Article

Minimizing Delay and Power Consumption at the Edge

Erol Gelenbel-23*(20000-0001-9688-2201

Citation: Gelenbe, Erol Title. Journal
Not Specified 2024, 1, 0.
https:/ /doi.org/

Received:
Revised:
Accepted:
Published:

Copyright: © 2025 by the authors.
Submitted to Journal Not Specified
for possible open access publication
under the terms and conditions
of the Creative Commons Attri-
bution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Institute of Theoretical & Applied Informatics, Polish Academy of Sciences (IITiS-PAN), 44100 Gliwice PL
Université Cote d’Azur CNRS I3S, France

Dept. of Engineering, King’s College London, UK

Correspondence: seg@iitis.pl

W oN =

Abstract: Edge computing systems must offer low latency, at low cost and with limited power
consumption, for sensors and new applications, including the IoT, smart vehicles, smart homes, and
6G. Thus, substantial research has been conducted to identify optimum task allocation schemes in
this context, using non-linear optimization, machine learning and market-based algorithms. Prior
work mainly focuses on two methodologies: (i) formulating non-linear optimizations that lead to
NP-hard problems, which are processed via heuristics, and (ii) using Al-based formulations such
as Reinforcement Learning that are then tested with simulations. These prior approaches have
two shortcomings: (a) there is no guarantee that optimum solutions are achieved, and (b) they do
not provide an explicit formula for the fraction of tasks that are allocated to the different servers
to achieve a specified optimum. This paper offers a radically different and mathematically based
principled method that explicitly computes the optimum fraction of jobs that should be allocated
to the different servers to (1) minimize the average latency (delay) of the jobs that are allocated to
the edge servers, and (2) minimize the average energy consumption of these jobs at the set of edge
servers. These results are obtained with a mathematical model of a multiple-server edge system that
is managed by a task distribution platform, whose equations are derived and solved using methods
from stochastic processes. This approach is of low computational cost, and provides simple linear
complexity formulas to compute the fraction of tasks that should be assigned to the different servers
so as to achieve minimum latency and minimum energy consumption.

Keywords: Edge Computing; Sensor Networks; edge Computing; Latency Minimization; Reducing
Energy Consumption; G-Networks; Analytical Solution

1. Introduction

The advent of the Internet of Things (IoT), and related technologies such as smart
homes, smart vehicles, 5th Generation Networks (5G) and beyond 5G, increase the need for
high throughput, low task delays, and low energy consumption through the development of
systems that provide computing and communication services at the edge [1,2]. While radio
access networks (RAN) and mobile base stations can massively increase the bandwidth
and throughput that is offered to end users through these technologies, applications
are also being moved from Cloud Computing platforms to the edge of the Internet [3—
5] to achieve high throughput with low latency and lower energy consumption [6,7].
Motivated by these developments, much research has been conducted to allocate tasks
in edge systems in a manner that attempts to minimize latency and energy consumption
using non-linear optimization techniques [8,9] leading to NP-hard problems which are
processed with various heuristics and approximations, or with Al-based approaches [10,11]
such as Reinforcement Learning. These previous approaches have some shortcomings: (a)
there is no guarantee that optimum solutions are achieved, and (b) they do not provide
a clear indication of the fraction of tasks that should be allocated to the different servers
to achieve a specified optimum. Also, the parameters that are used by these methods
must be measured and updated to construct the required algorithms; the methods are

Version January 3, 2025 submitted to Journal Not Specified https:/ /www.mdpi.com/journal /notspecified

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

https://doi.org/10.3390/1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://orcid.org/0000-0001-9688-2201
https://www.mdpi.com/journal/notspecified

Version January 3, 2025 submitted to Journal Not Specified 20f18

computationally costly, with additional overhead and energy consumption for lightweight
edge systems. In addition, these approaches do not provide insight into the key parameters,
such as the task allocation rates or proportion of tasks that should be sent to different
servers, to guarantee that the system will operate at or near its optimum point.

Thus, this paper proposes a radically different, mathematically based and principled
approach that explicitly computes the optimum fraction of jobs that should be allocated to
the different servers to either (1) minimize the average latency (delay) of the jobs that are
allocated to the edge servers, or (2) minimize the average energy consumption of the jobs
that use the edge servers. To achieve these objectives, this paper develops a mathematical
model of a multiple-server system that is managed by a task Dispatching Platform (DP). The
model equations are derived and solved using methods from stochastic processes. We then
use this theoretical framework to explicitly derive the optimum workload distribution that
minimizes latency. The paper then uses a similar approach to derive an explicit expression
for the share of workload that should be allocated to each edge server that minimizes the
system’s additional energy consumption per task. The analytical approach we develop
has a low computational cost, and provides detailed insight into the fraction of tasks that
are allocated to the different servers, to achieve minimum latency and minimum energy
consumption.

1.1. The Main Results Presented in this Paper

After the review of related work on the design of task-dispatching algorithms that
optimize edge performance discussed in Section 1.2, the architecture of an edge system
that includes a Decision Platform (DP) that dispatches incoming external tasks to a set of
n servers is presented in Section 2. Then the notation and symbols used in the paper are
summarized in Section 2.1. All the proofs related to the theoretical developments in the
paper are presented in detail in separate Appendix Sections that are clearly linked to the
sections where the results are presented.

A novel mathematical model of an edge system composed of the DP that sends tasks
to n servers is presented in Section 3. The Key Product Form Result for this model is
stated and proved in Theorem 1, and Lemma 1 shows that its solution accounts for the
processing of all the tasks that enter the system. Then, in Section 4, we show how the
decision variables C;, 1 < i < n that combine the requests from the # servers with the task
assignment decisions that are made by the DP to each server, affect the average latency of
externally arriving tasks at the DP.

Then, Section 5 derives the task allocation policy that minimizes the average response
time for all tasks being processed at the n servers in the system. Section 6 discusses the
power consumption of edge servers, based on power measurements that were made on
NUCs and other processors, and we derive policy that depends on the known parameters
of each server, to share the tasks between servers to guarantee that the average energy
consumption for incoming tasks at the edge is minimized.

Finally, Section 7 provides conclusions and directions for further work.

1.2. Related Work

There has been considerable work on the design of algorithms for distributed system
management and task distribution to reduce response times for tasks and maximize data
transfer throughputs [12,13]. Real-time techniques have been developed to this effect [14],
and various heuristics have often been tested in simulated environments to balance load
and reduce response times [15,16]. Energy consumption has been of increasing concern
over the last decade, due to the steady increase that has been observed over that period in
the power consumption of ICT [5,17,18].

Recent research in this area has been primarily motivated by the need for low-cost
distributed systems that offer computation and data-intensive applications close to the
network edge to achieve low latency [19] for mobile technologies, the IoT and smart vehicles
[20]. Another motivation is the need for distributed computing facilities that locally serve

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

Version January 3, 2025 submitted to Journal Not Specified 30f18

small-scale applications such as smart homes [21], and in some recent work [22] a system
has been considered where tasks which arrive to an edge server are either directly executed o
there, or off-loaded to a different server. 03

As early as the 1990s, the research community proposed Al-based dynamic network o
management techniques [23-26] that was later facilitated by the introduction of Software o
Defined Networks [27] to achieve improvements in network performance and security o
[28,29]. Attempts have been made to use Reinforcement Learning or more broadly Machine «
Learning [30-32], as a tool to reduce latency and achieve power savings for tasks that are
sensitive to “quality of service” [33]. Other work has integrated security needs by managing s
tasks and flows of data so that insecure servers and networks may be dynamically avoided 100
[34,35]. Market-based bidding techniques and games to design low computational cost 1
algorithms that have been shown to offer fast solutions at low cost during simulations 12
[36,37]. Some practical experiments have tested Al in distributed edge systems using 10
Software Defined Networks to reduce latency and improve power consumption [38]. Since 104
edge systems often fulfil multiple functions and support a variety of users, the resulting 10
optimization problems are often NP-hard and heuristic approximations have often been 105
investigated [39]. 107

2. system Description 108

We consider an edge distributed computing system composed of a Dispatching Plat- 10
form (DP) which resides on a separate server, together with # machines or servers, Sy, ..., Sy, 1o
that together form a cluster that is accessible through the Internet. Each S; receives local 1
tasks to execute, as well as tasks that are allocated to it by the DP. External Tasks to be 1
executed by the edge system are received by the DP, and assigned to the servers based on 13
requests from the servers. 114

Mobile Base Station

or « End User » of
the EDGE SYSYTEM

Completed Task Results Return
from Edge System to MIBS

Task Execution

Requests by MBS A
to Edge
System DP

Task Dispatching Platform

Local Task
Arrival Rate

tO 51 ll

Local Task Local Task

Endings at S Endingsat S,

Figure 1. Architecture of an edge system that allocates incoming tasks to a set of locally connected
servers for edge Computing [40]. It is composed of a Dispatching Plaform (DP) that dynamically
exploits the n distinct servers” available capacity to allocate tasks, so as to minimize average task
delay, or to minimize total power consumption. Each server has its own incoming local flow of tasks,
and also requests and receives tasks from the DP.

The Base Station or External User shown in Figure 1 sends tasks to the DP, where they us
are stored in an input queue as they wait for task requests from the n edge servers. 116

¢ When any S; completes the current task that it is executing, it makes a task request w7
from the DP with probability 1 < p; < 1. If the DP task input queue is empty, then the us

Version January 3, 2025 submitted to Journal Not Specified 40f18

request is simply rejected by the DP. If the DP task input queue contains at least one
task, then the DP assigns the task to S; with probability 0 < a; < 1.

e Thus, when S; terminates an ongoing task, a task from the incoming pool is dispatched
by the DP to S; with probability C; = p;a;, provided that the input queue at the DP is
not empty. If the DP queue is empty, obviously no task can be sent. This is equivalent
to assuming that when a server S; informs the DP that it has terminated a task, then
the DP allocates a task to S; with probability 0 < C; < 1, if the DP has a task waiting
at its input. If there are no tasks waiting at the DP, then the request from S; is rejected.

* Note that task endings at the different servers occur asynchronously among each other,
and the decision of the DP is simply to send or not to send a new task to S;.

¢ Thus, each server has a queue of tasks, some of which have been sent by the DP and
others are local tasks that it receives and executes.

External tasks arrive at the DP at rate A > 0 (tasks per second), while each S; receives
“locally generated tasks”, e.g. from its local owner or user, or as part of its operating system,
at rate: ;
Ai>0, A=) A;. (1)
i=1
The average execution time of each task at S; is denoted by ‘ulfl.

The DP’s objective is to minimize the total average waiting time at the DP, and the
average response time at all the n servers. However, it also aims to reduce the overall
energy consumption of the system. On the other hand, each S; must execute all the tasks it
has received locally, as well as those that it has requested from the DP and that the DP has
allocated to it. The S; may need to generate income from the external tasks it receives from
the DP. On the other hand, it also needs to provide low latency (i.e. low response time) for
all the tasks it receives. The DP, as well as all the S;’s, also aim to keep the overall average
energy consumption as low as possible, both because of the cost of the energy and also
achieve greater sustainability.

2.1. Summary of Notation and Symbols and Abbreviations

In this sub-section, we present and define all the symbols that are used throughout

this paper.

. t > 0 is the real-valued time variable.

¢ DP is the task dispatching platform that transfers tasks from the end users to the
servers.

* S, denotes a server that receives tasks assigned by the DP, as well as “locally generated
tasks”, e.g. from its local owner or user or as part of its operating system.

* A > 0is the rate of arrival of external tasks to the DP.

®), is the rate of arrival of locally generated tasks to S;.

* u; > 0is the average service rate for tasks at the server S;. Thus, the average service

e We define: p; = %, A=Yt Apandpu=Y0u;.

e 0 < p; < 1is the probability that, when S; completes the current task that it is
executing, it requests to receive a task from the DP.

* 0 < g; < 1is the probability that the DP accepts S;’s request, when the DP’s input
queue is non-empty.

* C; = pja; is the probability that when S; asks for a new task from the DP, it receives it
provided that a new task is available at the DP.

e y(t) > 0is the non-negative integer-valued length of the queue of externally arriving
tasks waiting at the Dispatching Platform (DP) at time ¢.

e y(t) > 0is the integer-valued total number (queue length) of all the tasks that are in
the queue at S; at time £.

e kisa particular value of y(t).

time per task at S; is

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

Version January 3, 2025 submitted to Journal Not Specified 50f18

* k;is a particular value of y;(t), and we define the vectors: 168

Y(t) = (y(t),y1(t), ., yn(t)),
K=(kki, ... ,kn),

e The following vectors are related to K = (k,ky, ... ,k,), wherek >0, k; > 0: 169

= (k—1Lki, ... kn)ifk>0,
= (

k+1,ky, ... kn), 2)
(kkl,...,i—l,...)ifki>0,
=(kky, ... ki+1, ... kn).
e @, is the fraction of external user tasks that the DP allocates to S;. 170
o CIDI»+ is the fraction of external user tasks that the DP allocates to S; to minimize the 1
average task response time of the edge system. 172
* @7 is the fraction of external user tasks that the DP allocates to S; to minimize the 1
average energy consumption per external task assigned to the edge system. 174
e X; = A;+ ®;A is the total arrival rate of tasks to server S;, i.e. the load of S;. 175
* Xj is the upper bound for the linear approximation of the power consumption of S;, 17
and Xj;; < Wi 177
e gi= AR G the utilization rate of server S;. If g; < 0, it can be interpreted as the 17
probablhty that S; is busy processing tasks. 179
* Rpp is the average response time at the DP for externally arriving tasks. 180
* Rgis the average response time of all tasks at the n servers. 181
* 7T is the power consumption of server S; when the server is idle, i.e. when X; = 0. 182
* 7Ty is the maximum power consumption of server S;. It is attained when X; is just 1
under the value y;. 184
* «; > 0is the approximate linear increase in power consumption of S; as a function of 1
the load X;. 186
e m(X;) = mip+ a;X; is the approximate power consumption of S; when its load is X;, 1
for X; < Wi- 188
e 7l is the derivative of 71;(X;) with respect to ®;. 189
* 7/ is the second derivative of 77;(X;) with respect to ®;. 19
* Eis the average energy consumption of the externally arriving tasks that are assigned 1
by the DP to the different servers, and E ==)" ; ®; ni(Xi)y;l. 192
3. Analytical Solution for the Dispatching Platform (DP) and its n servers 193

In this section, we construct a G-Network with triggered customer movement [41]. 10
where the service times at all the S; are mutually independent and exponentially distributed s
random variables, with parameter y; for S;, and the interarrival times of external tasks 19
to the DP is a Poisson process of rate A. The arrivals of local tasks at each S; constitute 1
mutually independent Poisson process with rate A;, and iare independent of all the service 1
times at the servers. Thus, in a small time interval of length At, an external task arrival 19
occurs to the DP with probability AAt + o(At), a local task arrives to any server S; with 200
probability A;At 4+ o(At), and provided that there is a local task at S; (i.e. k; > 0), alocal =
task ends its service at S; with probability u;At + o(At). Here o(At) represents a function 22
that tends to zero with At, i.e.: limp;_g (AAtt) =0. 203

Also, when a service completes at S;, the server will request to receive a new task from 20
the DP with probability p;, which will be allocated instantaneously with probability a; if 2
k > 0, or refused with probability (1 — a;), or accepted but not allocated with probability 2
C; = p;ia; when k = 0. Thus the following state transitions occur: 207

e K — K'Y with probability AAt + o(At), 208
e K — K* with probability A;At + o(At), 209

Version January 3, 2025 submitted to Journal Not Specified 60of 18

e K0 — K, with probability u;C;At + o(At) when k; > 0 (a task at S; departs but is
immediately replaced by a task from the DP),

e K* — K, with probability ;C;At + 0(At) when k = 0 (a task at S; departs, the request
for a new task is made and accepted, but the DP queue is empty (i.e. 1[k=0]), and
therefore the DP has no tasks to send to S;),

e K'' — K, with probability y;(1 — C;)At + o(At) obtained from:

(1i(1 = pi) + wipi(1 — a;)|At + o(At) = pi(1 — C;)At + o(At),)

independently of the value of k or k;; note that these values refer to the quantities in
the vector K = (k, ky, ... ,ky).
e K — K, with probability 1 — (A + A; + p;1[k; > 0])At 4 0o(t)
Then, the probability p(K,t) = Prob[Y(t) = K] satisfies the following system (4) of
Chapman-Kolmogorov differential-difference equations:

dp(dlj/ t) = —P(K, t) [A + Ié(}lll[kl > O] + /\1)] + AP(K_O, t)l[k > 0]
+Z Aip(K™7,)1[k; > 0] + u,Cip(K ™0, 1)1[k; > 0]
+ViCiP(K+1/f) [k = 0]+ p;(1— C)p(K™,)] . 4)

We now state the following result, which we use throughout this paper. The proof of
Theorem 1 is detailed in Appendix 1.

Theorem 1 (Key Product Form Result) Assume that the arrival processes whose rates are
A, Aq, ..., Ay areall independent Poisson processes and that the servicerates p;, 1 <i < n
are parameters of independent exponentially distributed random variables, which are also
independent of the inter-arrival times. Then if the system of simultaneous non-linear
equations:

A Ai +qqipiCi pi -
= ==, ;= = 7 1 S 1 S n, 5
I Yz qiniCi L Hi 1—4G; ©

has a solution that satisfies 0 < ¢ < 1, 0 < g; < 1, then this solution is unique, and:

tlggo Prob [x(t) = k,x1(t) = k1, ... ,Xn(t) = kq]

n

D Ta(1-a), (6)

i=1

where:
q= tle Prob[x(t) > 0], qi = tham Prob[x;(t) > 0] . (7)

Note: The denominator of the expression for g in (5) represents the fact that each server
S; will notify the DP with probability p;, when S;’s ongoing job ends, that it is ready to
receive a task from the DP, and that the DP will respond by sending a task to S; with
probability a;, so that C; = p;.a;. The rate at which such requests arrive to the DP from S; is
therefore g;4;p;, and the rate at whicch the DP sends tasks to S; is g;4;C;. Note that both of
the equations in (5) are non-linear, contrary to those of an ordinary “Jackson” (open) or
“Gordon-Newell” (closed) product-form queueing network [42,43].

Corollary 1.1 From (6), it is easy to show that when g4 < 1 the average total number of jobs
in steady-state Npp in the input queue to the DP is:

NDPzilzq/ (8)

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

Version January 3, 2025 submitted to Journal Not Specified 7 of 18

and the average total number of jobs in steady-state N; that are in the input queue of S; is:

N; = fq' . ©)

The expression for g; in (5) has the intuitive property that we now prove, namely when
the stationary solution exists, the total incoming flow of jobs to the DP and the servers S; is
identical to the outgoing flow of jobs whose service ends at the n servers, which we use in
the proof of Theorem 1 given in Appendix 1.

Lemma 1 Let us denote:

n
A=Y A (10)
i=1
Thenif 0 < g; <1, 0 < g < 1it follows that:
n
Y qini=A+A. (11)
i=1

Remark The expression (11) is an intuitive “flow conservation” identity in steady-state
for a stable system, which states that all the work which arrives at the DP, or which arrives
locally to the 7 servers, is eventually processed by one of the # servers.

Proof of Lemma 1 As a consequence of the expressions for 4 and g; in (5), we can write:

n
Z qipi =
i=1

(9C)",

=
agk

Il
—_

A1+

i 1=1

and using the expression for g in (5), we obtain:

n A& A Ay
Lo TN PR R v R UL

which completes the proof. QED

Corollary of Lemma 1 Since we assume that0 < ¢; <1, 1 <i < m:

Denoting p; = ;\l:, we have : p; <1 —qC;, and hence C; < ! ;pi. (13)

1

4. Minimizing the Average Response Time or Average Delay at the DP

The well-known “Little’s Fomula” [44] can be used to compute the average response
time of tasks entering through the DP, or for tasks entering the edge system composed of n
servers. Since A is the total arrival rate of such tasks, and gg;u;C; is the arrival rate of these
tasks to server S;.

Since A is the total arrival rate of such tasks,, if Rpp denotes the average response time
of tasks at the DP before they are assigned to a server, by Little’s Formula and equation (8)
in Corollary 1.1 we have:

~ Npp 1 ¢
Rpp = —5 “ATg (14)
and we would like to know how we should choose the C;, i = 1, ..., so as to minimize
Rpp. To this effect, the following result is needed:

4%: 1t follows that D; < 0, d;; <0,

Theorem 2 Let 0 < g; < 1, and denote D; = ;—g, di]- =i
i j

and d; >0fori,j =1, ..n, j#i.
The proof of Theorem 2 is given in Appendix II.

239

240

241

242

243

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

Version January 3, 2025 submitted to Journal Not Specified 8 of 18

Using (14), we can derive:

dRpp _ 1 D; dRpp _ 1di(1—q)+D;F (15)
C; Al—gq dC2 A (1-g)2

Then also using Theorem 2, we have dggp < 0and d?ég” >0fori=1, ...,n.

Theorem 3 Using (14), (15) and Theorem 2, it follows that for fixed A, the average response
time Rpp for a task that arrives from the MBS or an external user to the DP, until it is
assigned to one of the server input queues, is minimized with respect to 0 < C; < 1 by
taking the largest possible value of C;, which is C; = 1. When all the C;, 1 < i < n are set
to C; = 1, then Rpp attains its minimum value wth respect to the vector C = (Cy, ..., Cy).

5. Minimizing the Average Response Time R at the edge servers

The different edge servers will have different task processing rates y; and different
local task arrival rates A;. Therefore it is worth understanding how the DP should share the
tasks that it receives among the edge servers so as to achieve a minimim average response
time Rg for all the tasks, both those that arrive locally to each server and those that are
assigned by the DP. Let ®; denote the proportion of incoming external tasks that the DP

assigns to server S;:
n

qipiCi
O = Y@=, (16)
i ainiC’ S
so that the total arrival rate of tasks arriving to reach S; is A; + A®;. As a result, when
g<1,q;<1,i=1, ..,n, in steady-state the average number of tasks N at the n servers
can be obtained from (6) in Theorem 1 as:

n n
qi A + AD;

Ng=) N;= , where g = ———, 17)

LN = Lq g whereqi = =

and by Little’s Theorem we have:
1 1 q,‘ 1 L /\i + A@l‘ 1

Re = = , where A = Aj. 18
S A+)\i:211—ql' A+Ai;ﬂi—?\i—/\‘1’i 1; l 1o

We can now state the following result whose proof is given in Appendix III.

Theorem 4 Let0 < g <1, 0 <g; <1forl <j < n. Then the average response time
at steady-state for all tasks that are processed by the 1 servers, denoted by Rg, attains its
global minimum with respect to the vector & = (®y, ..., ®,,), when ®; is equal to CID;‘:

Hj

] KA p—A-A m . o
CD] B A A [l’l &]/1_]_n,wherey_;‘u],
i=1 M j=
Hj I
VR g VE
a n o [B +A[Vf Aj—(p—=2) ; ﬂ],1§]§n. (19)
[121 }11] [1—1 Vl}

H1
pand ———, (20)
(X /4]

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

Version January 3, 2025 submitted to Journal Not Specified 90f18

can be computed in advance once and for all for a given set of 1 servers since they only 2
depend on the server speed parameters y;, i =1, ..., n, and do not need to be re-computed 200
for each decision. A is known by the DP which locally monitors the external arrival rate of 20
tasks, and no communication is needed to update A. The parameters A; must be updated in 22
(19), and should be sent by each S; to the DP (where the task assignment decision is taken) 2
each time A; changes. This boils down to a periodic communication overhead of at mosta 2.
total of n packets that are sent from the servers to the DP. From a computational standpoint, s
obtaining (19) only requires four additions and subtractions and two multiplications for 20

each of the n values <I>]’-‘. 207
Corollary 4.1 The minimum value of Rg, denoted Rj is: 208
1 n A + AD* 1 n .
Rs =% : A]®* = ATi L o ‘ 1)
+/\]-:1]/l]'—}\]'— i +)\]':1,uj* %)L]*Aq)]*

Corollary 4.2 In many cases of interest, an edge system will be composed of the DP and 20
n identical servers S; which will in general have different local loads A; so that we will 300

have y; = p, 1 <i < n. In this case, Rg is minimized when: 301
* *)\1 -)Li . * 1 Z?:Z()Li - /\1)
6. Minimizing Energy Consumption 302

An important system performance metric of interest is the energy consumption of the 0
system. As an example, the measured power and energy consumption characteristics of an sos
Intel NUC processor [45] that is widely used in edge systems, are shown in Figure 2 based s0s
on accurate measurements that were reported in [46]. 306

Let us note from (11) and (12) that A is the total arrival rate of external tasks to the DP; o
these are in turn assigned by the DP to the n edge servers. Also, we define X; = A; + AD;, 0
where (as previously in this paper) A; is the local arrival rate of tasks to S;, and ®; is the 0
fraction of externally arriving tasks that are allocated by the DP to S;. 310

304 0.175

0.150 1

N
@

0.125 1

~
o

0.100

[N
=

0.075 4

Average instant power [W]

0.050 1

~
~

0.025 1

Increment in energy used per load [J/Mb]

201

0.000

0 200 40 600 800 1000 0 200 400 600 800 1000
Throughput [Mb/s) Throughput [Mb/s]
Figure 2. The curve on the left shows the power consumption that was measured on a NUC, versus
its overall arrival rate of workload. There is a substantial power consumption of close to 63% of its
maximum value when the NUC is idle. We observe that the power consumption attains its maximum
value of 30 Watts as the workload increases. The curve on the right shows the corresponding energy
consumption per arriving request, in Joules, as a function of the load.

Version January 3, 2025 submitted to Journal Not Specified 10 0of 18

The left-hand curve in Figure 2 shows the rise of the power consumption as a function su
of its load, expressed as the arrival rate of workload to the NUC, starting from a value of s
roughly 19 Watts when the NUC is idle, and attaining a maximum value of approximately s
30 Watts, when the NUC is fully loaded. The right-hand curve in Figure 2 shows the energy s
consumption in Joules per arriving request as a function of the total arrival rate of tasks X; s

to server S;. 316
Indeed, the left-hand curve of Figure 2 and the different measurement curves shown a7
in Figure 3 also suggest the following representation for 77;(X;) of server S;, where X; = s

Ai + AD;, rising from the power consumption 7tjy when S;, up to a maximum power s
consumption denoted by 7t;. Thus, these measurement results indicate that the power o
versus workload characteristics of a server may be represented by a piece-wise linear s
approximation consisting of a straight line from X; = 0 to X; = Xj; with a positive slope, sz
and a second flat (nearly zero slope) straight line from X;; to higher values of X;. Also, Xj; =2
is smaller than the maximum processing or service rate y; of server i. We therefore use this s

observation to express the approximation for 0 < X; < Xj; with 71;(Xj1) = 7y, as: 5
mi(Xi) = mo, if X;=0,
= o+ X, if 0< X < Xy <y, (23)
where «; > 0 is a positive constant that depends on the specific server being considered. s
We can then define the first and second derivatives of 77;(X;) with respect to ®;: 327
dm;(X;) a2 (X;)
s b s VA St A i VA 24
T e T T e 24
when i # 1, we have for X; < y;: 328
i =N, T =0, for a; >0, when0 < X; < Xj1 . (25)
Also, since &1 = 1 - Y , ®; we have % = —1 fori # 1. Thus, the first and second s
derivatives of 711 (X;) with respect to ®; for i # 1 are: 330
dmy (Xq) d*mi (X1)
Tbi - _lxlA, fOI’ 0(1 > 0, T{)lz - O, f01’ 0 S Xl < Xll . (26)
6.1. Allocating Incoming Tasks to Minimize the Average Additional Energy Consumed by the 331
Servers 33

If the DP sends an externally arriving task to server S;, we know that the task will wait s
for some time, and then that it will be processed during]41.*1 time units on average. If the s
power consumption of S; is 7t;, and P; is the probability that the DP has chosen to send the s

task to S;, then the energy that is is consumed by the task is simply 71; x ;4;1. 336
Therefore, the expected average energy consumption E for executing a task sent from s
the DP to the edge system composed of n servers is: 338
n
E=Y[®x i l>]. 27)
i=1 Hi
This leads us directly to the following result whose proof is given in Appendix IV. 330

Theorem 5 Assuming the power consumption characteristic given in (23), the proportion s«
of incoming traffic that should be allocated to server S; to minimize E forj = 2, ... ,nis: 341

X1Hj 1 Hi
o = —L Ll 28

Version January 3, 2025 submitted to Journal Not Specified 110f18

Watts Watts Watts

30
115

|

26

180
110

160 - 105

100
140

95

120 20 24 |

85
100

80 22 A

80 75
7ol 204

60 . L L L L L L asle

Load Load Load

Figure 3. We illustrate the measured characteristics of the power consumption IT;(X;) along the
y-axis in Watts versus the load X; along the x-axis in tasks/sec, for several different servers, showing
the approximately linear increase of power consumption at some rate x; > 0 which depends on
the characteristics of the different processors, between the zero load level (no task arrivals) which
corresponds to 71y , up to close to the maximum value of the power consumption (that we denote by
7tjp - Note that the value Xq; cannot exceed the maximum processing rate of jobs y; of S;. The linear
characteristic is displayed as a straight red line on top of the measured data that is also shown in the
figure. The rightmost curve refers to the NUC whose characteristics are discussed in Figure 2.

where) . o
n i i
o — L+ o5 Bl — ke 29)
R T S
p —=2 w

As would be expected, when all the servers are identical with ;g = 7j1, a; = a1, y; = 11
fori =2, ..,n, we have ® = %,andCID;r =/, 2<j<n

Communication Overhead and Computational Overhead: Since the parameters a;, i, 7
are fixed and can be known in advance for the servers S i j=1, .., n, the terms Z?:z[%) —
. MU
for j = 2, ..., n. The only parameter in (28) and (29) which must be measured is A; it
is measured directly by the DP which uses it to compute the values of ®; that minimize
E. Therefore there is no communication overhead involved in choosing the fraction of
externally arriving tasks assigned to each server, so as to to minimize the additional
average energy consumption E. Considering the computational overhead, we note that the
computation of ®;" will involve an additional addition and two divisions. The computation

of each of the remaining @ involves one additional multiplication, one division and one

and % (05l — Ttjp] can be computed just one time in advance
j H1

addition. Thus we see that the number of arithmetic operations needed to compute all of
the n values of <I>j+ is 3n for each new value of A.

7. Conclusions

edge computing systems, composed of clusters of processors, are particularly impor-
tant for supporting the low latency, high throughput and low power consumption needs
of mobile base stations and other communication systems. Their aim is to provide crucial
low latency and sustainable low energy consuming services for the Internet of Things, and
support the transition of communications to 5G and 6th Generation (6G) mobile networks.

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

Version January 3, 2025 submitted to Journal Not Specified 12 0f 18

Thus considerable work has been devoted to the design of different types of algorithms for
configuring them, dynamically or statically, so as to optimize the allocation of tasks to edge
system servers.

Much prior this work has used Machine Learning including Reinforcement Learning,
non-linear optimization methods, and market based mechanisms, and some of these
methods have been tested in experimental environments. Though this work has been
extremely useful in generating experience about the manner in which edge systems can
be implemented, it has comes at the cost of extensive simulations and time-consuming
real-system experimentations. Furthermore, the machine learning-based approaches such
as our earlier work [10,46], does not provide insight into the fraction of tasks that should
be allocated to different servers to achieve optimality.

Thus in the present work, we have addressed the edge computing design process
through an analytical model that results in explicit formulas for optimal task allocation,
to minimize task latency, and minimize the energy consumption of the system as a whole.
We have shown that this approach leads to simple formulas that provide the optimum
share of externally rriving tasks that should be assigned to each edge server. We have also
observed that these formulas are computationally very simple and that they lead to very
low communication overhead. In future work we plan to prioritize the execution of locally
generated tasks and remote tasks and include the effect of different types of tasks being
executed in the system.

We also plan to implement the proposed algorithms in an experimental test-bed and
compare various machine learning based algorithms and other simple heuristics (such as
greedy algorithms) to see how close they can get to achieving the optimum performance
obtained via the analytical approach.

Author Contributions: Conceptualization, E.G.; relevant literature, E.G; problem definition, E.G.;
methodology, E.G; funding acquisition, E.G.

Funding: This research was funded by the European Union’s Horizon Europe research and innovation
programme, DOSS Project under Grant Agreement No 101120270, and by the UKRI Project No.
10034722

Data Availability Statement: The data presented in this study are available on request from the
author.

Acknowledgments: The author would like to thank the editors and anonymous reviewers for their
valuable comments and suggestions.

Conflicts of Interest: The author declares no conflict of interest.

Appendix 1: Proof of Theorem 1 (Key Product Form Result)

For the equations (4) in steady-state, we set %

to write:

= 0, and drop the dependency on ¢
n
p(K)[A+) (uillk; > 0]+ A;)]
i=1
n
= Ap(K")1[k > 0]+)_ [Aip(K~")1[k; > 0]
i=1

+uiCip(KO)1[k; > 0] + p;Cip(K*)1[k = 0]
+pi(1 = C)p(KH)]. (30)

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

392

393

394

395

396

397

398

399

Version January 3, 2025 submitted to Journal Not Specified

13 of 18

then divide both sides of (30) by p(K) and substitute the expression from (6), to obtain:

[A—!—

ol

i=

THi

n
A

Y (uillk; > 0]+ Ay)] = ;Hk > 0]

i=1

Ai

q—lk > 0] 4+ u;Cigllk; > 0] 4+ p;Cig;1[k = 0]
1 i
(1-Ciail,

Now substituting p;q; = 17/\—,11(:] from the expression for g; in (5), and the expression g =

AY! 1 qiiC; we have:

n

A+ (pillk; > 0]+ A))] = i%’ﬂicil[k > 0]

i=1
n

+ Y [pi(1 —qCi)1[k; > 0] + p;Ciql[k; > 0] + p;Cig;1[k

i=1
+pi(1 -

and k = 0], we get:

i=1

Ci)ail,

or cancelling identical terms with opposite signs, and summing identical terms for k > 0

n

A+ Yo trlhs > 01+) = e

n

= i=1

+Z I/ll k >0 +,uz(Cz)‘]i}'

=

—_

=0

Now cancelling identical terms on both sides of the equation, and also canceling identical
terms with opposite signs on the right hand side, we remain with:

n n
A+ Z/\i = Z}llql
i=1 i=1

However by Lemma 1, the right hand side and left hand side of the above equation are
identical, hence the solution (5), (6) has now been proved. The uniqueness of the solutons of
the non-linear equations (5) follows from the known uniqueness of the staionary solution of
the the Chapman-Kolmogorov differential-difference equations (4) [47,48]. This completes
the Proof of the Key Product Form (Theorem 1). QED

Appendix II: Proof of Theorem 2

We use (5) to derive:

ji

AL i+ qini]
(X7 9;miCl?

qZ n
= — AL diniCi + aiml,
=

D;Cj+q1i =]
- T

qZ
= LIDiC;+q1li = f).
Oj

(31)

(32)

400

401

402

403

404

405

406

407

408

409

410

411

412

413

Version January 3, 2025 submitted to Journal Not Specified

14 0f 18

As a consequence, we can write:
72
7]

Py N
D = _Xg 7 Gt qigl,

o, ikl + %qcz‘}

- 2 L
n
A+go)i p*]j.”jc]‘
qipill + {tqCil
q —,
Y aimGill+ Q%Cj]
Ai

_ (1-4C;)?

n AiGi

Thus (33) tells thus that if 4 > 0 and all the g; > 0, then all the D; < 0.

Now substituting (33) back into (32), we have:

AGj

072 072 (1—4C))?
di = qlhli= - L
ji) AC
Pi Pi Y o
9;G;
2 2 I
TG oo o ik 0f
= gl 1fi=j] - 5 —L—],
2 pi G
'He:
2]
qi . ,0]
= gli[l[i=j]—u—"L —
e T

(33)

(34)

Since the first term (which is non-negative) in (34) vanishes when i # j, we can see that

dji <Of0ri7£j.

The last part of the proof must establish that d;; > 0. Using (34) we write:

qz uiCi
dll = qil [1 - 2 7
0i n 4G
I=1 " p

so that d;; > 0is obvious aslongasn > 1,0 < q; < 1 and all C; > 0. Hence under these

conditions, we have d;; > 0. This completes the proof of Theorem 2. QED

Appendix III: Proof of Theorem 4.
We start from (16) and (18) to write:
1 n)L] + AP,
A+)\i:21]xli—)\i—[\q)il

Rg =
i=2

n
with®; =1-)_ @;,

(35)

414

415

416

418

419

420

421

422

423

Version January 3, 2025 submitted to Journal Not Specified 150f18

so that for 2 < i < n we have ‘Zg)l = —1and: 24
dRs _ A(pi—Ai — A®;) + A(A + ADy)
dd; (Hi — Aj — AD;)?

1 [A(m — A1 — ADy) + AN +Ad>1)]

A+A (1 — Ay — ADq)2
A Hi H1
_ _ , 36
A A G A= ABE (i — A — AG))2 (30
d’R A? ;
s = [4 n___). (37)
d®; A+A (i — A= AD;)3 (1 — A — Ady)

Since g; < 1forall1 <i < n, it follows from (37) that % > 0. Therefore the minimum of s
Rg with respect to ®;, i =1, ..., n is obtained from (36) when: 426
dRS Hi *

0, =0, 0r (@ — A —ADP]), /| — " =u—Ai— AP} . (38)
Using] =1 — o @7, and summing both sides of (38) over 2 < i < 1, we have: a2

n .
(yl—/\l—Acp’{)Z ﬂ:y—yl—A+A1—A+Aq>*, or

n .
A1+ Y E — A1) 1+Z +(H—A—A), or
i— Vl
A-A A A-A V@
ADE = ylf/\lfyi and @ =12 M (39)
1 _|_Z A A n K
2\ =1V
and the proof is complete QED. 428
Appendix IV: Proof of Theorem 5. 420
Let us use the notation E/, E/, and 71, to denote %, 55152/ and Zg’, 1 <j < nrespec- 4o
tively. Using the fact that 2}1:1 ®; =1, we obtain the followirllg expressions for i # 1: 31
/ noom &l
El=T0 x5 T M (40)
Hi Hi M V
!l P 7-,_—' e T[”
E/ = L4+ ®;x L+ L4 1+ A S (41)
Hi Hi Hi P10 Hi M1
we see easily that E' > 0 when 0 < X; < Xj; fori # 1. Thus, for i # 1 the value ®; of ®; w2
which minimizes E is attained by setting E/ = 0 in (40), leading to: 433
T, 7T
oL = @f—l—f—ﬂ—ﬂ or
Hi H1o M1 Wi
o — @ X1 n ‘7T10+IX1)\1 +&1@T—A _ 7Ti0+lxi)\i+txiq>i+/\
P Ty i Ap ;A '
i A Hitq A 7-[10 — TTjo L
2o = el | st i |0~ o , yield
' Ve © Ape A ;A yrenamns
V
17010 — 7Tio
of = @fHY l 42)

! H1ki D‘zA

Version January 3, 2025 submitted to Journal Not Specified 16 of 18

Summing both sides of (42) from 2 to n we get:

Ky & TT;
S Amz -y ,,;

2
X ,ul Hi Z é 4o .
= qﬁ - — Y @, implying that :
mz AMZ 3 L@, implying
n n
21— 0F) = @iy M @+¢+ﬂ Bi oy T o
n n n
21-@f) = 20f Ly Big IOy By 0 yparyiels
(v " ;0“ Am;(xi ;A(xi Y
1+LG@_m&:
(DT = 27 2[m 0‘1]. (43)

1+“12n%

Finally, (42) and (43) provide us with the expression:

of = @fHt . TR o TE T gt
piei o A wipy Aw;
I—— 1 Hi .
= @ w27, [710 " Tio) - (44)

References

1. Juniper-Networks. Expel complexity with a Self-Driving Network: Soon, your network will adaptively meet your business goals
all by itself 2020.

2. Apostolos,]. Improving networks with artificial intelligence 2019.

3. Kompany, R. Huawei’s ‘autonomous driving’ mobile networks strategy aims to increase automation and reduce costs. Knowledge
Centre 2018.

4. Weiss, P. Making the ICT sector energy efficient: The information and communication technology sector is a major energy
consumer, but it also offers the potential for savings... if used properly. Let’s work smarter, 2022.

5. Gelenbe, E. Electricity Consumption by ICT: Facts, Trends, and Measurements. Ubiquity 2023, 2023. https://doi.org/10.1145/36
13207.

6. Ishtiaq, M.; Saeed, N.; Khan, M.A. Edge Computing in IoT: A 6G Perspective, 2022, [arXiv:cs.NI/2111.08943].

7. Al-Ansi, A.; Al-Ansi, AM.; Muthanna, A.; Elgendy, I.A.; Koucheryavy, A. Survey on Intelligence Edge Computing in 6G:
Characteristics, Challenges, Potential Use Cases, and Market Drivers. Future Internet 2021, 13. https://doi.org/10.3390/£i1305011
8.

8. Nguyen, T.A; Thang, N.K,; Trystram, D. One gradient Frank-Wolfe for decentralized online convex and submodular optimization.
In Proceedings of the ACML 2022 - 14th Asian Conference in Machine Learning, Hyderabad, India, 2022; pp. 1-33.

9. Sadatdiynov, K.; Cui, L.; Zhang, L.; Huang,].Z.; Salloum, S.; Mahmud, M.S. A review of optimization methods for computation
offloading in edge computing networks. Digital Communications and Networks 2023, 9, 450-461. https://doi.org/https:
//doi.org/10.1016/j.dcan.2022.03.003.

10. Frohlich, P; Gelenbe, E.; Nowak, M. Reinforcement Learning and Energy-Aware Routing. In Proceedings of the Proceedings of
the 4th FlexNets Workshop on Flexible Networks Artificial Intelligence Supported Network Flexibility and Agility, New York,
NY, USA, 2021; FlexNets '21, p. 26-31. https://doi.org/10.1145/3472735.3473390.

11. Safri, H.; Kandi, M.M.; Miloudi, Y.; Bortolaso, C.; Trystram, D.; Desprez, F. Towards Developing a Global Federated Learning
Platform for IoT. In Proceedings of the 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS),
2022, pp. 1312-1315. https:/ /doi.org/10.1109/ICDCS54860.2022.00145.

12. Kim, C.; Kameda, H. An algorithm for optimal static load balancing in distributed computer systems. IEEE Trans. Computers
1992, 41, 381-384.

13. Topcuoglu, H.; Hariri, S.; Wu, M.Y. Performance-effective and low-complexity task scheduling for the Bera erogeneous computing.
IEEE Trans. Parallel Distributed Systems 2002, 13, 260-274.

14. Zhu, X;; Qin, X.; Qiu, M. Qos-aware fault-tolerant scheduling for real-time tasks on heterogeneous clusters. IEEE Trans. Computers
2011, 60, 800-812.

15. Tian, W.; Zhao, Y.; Zhong, Y.; Xu, M.; Jing, C. A dynamic and integrated load-balancing scheduling algorithm for cloud datacenters.

In Proceedings of the Proc. IEEE Int. Conf. Cloud Comput. Intell. Syst., 2011, pp. 311-315.

434

435

436

437

438

439

440

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

https://doi.org/10.1145/3613207
https://doi.org/10.1145/3613207
https://doi.org/10.1145/3613207
http://arxiv.org/abs/2111.08943
https://doi.org/10.3390/fi13050118
https://doi.org/10.3390/fi13050118
https://doi.org/10.3390/fi13050118
https://doi.org/https://doi.org/10.1016/j.dcan.2022.03.003
https://doi.org/https://doi.org/10.1016/j.dcan.2022.03.003
https://doi.org/https://doi.org/10.1016/j.dcan.2022.03.003
https://doi.org/10.1145/3472735.3473390
https://doi.org/10.1109/ICDCS54860.2022.00145

Version January 3, 2025 submitted to Journal Not Specified 17 of 18

16.

17.
18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.
42.
43.
44.

Zhang, Z.; Zhang, X. A load balancing mechanism based on ant colony and complex network theory in open cloud computing
federation. In Proceedings of the Proc. 2nd Int. Conf. Industrial Mechatronics Automation, 2010, Vol. 2, p. 240-243.

Gelenbe, E.; Mahmoodi, T. Energy-aware routing in the cognitive packet network. Energy 2011, pp. 7-12.

Frohlich, P; Gelenbe, E.; Fiolka, J.; Checinski, J.; Nowak, M.; Filus, Z. Smart SDN Management of Fog Services to Optimize QoS
and Energy. Sensors 2021, 21, 3105.

Edge Resource Allocation Based on End-to-End Latency. HotEdge20, USENIX Association, June 2020.

Sarah, A.; Nencioni, G.; Khan, M.M.I. Resource Allocation in Multi-access Edge Computing for 5G-and-beyond networks.
Computer Networks 2023, 227, 109720. https:/ /doi.org/https://doi.org/10.1016/j.comnet.2023.109720.

Liu, H.; Li, S.; Sun, W. Resource Allocation for Edge Computing without Using Cloud Center in Smart Home Environment: A
Pricing Approach. Sensors 2020, 20, 6545. https:/ /doi.org/10.3390/520226545.

Zheng, K,; Jiang, G.; Liu, X.; Chi, K; Yao, X,; Liu, J]. DRL-Based Offloading for Computation Delay Minimization in Wireless-
Powered Multi-Access Edge Computing. IEEE Transactions on Communications 2023, 71, 1755-1770. https://doi.org/10.1109/
TCOMM.2023.3237854.

Boyan, J.A.; Littman, M.L. Packet Routing in Dynamically Changing Networks: A Reinforcement Learning Approach. In
Proceedings of the Advances in Neural Information Processing Systems 6, [7th NIPS Conference, Denver, Colorado, USA, 1993];
Cowan,].D,; Tesauro, G.; Alspector, J., Eds. Morgan Kaufmann, 1993, pp. 671-678.

Tennenhouse, D.L.; Wetherall, D.J. Towards an active network architecture. Computer Communication Review 1996, 26, 5-18.
Tsarouchis, C.; Denazis, S.; Kitahara, C.; Vivero, J.; Salamanca, E.; Magana, E.; Galis, A.; Manas,].L.; Carlinet, L.; Mathieu, B.; et al.
A policy-based management architecture for active and programmable networks. IEEE Network 2003, 17, 22-28.

Gelenbe, E.; Xu, Z.; Seref, E. Cognitive Packet Networks. In Proceedings of the 11th IEEE International Conference on Tools
with Artificial Intelligence, ICTAI “99, Chicago, Illinois, USA, November 8-10, 1999. IEEE Computer Society, 1999, pp. 47-54.
https://doi.org/10.1109/TAIL.1999.809765.

Masoudi, R.; Ghaffari, A. Software defined networks: A survey. J. Netw. Comput. Appl. 2016, 67, 1-25.

Tuncer, D.; Charalambides, M.; Clayman, S.; Pavlou, G. On the Placement of Management and Control Functionality in Software
Defined Networks. In Proceedings of the 2015 11th International Conference on Network and Service Management (CNSM),
2015, p. 360-365. https://doi.org/10.1109/CNSM.2015.7367383.

Montazerolghaem, A. Software-defined load-balanced data center: design, implementation and performance analysis. Cluster
Computing 2021, 24, 591-610.

Liu, X.; Qin, Z.; Gao, Y. Resource Allocation for Edge Computing in IoT Networks via Reinforcement Learning. In Proceedings of
the ICC 2019 - 2019 IEEE International Conference on Communications (ICC), 2019, pp. 1-6. https://doi.org/10.1109/1CC.2019.8
761385.

Wang, J.; Zhao, L.; Liu, J.; Kato, N. Smart Resource Allocation for Mobile Edge Computing: A Deep Reinforcement Learning
Approach. IEEE Transactions on Emerging Topics in Computing 2021, 9, 1529-1541. https://doi.org/10.1109/TETC.2019.2902661.
Huang,].; Wan, J.; Lv, B.; Ye, Q.; Chen, Y. Joint Computation Offloading and Resource Allocation for Edge-Cloud Collaboration in
Internet of Vehicles via Deep Reinforcement Learning. IEEE Systems Journal 2023, 17, 2500-2511. https://doi.org/10.1109/]JSYST.
2023.3249217.

You, C.; Huang, K.; Chae, H.; Kim, B.H. Energy-Efficient Resource Allocation for Mobile-Edge Computation Offloading. IEEE
Transactions on Wireless Communications 2017, 16, 1397-1411. https://doi.org/10.1109/TWC.2016.2633522.

Domanska et al., J. Research and Innovation Action for the Security of the Internet of Things: The SerIoT Project. In Proceedings
of the Recent Cybersecurity Research in Europe: Proceedings of the 2018 ISCIS Security Workshop, Imperial College London.
Lecture Notes CCIS No. 821, Springer Verlag, 2018, Vol. 821.

Gelenbe, E.; Domanska, J.; Frohlich, P.; Nowak, M.P.; Nowak, S. Self-Aware Networks That Optimize Security, QoS, and Energy.
Proceedings of the IEEE 2020, 108, 1150-1167. https://doi.org/10.1109 /JPROC.2020.2992559.

Rublein, C.; Mehmeti, F; Towers, M.; Stein, S.; Porta, T.L. Online resource allocation in edge computing using distributed bidding
approaches. In Proceedings of the 2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS), July
2021.

Nguyen, D.; Le, L.; Bhargava, V. Price-Based Resource Allocation for Edge Computing: A Market Equilibrium Approach. IEEE
Transactions on Cloud Computing 2021, 9, 302-317. https://doi.org/10.1109/TCC.2018.2844379.

Zhao, Z.; Schiller, E.; Kalogeiton, E.; Braun, T.; Stiller, B.; Garip, M.T,; Joy, J.; Gerla, M.; Akhtar, N.; Matta, I. Autonomic
Communications in Software-Driven Networks. IEEE Journal on Selected Areas in Communications 2017, 35, 2431-2445. https:
//doi.org/10.1109/JSAC.2017.2760354.

Ben-Ameur, A.; Araldo, A.; Chahed, T. Multiple Resource Allocation in Multi-Tenant Edge Computing via Sub-modular
Optimization, 2023, [arXiv:cs.DC/2302.09888].

Hamilton, E. What is Edge Computing: The Network Edge Explained, 2018.

Gelenbe, E. G-networks with signals and batch removal. Probability in the Engineering and Informational Sciences 1993, 7, 335-342.
Gelenbe, E.; Mitrani, I. Analysis and Synthesis of Computer Systems, 2nd Edition; World Scientific, 2010.

Ross, S.M. Introduction to Probability Models (11th ed.): Chapter 4.2; Academic Pess, 2014.

Sigman, K. Stationary Marked Point Processes: An Intuitive Approach; Chapman and Hall, New York, London, & CRC Press Boca
Raton, Florida, USA, 1995.

470

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

522

523

524

525

526

527

528

https://doi.org/https://doi.org/10.1016/j.comnet.2023.109720
https://doi.org/10.3390/s20226545
https://doi.org/10.1109/TCOMM.2023.3237854
https://doi.org/10.1109/TCOMM.2023.3237854
https://doi.org/10.1109/TCOMM.2023.3237854
https://doi.org/10.1109/TAI.1999.809765
https://doi.org/10.1109/CNSM.2015.7367383
https://doi.org/10.1109/ICC.2019.8761385
https://doi.org/10.1109/ICC.2019.8761385
https://doi.org/10.1109/ICC.2019.8761385
https://doi.org/10.1109/TETC.2019.2902661
https://doi.org/10.1109/JSYST.2023.3249217
https://doi.org/10.1109/JSYST.2023.3249217
https://doi.org/10.1109/JSYST.2023.3249217
https://doi.org/10.1109/TWC.2016.2633522
https://doi.org/10.1109/JPROC.2020.2992559
https://doi.org/10.1109/TCC.2018.2844379
https://doi.org/10.1109/JSAC.2017.2760354
https://doi.org/10.1109/JSAC.2017.2760354
https://doi.org/10.1109/JSAC.2017.2760354
http://arxiv.org/abs/2302.09888

Version January 3, 2025 submitted to Journal Not Specified 18 of 18

45.
46.

47.
48.

Intel. NUC—Small Form Factor Mini PC. 2021, 2021.

Frohlich, P; Gelenbe, E.; Fiolka, J.; Checinski, J.; Nowak, M.; Filus, Z. Smart SDN Management of Fog Services to Optimize QoS
and Energy. Sensors 2021, 21, 3105.

Feller, W. An Introduction to Probability Theory and its Applications, Volume I, 3rd edition;]. Wiley & Sons, 1968.

Feller, W. An Introduction to Probability Theory and its Applications, Volume II, 2nd edition;]. Wiley & Sons, 1971.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

529

530

532

533

534

535

536

	Introduction
	The Main Results Presented in this Paper
	Related Work

	system Description
	Summary of Notation and Symbols and Abbreviations

	Analytical Solution for the Dispatching Platform (DP) and its n servers
	Minimizing the Average Response Time or Average Delay at the DP
	Minimizing the Average Response Time RS at the edge servers
	Minimizing Energy Consumption
	Allocating Incoming Tasks to Minimize the Average Additional Energy Consumed by the Servers

	Conclusions
	References

