888]. 522

40. Hamilton, E. What is Edge Computing: The Network Edge Explained, 2018. 523

41. Gelenbe, E. G-networks with signals and batch removal. Probability in the Engineering and Informational Sciences 1993, 7, 335–342. 524

42. Gelenbe, E.; Mitrani, I. Analysis and Synthesis of Computer Systems, 2nd Edition; World Scientific, 2010. 525

43. Ross, S.M. Introduction to Probability Models (11th ed.): Chapter 4.2; Academic Pess, 2014. 526

44. Sigman, K. Stationary Marked Point Processes: An Intuitive Approach; Chapman and Hall, New York, London, & CRC Press Boca 527

Raton, Florida, USA, 1995. 528

https://doi.org/https://doi.org/10.1016/j.comnet.2023.109720
https://doi.org/10.3390/s20226545
https://doi.org/10.1109/TCOMM.2023.3237854
https://doi.org/10.1109/TCOMM.2023.3237854
https://doi.org/10.1109/TCOMM.2023.3237854
https://doi.org/10.1109/TAI.1999.809765
https://doi.org/10.1109/CNSM.2015.7367383
https://doi.org/10.1109/ICC.2019.8761385
https://doi.org/10.1109/ICC.2019.8761385
https://doi.org/10.1109/ICC.2019.8761385
https://doi.org/10.1109/TETC.2019.2902661
https://doi.org/10.1109/JSYST.2023.3249217
https://doi.org/10.1109/JSYST.2023.3249217
https://doi.org/10.1109/JSYST.2023.3249217
https://doi.org/10.1109/TWC.2016.2633522
https://doi.org/10.1109/JPROC.2020.2992559
https://doi.org/10.1109/TCC.2018.2844379
https://doi.org/10.1109/JSAC.2017.2760354
https://doi.org/10.1109/JSAC.2017.2760354
https://doi.org/10.1109/JSAC.2017.2760354
http://arxiv.org/abs/2302.09888

Version January 3, 2025 submitted to Journal Not Specified 18 of 18

45. Intel. NUC—Small Form Factor Mini PC. 2021, 2021. 529

46. Fröhlich, P.; Gelenbe, E.; Fiołka, J.; Checinski, J.; Nowak, M.; Filus, Z. Smart SDN Management of Fog Services to Optimize QoS 530

and Energy. Sensors 2021, 21, 3105. 531

47. Feller, W. An Introduction to Probability Theory and its Applications, Volume I, 3rd edition; J. Wiley & Sons, 1968. 532

48. Feller, W. An Introduction to Probability Theory and its Applications, Volume II, 2nd edition; J. Wiley & Sons, 1971. 533

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual 534

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 535

people or property resulting from any ideas, methods, instructions or products referred to in the content. 536

	Introduction
	The Main Results Presented in this Paper
	Related Work

	system Description
	Summary of Notation and Symbols and Abbreviations

	Analytical Solution for the Dispatching Platform (DP) and its n servers
	Minimizing the Average Response Time or Average Delay at the DP
	Minimizing the Average Response Time RS at the edge servers
	Minimizing Energy Consumption
	Allocating Incoming Tasks to Minimize the Average Additional Energy Consumed by the Servers

	Conclusions
	References

