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Abstract—In the software rich environment of 6G,
systems will be surrounded by edge devices that sup-
port distributed software systems which are critical to
operations. Such systems may also be subject to frequent
updates or uploads of individual software components.
Trust in such systems will therefore depend on our ability
to rapidly ensure that such software is not vulnerable to
cyberattacks or malicious compromises. Thus this paper
presents a novel System-Wide Vulnerability Assessment
(SWVA) framework based on Machine Learning, that
can be frequently activated to assess the vulnerability of
interconnected software components over edge systems.
The performance of the SWVA framework is illustrated
by assessing the vulnerability of 13 versions of a real-
world 11 component software system, and comparing
the ARNN results against the well-known ML models
MLP, KNN, and Lasso. The results show the superior
performance of SWVA, offering over 85% median accuracy
and good scalability as the number of connected software
components increases.

Index Terms—Vulnerability Assessment, Trust in 6G,
Interconnected Software, Associated Random Neural Net-
work, Deep Learning

I. INTRODUCTION

ECURE and trustworthy communications are diffi-
S cult and expensive to build, but the consequences
of not meeting such requirements are extremely high
[1]. A recent industry position paper [2] entitled “6G
orchestration and automation: A system software view”,
stresses the software dominance in 6G with the term
“network as code” and discusses the role of different
software components and APIs in 6G.

Since software will be pervasive across 6G systems,
there is great need to enhance trust by automatically
assessing multi-component software to detect and reduce
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security vulnerabilities that can arise during software
development [3]], and also test overall multi-component
6G software systems as new components and APIs are
added to the system. While vulnerability assessment of
single software components is well developed, the multi-
component case is new.

Indeed, in a recent preparatory document for the 2024
6G Summit [4] four of the seven security threats that
were listed for 6G are primarily related to software
issues, namely Al and machine learning, including al-
gorithmic errors and systemic failures, data privacy and
security, autonomous technology governed by multi-
component software systems, and the interacting proto-
cols needed to ensure service and resource availability
for ultra-reliable low latency communications.

Despite the use of Static Code Analyzers [3]], testing
techniques and dynamic checks [6], as much as 85%
of software applications may contain vulnerabilities and
more than 10% may contain security breaches that
undermine trust [/]. Conventional software vulnerability
assessment is slow and tedious [8]], and machine learning
can efficiently automate this problem for large scale
6G software, where the vulnerability of each software
component can —directly or indirectly— affect the vul-
nerability of many other components. The availability of
a fast and accurate tool for multi-component vulnerabil-
ity assessment, can greatly emhance the trust of users
regarding 6G software.

Thus, to address this major challenge, we propose a
novel System-Wide Vulnerability Assessment (SWVA)
framework based on the Associated Random Neural
Network (ARNN) [9], which offers a machine learning
approach to vulnerability testing for multi-component
systems composed of n separate software components
S = {51, ... ,Sn}, which are interconnected to each
other.

A. Prior Research

While sofware vulnerability assessment is well de-
veloped for single components, the study of multi-
component system vulnerability, which is needed to
assess large scale multi-component communicaton soft-
ware that will be needed for future systems and 6G,



has been limited. Indeed, state-of-the-art vulnerability
prediction techniques [10] detect the potential presence
of vulnerabilities in a software component based only on
information retrieved from each component, neglecting
critical information about the internal interconnections
between components, that affect the system as a whole.

Metrics that assess security flaws for individual soft-
ware components were examined by several authors in-
cluding [11]], and text mining methods with code tokens
are then used as input in training ML models. These
tokens are extracted from source code, and tools such as
the VulDeePecker system [12] converts each token into a
vector to identify vulnerabilities through deep learning.
In Devign [13]], a graph neural network combines several
techniques, and natural language processing (NLP) is
used in VulDeBERT for vulnerability prediction [14].

In contrast, the SWVA framework proposed in this
paper, assesses the vulnerability of all interconnected
components, considering both the data from individual
components, together with data about their interconnec-
tions. To the best of the authors’ knowledge, this is the
first systematic approach for a system-wide vulnerability
assessment of a software system made up of several
interconnected components. Due to its previous high
performance for multi-node Botnet detection [9]], in this
paper we exploit the recurrent Associated RNN (ARNN)
architecture for multi-component SWVA, which is a
recurrent Random Neural Network (RNN), that was
originally invented to mimic the spiking behavior of
mammalian brain neurons, and its deep learning algo-
rithm can be used both for feed-forward and recurrent
neural networks [15]].

B. The System-Wide Vulnerability Assessment (SWVA)
Framework

As input, the SWVA method uses:

e The empirically estimated [16] individual vulnera-
bility 0 < V; < 1 of each component S;, where
V; = 1 indicates that S; is vulnerable, while V; = 0
indicates that it is fully safe, and

e The directed n-node graph representing the connec-
tions between components with the binary n x n
adjacency matrix A.

Figure |1} shows how SWVA predicts the updated vul-
nerability Likelihood Level of each system component
S;, resulting from the inputs V;, and from A, using
a deep learning algorithm. In this paper, we present
this approach and illustrate it on a real-world software
system consisting of 11 components, with 13 historically
different versions, and different possible interconnection
matrices A.

The SWVA framework is evaluated and compared
against the well-known ML models MLP, KNN, and
Lasso, for assessing the vulnerability of 169 distinct
instances of a real-world 11 component software system,
where each component can have 13 different versions.
The results that were obtained have demonstrated the
superior performance of SWVA as compared to the other
methods, achieveing above 85% median accuracy and
good scalability, as detailed in Figure [5

II. PROBLEM STATEMENT & SYSTEM DESIGN

The SWVA framework that is illustrated in Figure
displays the overall structure of the proposed approach.
At the bottom of the right-hand side of the figure, the
particular structure of two opposing neurons X; and
x; of the ARNN is shown, as they decide about the
vulnerability of component S;.

The neurons X; and z; of the ARNN “defend” two
opposing views: X; whose state value is (J); “claims”
that S; is vulnerable, while x; makes the opposite claim
through its state ¢;. Note that (); and ¢; are the proba-
bilities that the corresponding neurons are activated.

Both X; and z; receive the local vulnerability V;
information as input, but they are connected to all the
other pairs X; and x; through synaptic weights, using
the connection matrix A. The ARNN is trained using
the ARNN deep learning algorithm [9] with real data
from ground truth data sets about the multi-component
software system.

As shown in this figure, we consider each software
component S;, which is part of a system S comprised of
n components, whose local (individual) vulnerability V;
is known empirically. The local vulnerability V; results
from the presence of code constructs within S; that cause
vulnerabilities and is predicted via Local Vulnerability
Prediction methods that analyze the source code [10].

III. SYSTEM-WIDE VULNERABILITY ASSESSMENT

Since each neuron X; and x; in the ARNN node is
represented by its internal state (); and ¢;, these quanti-
ties are linked to each other by a non-linear system of
2n equations, resulting from the detailed developments
of the RNN model [15]:
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Here, VV;Jr and W, are the connection weights from
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X; to neurons X; and x;, and wg and w;;

are the
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Fig. 1: The SWVA method inputs the vulnerabilities V; of each of the components, which are extracted from the
lexicographic analysis of each software component with existing methods. SWVA also uses the information regarding
the inter-component interactions which are reprsented by the adjacency matrix A. It then uses the ARNN to learn
from multiple instance and metrics associated with these components. Thus, SWVA learns from prior ground truth
that includes real software component vulnerability and interconnection data. Then, for a given, hitherto unseen,
real multi-component software system, it inputs the local prior vulnerabilities, and the interconnect structure, to
output an accurate prediction of the updated Likelihood Level L; for each of its components.

connection weights from z; to neurons x; and X, of
node j. These weights are selected via deep learning [9]
based on datasets that reflect the vulnerability assessment
of examples of real multi-component software systems.

The Likelihood Ratio that component S; is vulner-
able in the presence of its connections with the other
components, will be larger than one simply when @;
is larger than ¢;. If a threshold value different from
one is used, similarly simple rules based on the @
and g; are obtained, for deciding whether the connected
components are vulnerable.

A. Experiments with Real-World Software

In order to evaluate the performance of the proposed
SWVA framework, we consider a real-world software
system, the GitHubCrawler described in [[17]], and col-
lect raw vulnerability data using the methods in [10].
During the data collection from GitHubCrawler system,
we first identify the interconnections between software
components. Then, for each software component in a
given version, we utilize a local vulnerability detector to
compute inputs and the ground truth. In particular, the
GitHubCrawler, has 13 committed versions with 11 inter-
connected software components, which are independent

of the operating system. As shown in Figure|l} the inter-
connections between all components are extracted using
the well-known Java Dependency Viewer by Eclipse.

In order to construct the dataset for the performance
evaluation of SWVA, we first used the the Dependency
Viewer for each of the 13 versions of the GitHubCrawler
system in [17] to obtain the interconnections between
components. The interconnection graphs of versions
v8 — v13 of the GitHubCrawler are shown in Figure
[2] yielding the connection matrix A" of each software
version v.

Then, we collect a dataset of the components’ local
vulnerability predictions, using the vulnerability predic-
tion of the IoTAC Software Security by Design Platform
[10]], based on text mining as discussed earlier. The ap-
proach uses 13 distinct vulnerability detection techniques
indexed by z, and is run for all of the 13 distinct versions
of the GitHubCrawler.

Thus, for each software component S; of the
GitHubCrawler, the source code of each version v of this
is first parsed with each of the 13 different local vulner-
ability detection techniques, extracting word sequences,
yielding the distinct vulnerability score V;, ; . for z = 1
to z = 13. Thus, from the 13 versions v1 to v13, and the
13 detection techniques, we obtain 169 different values
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Fig. 2: The graphs with the interconnections between the components of the six latest versions of the GitHubCrawler
software system , produced by the Dependency Viewer plugin.

Va,i,» for each component 4.

Then, the ground truth value of the Interconnected
Vulnerability metric VvI;kz is derived, according to three
different criteria &k = Abemge, Maz, Max — Std.
These differ from the local vulnerability due to the fact
that they include the influence of the communication be-
tween neighbouring components in the connection graph
represented by the incidence matrix A. Thus Vvlﬁvemge
is the average of the vulnerabilities of com;;c;nent i
with that of its immediate neighbours, when we consider
version v and detection technique z. Similarly, V"
is the maximum value of the vulnerabilities of the com-
ponent with that of its immediate interconnected compo-
nents. Finally, V.M =51 qubracts, from V.M the
standard deviation of the vulnerability of the cbinponent
and its neighbours, from the maximum value.

We evaluated the performance of the SWVA frame-
work using the ARNN on the GitHubCrawler system
for each of the three ground truth values, and compared

the ARNN results against the well-known ML models,

MLP, KNN, and Lasso. To this end, since we have 169
samples in total, we perform a 5-fold cross-validation to
obtain generalizable results using a small-size dataset,
that trains a given model with 80% of the dataset and
tests it with the remaining 20%, and iteratively changes
the training and test data, so as to provide results
that reflect the prediction performance of the model
in practice. We trained the ARNN for 100 epochs for
each cross-validation fold, and used a threshold to fix
the likelihood ratio in each case. The results are shown
for just one software version v13 in Figure [3] showing
that the method appears to work well for all the three
different methods for selecting the ground truth.

B. Performance of the SWVA with the Averaged Ground
Truth Vulnerability among Communicating Components

We first discuss the resulting performance of the
ARNN-based SWVA for different versions of the soft-
ware system with a variable number of components
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Fig. 3: Performance of the proposed ARNN-based
SWVA framework for the latest version (v13) of the
GitHubCrawler system using each of the three ground
truth calculation methods, namely “Average”, ‘“Maxi-
mum”, and “Maximum-Standard Deviation”, with re-
spect to percentage Accuracy, TNR, and TPR metrics.

based on the choice of “Average” as the technique for
choosing the ground truth. In Figure A we present the
percentage accuracy, TPR, and TNR of the ARNN-based
SWVA as a boxplot presenting the performance statistics
over all components.

We see that the median accuracy is above 85% for
all versions except v3 and v4. We also see that the
overall accuracy of ARNN-based SWVA tends to be
higher when the total number of components n is larger.
This comforts us in suggesting that SWVA is the right
approach for large systems which are much harder to
evaluate by human experts. In addition, our results show
that although the median accuracy is high, the lower
whisker is often between 45% to 60%.

The results in Figure ] (middle) show that the median
TPR equals 100% for all versions except v1 for which it
is around 83%. Despite this high value, there are outliers
with low whisker values around 45% —50%. We observe
that the TPR performance is low mainly for components
which are connected with only one other component,
especially when the Likelihood Ratio ground truth is
slightly above 1,while it is just over 1 (between 1 and
1.5) when the ARNN underestimates it, indicating that
the given component is not vulnerable.

Next, Figure [] (bottom) displays the TNR perfor-
mance of ARNN-based SWVA for each version of the
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considered software. Our TNR results —similar to the
TPR- show that the median performance equals 100%
for the majority of versions, and it is between 85% to
90% for only vl, v2 and v10. In addition, for each
software version, we see that there are one or two
components for which the TNR is less than 60%.

We now compare the ARNN for SWVA, with the
well-known models MLP, KNN, and Lasso which are
implemented as follows:

e MLP is comprised of three hidden layers contain-
ing n neurons, with a Rectified Linear activation
function at each layer, using Keras API in Python
to minimize mean squared error.

e« KNN uses equally weighted 4 neighbours, with
25% of training samples in each fold of cross-
validation, implemented using the scikit-learn li-
brary in Python.

o Lasso is selected to represent the models with the
ability of feature selection and used with the reg-
ularization coefficient of 0.1, and using the scikit-
learn library.

The previously well-known model parameters, which
are implementation-dependent, are set to the libraries’
default values. Figure [5] compares the ARNN with the
MLP, KNN, and Lasso learning models with respect
to median Accuracy, TPR, and TNR, showing that the
ARNN outperforms other models with 4% to 10% accu-
racy difference for most software versions, achieving the
best accuracy for 8 out of 13 versions. Its performance is
comparable to Lasso and KNN for versions v2, v3, v4,
v10, and v13. At the bottom left, we see that the ARNN
assesses the vulnerabilities significantly better than all
other models, while the TPR difference between ARNN
and the second-best model is around 15% on average. At
the bottom right we see that the ARNN achieves very
high TNR. In addition, among these ML, the MLP is
the worst-performing model, while the validity of the
TNR and KNN predictions significantly increases with
the number of components, while that of Lasso and MLP
do not change significantly.

C. Evaluating the SWVA Computation Time

Finally, the computation time of ARNN, the core
algorithm in the SWVA, is analyzed. Figure [ displays
the average training time (top) and execution time per
sample (bottom), with the standard deviation bars, as
a function of the number of software components in
the different system versions that were tested. Note that
we have implemented the ARNN using TensorFlow on
Python, and that these measurements were taken using
the CPU of a PC with 32 GB of RAM and AMD Ryzen

7 3.70 GHz processor. In addition, the training of the
ARNN is performed for 100 epochs with approximately
10 samples at each fold of cross-validation.

We see that while the training time is in the hundreds
of seconds, the testing time is under ten milliseconds,
so that trust in the 6G software can be frequently estab-
lished, whenever new software versions or applications
are uploaded, or when the interconnections between
software components are changed.

IV. CONCLUSIONS

In an interconnected system of software components
that may be distributed on different hardware units,
when some individual components have vulnerabilities,
it is difficult to determine how such local vulnerabilities
may affect other components. Thus, multiple component
software systems may reduce trust in future software
intensive communication systems such as 6G.

To improve trust in such systems and automati-
cally test their vulnerability, we have developed the
System-Wide Vulnerability Assessment (SWVA) frame-
work based on a specific ARNN model which attempts
to infer whether some interconnected component may be
affected by the security breaches of other components.

We have evaluated the performance of the SWVA
framework for 13 different versions of GitHubCrawler,
a real-world software system. We have also compared
the results of SWVA with several well-known ML mod-
els. Our results indicate that the ARNN-based SWVA
successfully assesses the system-wide vulnerability level
and outperforms other ML models by achieving over
85% median accuracy. In addition, the ARNN is shown
to have a reasonable computation time —with about
200 s of training time and a very low, under 10 ms
execution time for an 1l-component system. We also
provide insight into its scalability by varying the number
of software components.

In future work we will address an application environ-
ment where new software modules and APIs are being
injected into the system, or updated, by a wide commu-
nity of users. To this effect, we plan to adapt the SWVA
framework to systems of interconnected components
whose number and connections change dynamically over
time, so that the structure of the ARNN, i.e., its neurons
and connection weights, may evolve and learn from
successive versions of a large software system.
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