
J. Math. Phys. 52, 042104 (2011); https://doi.org/10.1063/1.3574889 52, 042104

© 2011 American Institute of Physics.

Riccati equation and the problem of
decoherence II: Symmetry and the solution
of the Riccati equation
Cite as: J. Math. Phys. 52, 042104 (2011); https://doi.org/10.1063/1.3574889
Submitted: 13 June 2010 • Accepted: 17 March 2011 • Published Online: 08 April 2011

Bartłomiej Gardas

ARTICLES YOU MAY BE INTERESTED IN

Riccati equation and the problem of decoherence
Journal of Mathematical Physics 51, 062103 (2010); https://doi.org/10.1063/1.3442364

Green's function for the time-dependent scattering problem in the fractional quantum
mechanics
Journal of Mathematical Physics 52, 042103 (2011); https://doi.org/10.1063/1.3571969

Notes on the Riccati operator equation in open quantum systems
Journal of Mathematical Physics 53, 012106 (2012); https://doi.org/10.1063/1.3676309

https://images.scitation.org/redirect.spark?MID=176720&plid=1390363&setID=406887&channelID=0&CID=492528&banID=520423058&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=b755bf56eb94287608bc90cfbba083e3b07358f2&location=
https://doi.org/10.1063/1.3574889
https://doi.org/10.1063/1.3574889
https://aip.scitation.org/author/Gardas%2C+Bart%C5%82omiej
https://doi.org/10.1063/1.3574889
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.3574889
https://aip.scitation.org/doi/10.1063/1.3442364
https://doi.org/10.1063/1.3442364
https://aip.scitation.org/doi/10.1063/1.3571969
https://aip.scitation.org/doi/10.1063/1.3571969
https://doi.org/10.1063/1.3571969
https://aip.scitation.org/doi/10.1063/1.3676309
https://doi.org/10.1063/1.3676309


JOURNAL OF MATHEMATICAL PHYSICS 52, 042104 (2011)

Riccati equation and the problem of decoherence II:
Symmetry and the solution of the Riccati equation

Bartłomiej Gardasa)

Institute of Physics, University of Silesia, PL-40-007 Katowice, Poland

(Received 13 June 2010; accepted 17 March 2011; published online 8 April 2011)

In this paper we revisit the problem of decoherence by applying the block operator
matrices analysis. The Riccati algebraic equation associated with the Hamiltonian
describing the process of decoherence is studied. We prove that if the environment
responsible for decoherence is invariant with respect to the antilinear transformation
then the antilinear operator solves the Riccati equation in question. We also argue
that this solution leads to neither a linear nor an antilinear operator similarity matrix.
Therefore, we cannot use the standard procedure for solving a linear differential
equation (e.g., Schrödinger equation). Furthermore, the explicit solution of the Riccati
equation is found for the case where the environmental operators commute with each
other. We discuss the connection between our results and the standard description
of decoherence (one that uses the Kraus representation). We show that the reduced
dynamics we obtain does not have the Kraus representation if the initial correlations
between the system and its environment are present. However, for any initial state of
the system (even when the correlations occur) reduced dynamics can be written in a
manageable way. C© 2011 American Institute of Physics. [doi:10.1063/1.3574889]

I. INTRODUCTION

Recently, the connection between a problem of decoherence and the Riccati operator equation
was established (for details see Refs. 1 and 2, and references therein). Moreover, it was shown that a
wide class of time-dependent quantum systems, precisely the ones that describe a qubit Q interacting
with the environment E and defined by the following Hamiltonian:

HQE (t, β) = HQ(t, β) ⊗ IE + IQ ⊗ HE + f (σ3) ⊗ V, (1)

where the Hamiltonian HQ(t, β) of the qubit alone is given by

HQ(t, β) = βσ3 + α (σ1 cos(ωt) + σ2 sin(ωt)) , (2)

where α, β ∈ R, can be effectively simplified to the time-independent problem. Namely the one
governed by the Hamiltonian HQE (0, β) ≡ HQE . The connection between the reduced dynamics3

of those models can be summarized in the following formula:

ρ̄t = Vtρt (β̄)V †
t , (3)

where β̄ := β − ω/2 plays the role of effective parameter and Vt := diag(e−iωt/2, eiωt/2) is the uni-
tary (similarity) transformation. Here, ρ̄t is the solution (reduced dynamics) of the system identified
with the time-dependent Hamiltonian HQE (t, β) and ρt (β) representing the reduced dynamics of
the model described by the Hamiltonian HQE . An explicit dependence ρ̄t of β was omitted. The
meaning of the symbols we used in Eqs. (1) and (2) is standard. Furthermore, it was found that this
time-independent problem can be solved in two ways. One can either resolve the Riccati operator
equation:

αX2 + X (H+ + β) − (H− − β)X − α = 0, (4)

a)Electronic mail: bartek.gardas@gmail.com.

0022-2488/2011/52(4)/042104/10/$30.00 C©2011 American Institute of Physics52, 042104-1

http://dx.doi.org/10.1063/1.3574889
http://dx.doi.org/10.1063/1.3574889
http://dx.doi.org/10.1063/1.3574889
mailto: bartek.gardas@gmail.com


042104-2 Bartłomiej Gardas J. Math. Phys. 52, 042104 (2011)

where H± := HE ± V , or solve the following Schrödinger equation (we work with the units � = 1):

i�̇t = Ht�t , Ht =
[

HE z∗
t Vβ

zt Vβ HE

]
, (5)

with the initial condition �0 ≡ �. In Eq. (5) �t = [ψt , φt ]T ∈ H ⊕ H, zt = e−i2αt and Vβ = V
+ βIE . In the description above it was assumed that H is a separable Hilbert space (possibly
infinite-dimensional) and HE and V are the Hermitian operators acting on it. In this paper the
Riccati equation RH [X ] = 0, where

RH [X ] = X B X + X A − C X − B† (6)

is associated with the following Hamiltonian:

H =
[

A B
B† C

]
. (7)

In turn if the solution of the equation RH [X ] = 0 exists, it may be used to diagonalize operator
matrix H . The following equality holds true:

S−1
X H SX =

[
A + B X 0

0 A − (X B)†

]
, (8)

where S−1
X stands for the inversed operator matrix to

SX =
[
IE −X†

X IE

]
. (9)

The Riccati equation (4) is associated with the Hamiltonian HE Q . On the other hand the Riccati
equation related to the Hamiltonian Ht reads

X (z∗
t Vβ)X + X HE − HE X − zt Vβ = 0. (10)

One should keep in mind that a given operator A acting on the space C2 ⊗ H may be thought of as
a block operator matrix, since the following isomorphism holds C2 ⊗ H = H ⊕ H.

It is worth mentioning that in spite of the fact that the connection between operator matrices Ht

and HQE is well defined and the solution of Eq. (10) can be easily obtained (indeed, it is given by
Xt = ztIE ) the solution of Eq. (4) is still missing. Please note that although Xt is known it cannot
be effectively used to resolve Eq. (5) because of its explicit time dependence. Nevertheless it allows
us to diagonalize the Hamiltonian Ht , namely,

S†
zt

Ht Szt =
[

H+ + βIE 0
0 H− − βIE

]
≡ H d , (11)

where the unitary matrix Szt is defined as

Szt = 1√
2

[
IE −z∗

t IE

ztIE IE

]
= 1√

2

(
1 −z∗

t
zt 1

)
⊗ IE . (12)

We want to emphasize that Eq. (10) and the slight modification

z∗
t X Vβ X + X HE − HE X − zt Vβ = 0, (13)

used by the author in a previous manuscript on the subject,2 are equivalent only if the solution is
assumed to be a linear operator. This seems to be justified, especially if one expects X to represent
an observable. However, it does not need to be true. Thus in this manuscript we will not restrict the
analysis to linear operators only.

The purpose of this manuscript is twofold. First, we show that if the environment is (i.e., the
operators HE and V are) invariant under antilinear transformation (Sec. II), then this antilinear
operator is the solution of the Riccati equation (10). We also indicate that the mentioned symmetry
may be used to diagonalize the Hamiltonian related with Eq. (4), although it does not solve this
equation. Next, in Sec. III we argue that the solution we obtained cannot be applied to solve Eq. (5).
The problem occurs because standard methods provided by the theory of the differential equations
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demand that the operator is not antilinear. The reduced dynamics of the system under consideration
is given in Sec. V.

Second, in Sec. IV we study the case where [HE , V ] = 0 and we give the exact solution of the
Riccati equation (4) for this situation. This is a direct generalization of the recently found solution
for the particular operator defining the spin-environment. Finally, in Sec. VI we compare our method
with the standard approach based on the operator sum representation. We also discuss the possibility
of obtaining an operator (or Kraus) sum representation in the case where the initial correlations
between the system and its environment are present.

II. SYMMETRY AND THE SOLUTION TO THE RICCATI EQUATION

Let τ1 and τ2 be an antilinear symmetry for HE and V , such that τ 2
i = IE , (or τi = τ−1

i ) for
i = 1, 2, respectively. By definition, it means that [HE , τ1] = 0 and [V, τ2] = 0. The symmetry
operator is an involution, i.e., τ 2 = IE . Therefore for a given operator A the condition [τ, A] = 0 is
equivalent to the equality τ Aτ−1 = A. Operators that fulfill the last equality are invariant under the
action of τ and are called τ−symmetric. Furthermore, the statement that an operator τ acting on H
is antilinear has the following meaning:

τ (aψ + bφ) = a∗τψ + b∗τφ, (14)

for every ψ , φ ∈ H and a, b ∈ C. We wish to emphasize that in the finite-dimensional case the
existence of the aforementioned symmetry is ensured by the theorem of Ali Mostafazadeh4 which
states that every diagonalizable pseudo-Hermitian (in particular the Hermitian) operator H with the
discrete spectrum has an antilinear and anti-Hermitian symmetry τ . Moreover, this symmetry is an
involution, i.e., τ 2 = IE , if H is a Hermitian operator, i.e., H = H †. The proof of this theorem
provides the explicit construction of τ . Let us additionally assume that τ1 = τ2 := τ , which means
that the operators HE and V possess a common symmetry τ .

If one allows X to be an antilinear operator then Eq. (10) can be rewritten in the following form:

RHt [X ] = zt
(
X Vβ X − Vβ

) + [X, HE ]. (15)

From this equation we can readily see that R[τ ] = 0, i.e., the symmetry τ is the solution we
were seeking. In particular, if the Hamiltonians HE and V are (or roughly speaking the E system
is) PT −symmetric (or T -symmetric) where P and T stand for the parity and the time-reversal
operators, respectively, then X = PT (X = T ), i.e., the PT (T ) operator solves Eq. (10). This is a
very interesting and rather unexpected result that the famous PT (T ) symmetry is the solution of
the Riccati equation we study.

For instance, it can be easily proven that if both HE and V are symmetric operators, that is to
say H T

E = HE and V T = V , where by “T ” we denote the operation of transposition, then it implies
that RHt [K ] = 0, where K is a complex conjugate operator:

Kψ = ψ∗, ψ ∈ H. (16)

Above “∗” stands for the standard complex conjugation operation. This operator possesses the
following properties:

(a) K = K † (i.e., it is a Hermitian operator),
(b) K K † = IE (i.e., it is a unitary operator),
(c) K 2 = IE (i.e., it is an involution).

Moreover, K is an antilinear operator. The listed properties follow immediately from (16). Note
that for any Hermitian operator (matrix) A the condition AT = A means that A is K−symmetric, i.e.,
[A, K ] = 0. To see this observe that K transforms any operator A in accordance with the following
rule:

K AK † = A∗. (17)
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In addition, if one assumes that A is Hermitian, i.e., A = A† and uses properties (a) then from the
equation above we have

K AK = AT , (18)

where we stated the fact that A† = (AT )∗. Clearly, for the symmetric matrix K AK = A or [A, K ]
= 0. Another way to see that RHt [K ] = 0 is to rewrite R[K ] as

RHt [K ] = zt (V
T
β − Vβ) + (H T

E − HE )K . (19)

Evidently, for the symmetric operators the right side of Eq. (19) vanishes.
At the end of this section we show how to diagonalize the operator HQE using the symmetry τ .

First, note that by introducing the unitary operator U such that

U = 1√
2

[
IE iIE

iIE IE

]
= 1√

2

(
1 i
i 1

)
⊗ IE , (20)

we obtain U † HQEU = H̄ , where

H̄ =
[

HR Vαβ

V †
αβ HR

]
(21)

and Vαβ := αIE − iVβ . Because τ Vαβτ = V †
αβ , from Eq. (21) we see that RH̄ [τ ] = 0, i.e., the

symmetry τ is the solution of the Riccati equation associated with the Hamiltonian (21). Therefore,
the matrix S̄τ := U Sτ diagonalizes the Hamiltonian HQE . Specifically, the following equation holds
true:

S̄†
τ HQE S̄τ =

[
HR + Vαβτ 0E

0E HR − V †
αβτ

]
. (22)

Keep in mind that the operator Vαβ is not Hermitian, while the operator Vαβτ is. Interestingly, we
diagonalized the block operator matrix HQE without directly resolving the Riccati algebraic equation
associated with it. Note, this is found to be possible if there exists a matrix T such that it transforms
a given operator matrix A to another Ā viz Ā = T −1 AT and the Riccati equation RĀ[X ] = 0 related
to Ā has the solution X Ā. If that is the case, one may construct similarity operator matrix, namely,
SX Ā

T that diagonalizes A. We see that if A = HQE , then T = U [Eq. (20)] and Ā = H̄ [Eq. (21)],
thus the procedure is working. Therefore, although this strategy is worthy of further study we will
not focus on this subject in this paper.

III. THE PROBLEM WITH THE SCHRÖDINGER EQUATION

The results of the paper2 and Sec. II show that RHt [zt ] = 0 and RHt [τ ] = 0, where RHt [X ]
stands for the left side of Eq. (10). Note, the second solution (X = τ ) we obtained, in contrast to the
first one (Xt = zt ), is time independent. Therefore, one may think that the second solution has the
advantage because it allows one to construct the operator matrix Sτ that diagonalizes the Hamiltonian
(5) and does not depend on time. Indeed, this is the case; however, one serious drawback arises. To
see this clearly, we give an explicit form of the matrix Sτ . In agreement with Eq. (9) it takes the form
[compare this with Eq. (12)]

Sτ = 1√
2

[
IE −τ

τ IE

]
. (23)

Because the symmetry τ is an involution operator (τ 2 = IE ), Sτ is the unitary matrix (Sτ S†
τ = IE ).

We see that the similarity transformation (23) is neither a linear nor an antilinear operator. In
particular, one may easily verify that Sτ i = i S†

τ . All these difficulties are a direct consequence of the
fact that the operator τ is antilinear. As a result, we cannot use the standard procedure that allows us
to solve a linear, differential equation to resolve the Schrödinger equation i |�̇t 〉 = Ht |�t 〉. Indeed,
because of the presence of the factor i on the left side of the Schrödinger equation we cannot apply
the |�t 〉 = Sτ |�t 〉 transformation to reduce it to the form i |�̇t 〉 = H d

t |�t 〉, where H d
t stands for
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the diagonal form of Ht . Another technique is needed to resolve these difficulties. Unfortunately,
at the present time there is none. Of course, the same problems occur when one tries to resolve the
equation i |�̇t 〉 = HQE |�t 〉 using Eq. (22).

Notice that according to the procedure explained in Ref. 2 we have [compare with Eq. (11)]

S†
τ Ht Sτ =

[
HE + z∗

t Vβτ 0
0 HE − zt Vβτ

]
≡ H d

t . (24)

Comparing Eqs. (11) and (24) one can learn that the solution Xt = zt leads to the time-independent
diagonal form H d of the operator Ht , but the transformation matrix St does depend on time. An
opposite situation takes place in the case of the second solution X = τ , i.e., the diagonal form H d

t
is time-dependent and transformation matrix Sτ does not depend on time.

IV. SOLUTION OF THE RICCATI EQUATION

Recently, the solution of the model specified by Eq. (1) was given in the case where H =
N⊗

n=1
C2

and the operator HE , V are defined as (for detailed discussion see Ref. 5)

HE =
N∑

n=1

ωnσ3(n), V =
N∑

n=1

gnσ3(n), (25)

where ωn and gn are certain constants defining the frequencies (of the spin-bath) and the coupling
constant, respectively. For every n ≤ N the operator σ3(n) is understood as σ3(n) = I2 ⊗ ... ⊗ σ3 ⊗
... ⊗ I2, where I2 is a 2 × 2 identity matrix and σ3 is the usual Pauli matrix. Note that the operators
above commute, i.e., [HE , V ] = 0. We will extend results obtained in Ref. 5 to the arbitrary operators
that commute with each other.

If one assumes that the operators HE and V commute, then they have a common set of
eigenvectors. Henceforward, we will assume that the eigenvalues of HE and V are all discrete and
not degenerated. Furthermore, the spectrum of a given operator A will be denoted by σ (A). As a
summary, one can write the following eigenvalue problems for HE and V :

HE |φn〉 = En|φn〉, V |φn〉 = Vn|φn〉, (26)

where En ∈ σ (HE ) and Vn ∈ σ (V ). Here, the index n goes through the set of all integer numbers or
through some subset of it. We wish to emphasize that the assumption of the discreteness and lack of
degeneration of the spectrum of the operators in question is not crucial in our analysis. In fact, it can
be easily overcome (however, we will not address this technical issue in the current manuscript).

Note, the solution X of Eq. (4) is a function of the operators H± defined in Eq. (4). Since the
operators HE and V commute with each other, so do the operators H±. Therefore, [X, H±] = 0 and
the Riccati equation (4) can be simplified to the following form:

αX2 + 2Vβ X − α = 0. (27)

One can observe that if α = 0 then X0 = 0E is the solution of Eq. (27). In this case matrix HQE

is already in the diagonal form. Yet, the operator X0 may not be the only solution of the equation
RHQE [X ] = 0.

In order to obtain the solution for the case where α 
= 0 we will apply the spectral theorem for
Hermitian operators. From Eq. (27) one can readily see that X = f (Vβ), where the function f takes
the form

f (λ) = −λ + √
λ2 + α2

α
, λ ∈ σ (Vβ), (28)

and σ (Vβ) = σ (V + βIE ). One may also write the operator f (V ) as:

f (V ) =
∑

λ∈σ (Vβ )

f (λ)|λ〉〈λ|. (29)
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Thus, in view of Eqs. (26) and (29) X takes the final form

X =
∑

n

xn|φn〉〈φn|, (30)

where abbreviation xn ≡ f (Vn + β) was introduced. Note that xn are the eigenvalues of the operator
X , that is, X |φn〉 = xn|φn〉. The operator above is Hermitian, i.e., X = X†. Since for every parameter
α and β the function f specified by Eq. (28) takes positive values, the eigenvalues xn are positive.
Therefore, the solution we obtained in Eq. (30) is a positively defined operator. Moreover, as was
pointed out in Ref. 5 there exists at least one more solution of Eq. (27), where HE and V were
chosen to be the ones that describe the spin-bath [see Eq. (25)]. This situation also occurs when the
operators HE and V have a more general form. The second solution is given by

f̄ (λ) = −λ − √
λ2 + α2

α
, λ ∈ σ (Vβ). (31)

It can be easily verified that this function determines the negatively defined operator, that is to say

X̄ =
∑

n

x̄n|φn〉〈φn|, (32)

and x̄n := f̄ (Vn + β). Observe that X̄ = X̄†, i.e., this operator is also Hermitian. Note also that
f (λ) f̄ (λ) = −1, for λ ∈ σ (Vβ). This may be verified directly, or may also be thought of as a
consequence of the Vieta’s formulas, if one thinks of f and f̄ as the solution of the quadratic
equation: αx2 + λx − α = 0, for λ ∈ σ (Vβ). We want to emphasize, however, that the Riccati
equation (27) is not a simple quadratic polynomial, even though it may appear so. As a result there
might exist other solutions of this equation that are not specified by the well-known formula for
roots of the quadratic equation.

At this point natural questions may by asked, for instance, which operator, X or X̄ (or any
other, if it exists) should be used to diagonalize the block operator matrix HQE ? What difference
(if any) does it make? Of course, each solution of the Riccati equation will diagonalize the operator
matrix with which it is associated. Nevertheless, in certain cases it may by convenient to choose one
solution instead of the other. For example, by studying limiting cases like α → 0. Indeed, if β 
= 0,
then we find that (recall that f ∼ 1/ f̄ )

lim
α→0

f = 0, lim
α→0

f̄ = −∞. (33)

Therefore, X → 0E while X̄ → −∞ as α goes to 0. This means that the first solution is a continuous
function of the parameter α, including the α = 0 value even though the second operator, i.e., X̄ ,
does not exist in that point at all. As a result, if in the process of analysis a person decides to use the
second solution X̄ it may encounter serious problems taking the limits α → 0. Furthermore, as was
mentioned earlier, the first solution is a positively defined operator and is more suitable to manage.
Henceforward, we will restrict further analysis to the operator X given by Eq. (30) only.

V. THE EXACT REDUCED DYNAMICS

We now use the solution above to construct the exact reduced dynamics of the model described
by HQE . Obtaining the exact reduced dynamics of the model under consideration, namely, the one
defined by Eq. (1), can be easily accomplished using Eq. (3), as we mentioned earlier. We begin
with the construction of the evolution operator Ut generated by the Hamiltonian HQE . Foremost, let
us recall that the evolution operator Ut may be computed by applying the following formula:

Ut = SX exp(−i Hdt)S−1
X , (34)

where Hd stands for the diagonal form of the Hamiltonian HQE and in agreement with Eq. (8) it
takes the form

Hd =
[

H+ + αX 0E

0E H− − αX

]
, (35)
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where X is given by (30). Next let us observe that the inverse operator S−1
X is

S−1
X =

[
g(X ) 0E

0E g(X )

]
S†

X

≡ G(X )S†
X ,

(36)

where g(X ) is the function of X and it is given by

g(λ) = 1

1 + λ2
, λ ∈ σ (X ). (37)

Note that [X, V ] = 0, thus X and V have the same eigenstate, namely, |φn〉. Since X = f (Vβ),
the eigenvalues xn of X are given by xn = f (Vn + β). Obviously, σ (X ) = f (σ (Vβ)). The same
arguments lead to the conclusion that g(X )|φn〉 = (g ◦ f )(En + β)|φn〉, this implies that σ (g(X ))
= (g ◦ f )(σ (Vβ)). Using Eqs. (34)–(36) the final form of the evolution operator of the total system
can be written as

Ut = G(X )

[
U+

t + X2U−
t (U+

t − U−
t )X

(U+
t − U−

t )X U−
t + X2U+

t

]
, (38)

where U±
t := exp(−i(H± ± αX )t). Equation (38) represents the evolution operator of the total

system Q + E and it can be easily applied to any (not only to the factorable one) initial state ρQE

of that system, since it is written in a 2 × 2 block operator matrix. At this point reduced dynamics
ρQ(t) may be obtained in the form

ρQ(t) = TrE (UtρQEU †
t ), (39)

where TrE is the partial trace operation. Note that in general case this may not be easy to accomplish,
even though Eq. (39) might indicate so. The reason is that to compute partial trace TrE one needs to
write operator ρQE (t) in the 2 × 2 block operator form.

VI. KRAUS REPRESENTATION

It is interesting to see how the results of Sec. IV and Sec. V are related to the standard description
of the completely positive map via so called Kraus representation:

ρQ(t) =
∑

μ

Kμ(t)ρQ Kμ(t)†. (40)

The Kraus matrices Kμ(t) satisfy the following completeness relation
∑

μ Kμ(t)Kμ(t)† = IQ . It is
well established that it is possible to derive Eq. (40) from Eq. (39) assuming that no correlations
between the system and its environment are present initially.3, 6 The generalization to the case when
the initial state is not factorable is also possible.7, 8 Nevertheless, in practice finding the Kraus
matrices is impossible in most cases. We will show how to construct those matrices for the system
we study. To accomplish this goal let us rewrite SX in the following manner:

SX =
∑

n

(
1 −xn

xn 1

)
⊗ |φn〉〈φn|

≡
∑

n

Fn ⊗ |φn〉〈φn|.
(41)

We also used resolution of the identity IE in the |φn〉 basis, that is to say IE = ∑
n |φn〉〈φn|. Note

the inverse operator S−1
X can be written in a similar fashion, namely,

S−1
X =

∑
n

F−1
n ⊗ |φn〉〈φn|, (42)

where F−1
n is the inverse matrix of Fn . Since we have det(Fn) = 1 + x2

n > 0 it always exists. Due
to the fact that F−1

n = F†
n /det(Fn) holds we can rescale Fn , namely, Fn → 1/

√
det(Fn)Fn so it
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becomes the unitary operator. Furthermore, the Hamiltonian (35) may be rewritten as

Hd =
∑

n

(
h+

n 0
0 h−

n

)
⊗ |φn〉〈φn|

≡
∑

n

H d
n ⊗ |φn〉〈φn|,

(43)

where h±
n := (E±

n ± β) ± αxn and E±
n := En ± Vn are the eigenvalues of H± (note σ (H±) = σ (HE ±

V ))). Combining Eq. (34) and Eqs. (41)–(43) we obtain

Ut =
∑

n

Un(t) ⊗ |φn〉〈φn|, (44)

with the unitary matrices Un(t) = exp(−i Hnt) and Hn = F−1
n H d

n Fn . One can see from the form of
the evolution operator above and Eq. (39) that we finally have

ρQ(t) =
∑

n

ρnUn(t)ρQUn(t)†

≡
∑

n

Kn(t)ρQ Kn(t)†.

(45)

In Eq. (45) ρn := 〈φn|ρE |φn〉 and the Kraus matrices are defined as Kn(t) := √
ρnUn(t). Therefore,

the operator sum representation of the model we study is found.

A. Connection with the Riccati diagonalization

Interestingly, the explicit form of the matrix Hn reads

Hn =
(

E+
n + β α

α E−
n − β

)
, (46)

and it does not depend on the eigenvalues xn of the operator X . Therefore, one may draw the
conclusion that the Kraus matrices obtained in Eq. (45) do not depend on xn . To solve this puzzle,
notice first that in order to compute the Kraus matrices one needs to determine the “evolution”
operator Un(t). The latter requires diagonalization of its “generator” Hn . Because Hn = F−1

n H d
n Fn

the dependence of the Kraus matrices on the eigenvalues xn is somewhat “hidden,” in the similarity

matrix Fn . It is important to realize that the diagonalization procedure Hn
Fn−→ H d

n differs from the
standard diagonalization routine, which is based on the eigenvalue problem for the operator Hn .
This new kind of algorithm is called Riccati diagonalization and was recently introduced in Ref. 9.
One may see that it arises naturally in our analysis. Let us also recall that the similarity matrix Fn

is composed of the nth eigenvalue xn of the operator X , which is the solution of Riccati equation
(27), while the eigenvalues of the matrix Hn are the solution of the following characteristic equation
associated with Hn:

λ2 − λTr(Hn) + det(Hn) = 0. (47)

We have already found its solution indirectly in Eq. (43). The roots of this equation are given by
λ±

n = h±
n . The corresponding eigenvector (not normalized) reads

λ+
n =

(−x̄n

1

)
, λ−

n =
(−xn

1

)
. (48)

Therefore, the similarity (not unitary) matrix Gn = (λ+
n ,λ−

n ), the one that also diagonalizes Hn takes
the form

Gn =
(−x̄n −xn

1 1

)
. (49)

The connection between similarity matrices Fn and Gn follows. If Fn ≡ (ξ 1

n, ξ
2

n), then ξ 1

n = xn · λ+
n

and ξ 2

n = λ−
n , since xn x̄n = −1. Therefore the matrix Fn is also composed of the eigenvectors of Hn ,
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yet the matrices Gn and Fn are not similar, i.e., the invertible matrix Pn , such that Gn = Pn Fn P−1
n ,

does not exist. It immediately follows from the fact that Tr(Gn) 
= Tr(Fn) as well as det(Gn) 
=
det(Fn). Because the similarity transformation preserves the trace and determinant, the matrices
Gn and Fn cannot be similar. From the consideration above the main difference between the two
methods can be easily seen. In the standard approach one needs to determine the eigenvalues λ±

n of
Hn , as was mentioned above [i.e., one needs to solve Eq. (47)]. On the other hand, to use the Riccati
diagonalization to our advantage we need to find xn [i.e., resolve Riccati equation (27)]. Note that
in the case of the ordinary matrix, Eq. (27) becomes the quadratic equation, but it differs from the
characteristic Eq. (47). In our model the relation between λ±

n and xn may be summarized as

λ±
n = (E±

n ± β) ± αxn. (50)

B. Initial correlation

If the initial correlations between a system of interest and its environment are present, i.e., ρQE

takes the form

ρQE =
∑

i j

γi jρ
i
Q ⊗ ρ

j
E , (51)

for some not factorable complex number γi j , namely, γi j 
= γ i
1γ

j
2 , then reduced dynamics (39) cannot

be written in the form (40). This not so obvious, since there are cases in which, even though initial
correlations are present, the reduced dynamics can still be written in the Kraus form.10

Yet, for a finite dimensional environment there exists a simple criterion.8 It allows one to verify
when the given state ρQ(t) possesses the operator sum representation (40) if initial correlations are
present. The necessary and sufficient condition for the later to hold true for any initially correlated
state is that the joint dynamics has to be locally unitary, i.e., the evolution operator Ut for the total
system needs to be of the form

Ut = UQ(t) ⊗ UE (t). (52)

The operator UQ(t) (UE (t)) describes the evolution of the system Q (E) alone. Observe that if the
evolution of the total system is not locally unitary that this does not necessarily imply that ρQ(t)
does not possess Kraus representation for a particular initially correlated state ρQ . From Eq. (44)
one can readily see that the evolution operator (38) does not have the form (52) as may be expected.
Note that from (51) and Eq. (44) we obtain

ρQ(t) =
∑

n

∑
i j

εn
i jUn(t)ρi

QUn(t)†, (53)

where εn
i j = γi j 〈φn|ρ j

E |φn〉. Therefore, even if in this general case the reduced dynamics cannot be
written in the operator sum representation, one can still describe the evolution of the system in a
manageable way.

VII. SUMMARY

In this paper we investigated the Riccati algebraic equation associated with the Hamiltonian
modeling the process of decoherence in the case of one qubit. It was shown that if the environment
is τ−symmetric, where τ is an antilinear involution, then τ is the solution of the Riccati equation
under consideration. We indicated that even though the solution of the Riccati equation has been
found it cannot be applied to obtain the reduced dynamics, due to the problem with a standard
procedure allowing one to solve the Schrödinger equation. We wish to emphasize that this result
does not contradict with the previous paper,2 where we claim that the solution of the Riccati equation
enables us to rewrite the evolution operator generated by the Hamiltonian HQE as a 2 × 2 block
operator matrix. Of course, the reason that problems occur is that the solution of the Riccati equation
is antilinear.
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Furthermore, we provided a full resolution of the problems introduced in Ref. 2 for the case
when operators defining the environment commute with each other (regardless of the existence
of any symmetry in the system). We also derived the operator sum representation for that model
assuming no correlations between the systems are present initially. Moreover, we also showed how
to obtain the solution if the initial state of the total system is not factorable. This result is a direct
generalization of the system discussed in Ref. 5. We also indicated that the recently derived schema
of so called Riccati diagonalization arises naturally in the model we considered.
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