
O

S
q
T
Ł
a

b

c

d

A

K
S
T
Q
I
R

C

1

t
i
O
a
t
c
i
9

h
R

SoftwareX 31 (2025) 102257

A
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

riginal software publication

pinGlassPEPS.jl: Tensor-network package for Ising-like optimization on

uasi-two-dimensional graphs
omasz Śmierzchalski a, Anna M. Dziubyna b,c, Konrad Jałowiecki a, Zakaria Mzaouali a,d,
ukasz Pawela a,∗, Bartłomiej Gardas a, Marek M. Rams b
Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
Jagiellonian University, Institute of Theoretical Physics, Łojasiewicza 11, 30-348 Kraków, Poland
Jagiellonian University, Doctoral School of Exact and Natural Sciences, Łojasiewicza 11, 30-348, Kraków, Poland
Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076, Tübingen, Germany

 R T I C L E I N F O

eywords:
pin-glass problems
ensor network contractions
UBO
sing model
andom Markov field

 A B S T R A C T

This work introduces SpinGlassPEPS.jl, a software package implemented in Julia, designed to find low-
energy configurations of generalized Potts models, including Ising and QUBO problems, utilizing heuristic
tensor network contraction algorithms on quasi-2D geometries. In particular, the package employs the Projected
Entangled-Pairs States to approximate the Boltzmann distribution corresponding to the model’s cost function.
This enables an efficient branch-and-bound search (within the probability space) that exploits the locality of the
underlying problem’s topology. As a result, our software enables the discovery of low-energy configurations for
problems on quasi-2D graphs, particularly those relevant to modern quantum annealing devices. The modular
architecture of SpinGlassPEPS.jl supports various contraction schemes and hardware acceleration.
ode metadata

Current code version v1.4.1
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-25-00078
Legal Code License Apache 2.0
Code versioning system used git
Software code languages, tools, and services used Julia
Compilation requirements, operating environments & dependencies Julia 1.11, CUDA.jl v5, TensorOperations.jl, Memoize.jl
If available, Link to developer documentation/manual https://euro-hpc-pl.github.io/SpinGlassPEPS.jl/dev/
Support email for questions lpawela@iitis.pl
. Motivation and significance

SpinGlassPEPS.jl provides a robust software package designed
o find low-energy configurations for generalized Potts models [1],
ncluding Ising [2] or, equivalently, Quadratic Unconstrained Binary
ptimization (QUBO) problems. By leveraging heuristic tensor network
lgorithms, specifically, Projected Entangled-Pairs States (PEPS) [3–6],
he package enables efficient exploration of low-energy solutions within
omplex problem topologies. This capability is particularly significant
n the context of current quantum and classical annealing devices [7–
], where efficient and scalable solutions are essential.

∗ Corresponding author.
E-mail address: lpawela@iitis.pl (Łu. Pawela).

The significance of SpinGlassPEPS.jl lies in its ability to lower
the entry barrier to applying advanced tensor network (TN) methods
in classical optimization by offering clean, efficient (GPU-accelerated)
and modular software written in Julia. Our package functions both
as a standalone Ising solver and as a source of independent tools
for developing physics-inspired algorithms. It offers a modular ar-
chitecture that supports various contraction schemes and hardware
acceleration, making it adaptable to a wide range of problem instances.
SpinGlassPEPS.jl is specifically tailored to solve Ising and QUBO
problems on the topologies of near-term quantum annealers, such as
ttps://doi.org/10.1016/j.softx.2025.102257
eceived 4 February 2025; Received in revised form 25 May 2025; Accepted 30 Ju
vailable online 31 July 2025
352-7110/© 2025 The Authors. Published by Elsevier B.V. This is an open access a
ne 2025

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/softx
https://www.elsevier.com/locate/softx
https://github.com/ElsevierSoftwareX/SOFTX-D-25-00078
https://euro-hpc-pl.github.io/SpinGlassPEPS.jl/dev/
mailto:lpawela@iitis.pl
mailto:lpawela@iitis.pl
https://doi.org/10.1016/j.softx.2025.102257
https://doi.org/10.1016/j.softx.2025.102257
http://creativecommons.org/licenses/by/4.0/

T. Śmierzchalski et al. SoftwareX 31 (2025) 102257
Pegasus and Zephyr graphs [10,11]. The software has been extensively
benchmarked [12] on problems defined on these geometries.

2. Software description

SpinGlassPEPS.jl is a collection of Julia [13] packages imple-
menting heuristic tensor-network based algorithm to find low-energy
states and their corresponding energies (i.e., the spectrum) of general-
ized Potts model,
𝐸(𝒙) =

∑

⟨𝑚,𝑛⟩∈
𝐸𝑚,𝑛(𝑥𝑚, 𝑥𝑛) +

∑

𝑛∈
𝐸𝑛(𝑥𝑛), (1)

defined on a graph  = ( ,) specified by its edges,  , and vertices,
 . The method tackles a family of sparse two-dimensional graphs
called king’s graphs [14], see Fig. 1(b). A particular problem instance
is defined by real-valued functions, 𝐸𝑛(𝑥𝑛) and 𝐸𝑚,𝑛(𝑥𝑚, 𝑥𝑛), where 𝑛,
𝑚 ∈  .

In particular, this includes the Ising model,
𝐸(𝒔) =

∑

⟨𝑖,𝑗⟩∈
𝐽𝑖𝑗𝑠𝑖𝑠𝑗 +

∑

𝑖∈
ℎ𝑖𝑠𝑖, (2)

defined on ′ = ( , ), where 𝑖, 𝑗 ∈  , 𝐽𝑖𝑗 , ℎ𝑖 ∈ R and 𝑠𝑖 ∈ {−1, 1}.
The Ising model can be considered a special case of the Potts model,
and we extend this by allowing clusters of spin variables to be grouped
into effective Potts degrees of freedom with higher dimensions. This
approach enables the package to manage more complex quasi-2D graph
geometries, including those relevant to current quantum and classical
annealing device architectures.

The algorithm executes a branch-and-bound search [15] within the
probability space defined by the Boltzmann distribution at a specific
inverse temperature 𝛽. This search process involves constructing a
predefined number of the most probable local configurations of Potts
variables, progressing sequentially from one vertex to the next until
the entire system has been explored. The emphasis on king’s graphs is
incorporated into the algorithm at two distinct levels.

First, in calculating marginal probabilities, we employ a tensor
network representation of the classical Boltzmann distribution. For two-
dimensional systems, this representation takes the form of PEPS. The
marginal and conditional probabilities are derived from the contraction
of the tensor network. Although the problem of contracting these net-
works is formally #P-hard [16], we utilize an established approximate
(heuristic) framework to contract two-dimensional PEPS [5,6].

Furthermore, we leverage the locality of interactions within the
graph to expand the search space by merging partial trial configurations
that are equivalent in terms of the marginal conditional probabili-
ties considered by the algorithm. Specifically, partial configurations
with identical values of Potts variables on the boundary adjacent to
unexplored regions of the graph are combined. This approach also
enables the identification of information regarding local excitations in
the system. When two partial configurations share boundary variables,
they have a well-defined energy associated with the bulk variables,
where one configuration represents a local ground state and the other
an excitation localized in the bulk. By collecting such information
throughout the search, the algorithm generates a candidate for the
ground state along with a set of excited low-energy states, effectively
characterizing the low-energy manifold of the optimization problem.

The algorithm workflow is outlined in Fig. 1. The package is de-
signed with a modular architecture that captures the relationships
between the high-level concepts employed by the algorithm. This mod-
ularity enables the integration of various contraction schemes, lever-
aging the internal structures of individual tensors within the network,
and allows for hardware acceleration, all facilitated by the multiple
dispatch capabilities of the Julia language. Detailed explanations of the
algorithm’s mechanics, along with extensive benchmarks for Pegasus
and Zephyr geometries, relevant for D-Wave quantum annealers, are
provided in [12].
2
2.1. Software architecture

SpinGlassPEPS.jl is composed of three independent
sub-packages, each of which is responsible for the distinct elements of
the workflow, see Fig. 2. Namely,

• SpinGlassEngine.jl serves as the core package, consisting
of routines for executing the branch-and-bound method (with
the ability to leverage the problem’s locality) for a given Potts
instance. It also includes capabilities for reconstructing the low-
energy spectrum from identified localized excitations and pro-
vides a tensor network constructor.

• SpinGlassNetworks.jl facilitates the generation of an Ising
graph from a given instance using a set of standard inputs (e.g., in-
stances compatible with the Ocean environment provided by
D-Wave) and supports clustering to create effective Potts Hamil-
tonians.

• SpinGlassTensors.jl offers essential tools to create and
manipulate tensors that build the PEPS network, with support
for CPU and GPU utilization. It manages core operations on ten-
sor networks, including contraction, using the boundary Matrix
Product State approach [5]. This package primarily functions as
a backend, and users generally do not interact with it directly.

It is worth adding that all of these subpackages can be used as inde-
pendent tools for developing physics-inspired algorithms or serve as a
backend for other software.

2.2. Software functionalities

For Ising/QUBO problems, the package requires instances to be
provided in a specific format, similar to the one used in Stanford Gset
(reduced from Max-Cut) [17]. In this format, the spins are numbered
1 to 𝑁 and arranged in rows as 𝑖 𝑗 𝑣, where 𝑣 represents the coupling
value between vertices 𝑖 and 𝑗, or the local magnetic field when 𝑖 = 𝑗.

The algorithm produces a low-energy spectrum as its output, de-
tailing the states and their corresponding energies for the given input
instance. In addition, the package provides supplementary information,
such as the estimated probabilities of these states derived from the
approximate contraction of the tensor network.

The package’s modular structure offers a range of options to con-
trol various aspects of the main algorithm. These include the details
and control parameters of the tensor network contraction schemes,
the ability to utilize either CPU or GPU for low-level operations,
and the choice between constructing the tensor network in a dense
or sparse format. The sparse format leverages the internal structures
of individual tensors and is particularly essential for handling large
clusters, such as those relevant to Pegasus and Zephyr graphs. Detailed
information on all required and optional parameters is available in the
documentation [18].

2.3. Work division between CPU and GPU

Our package allows the user to use either CPU-only computation or
to offload parts of the computation to a dedicated GPU. Currently, only
one GPU is utilized. As shown in Fig. 1 the main part of the algorithm
is the contraction of the constructed PEPS network. We perform this
contraction using the TensorOperations.jl [19] package, which
allows us to seamlessly switch computational backends (CPU or GPU).
When in the CPU mode, the tensor expressions are converted into native
Julia code run on Julia’s linear algebra backend (either OpenBLAS or
MKL).

In the GPU mode, the TensorOperations.jl package translates
the tensor expressions into calls to Julia’s cuTENSOR [20] wrapper.
This approach allows us to achieve high levels of code reusability and
readability while maintaining high performance in both CPU and GPU
computation. Finally, the computations have a relatively small memory
footprint. For example, all the examples run on a consumer-grade GPU
with 24 GB of vRAM.

T. Śmierzchalski et al. SoftwareX 31 (2025) 102257
Fig. 1. Execution flow. The Ising problem in (a) is mapped to a Potts Hamiltonian defined on a king’s graph in (b). This allows the partition function of that Hamiltonian to be
represented as a PEPS tensor network on a square lattice, as in (c). The main algorithm executes the branch and bound search in the probability space, building the most probable
configurations by adding one Potts variable at a time. The marginal conditional probabilities follow from an approximate contraction of the corresponding tensor network in (d).
The full branch and bound sweep results in a candidate for the most probable (ground state) configuration in (e), together with a set of localized excitations on top of it in (f).
Fig. 2. Interoperability between all SpinGlassPEPS.jl packages. The input Ising problem file is processed by SpinGlassNetworks.jl, transforming it into a Potts
Hamiltonian. The latter is then passed to SpinGlassEngine.jl, together with solver’s and contraction’s parameters. The SpinGlassEngine.jl module serves as the core
branch and bound solver. It passes the problem of marginal probabilities’ calculation to SpinGlassTensors.jl, that constructs and approximately contracts the corresponding
tensor network. Finally, the solution (ground state, excitations, and their energies) is returned to the user as an output.
3. Illustrative examples

We illustrate the capabilities and modularity of SpinGlass
PEPS.jl by addressing two distinct problems. First, we solve an Ising
problem defined on a quasi-2D graph, see Fig. 1(a). Although this
example focuses on a specific topology, the approach is applicable to
other structures, including those used in D-Wave systems. The second
example tackles an inpainting problem formulated through the Potts
model [21–23].

While the Ising model on a king’s graph should compute relatively
fast, the latter two examples (an inpainting example and a small
pegasus-type graph) can take a long time to finish if run on the CPU
only. It is recommended to run them using GPU.

3.1. Ising model on a king’s graph

In the listing below, we show a complete Julia script to define and
solve an Ising problem defined on a graph in Fig. 1(a).
using SpinGlassPEPS

function get_instance(topology::NTuple{3, Int})
m, n, t = topology
"$(@__DIR__)/instances/$(m)x$(n)x$(t).txt"

end
3
function run_square_diag_bench(::Type{T}; topology::NTuple{3, Int}) where {T}
m, n, _ = topology
instance = get_instance(topology)
lattice = super_square_lattice(topology)

hamming_dist = 5
eng = 10

best_energies = T[]

potts_h = potts_hamiltonian(
ising_graph(instance),
spectrum = full_spectrum,
cluster_assignment_rule = lattice,

)

params = MpsParameters{T}(; bond_dim = 16, num_sweeps = 1)
search_params = SearchParameters(; max_states = 2^8, cut_off_prob = 1E-4)

for transform in all_lattice_transformations
net = PEPSNetwork{KingSingleNode{GaugesEnergy}, Dense, T}(

m, n, potts_h, transform,
)

ctr = MpsContractor(SVDTruncate, net, params;
onGPU = false, beta = T(2), graduate_truncation = true,

)

single = SingleLayerDroplets(eng, hamming_dist, :hamming)
merge_strategy = merge_branches(

ctr; merge_type = :nofit, update_droplets = single,
)

sol, _ = low_energy_spectrum(ctr, search_params, merge_strategy)

T. Śmierzchalski et al. SoftwareX 31 (2025) 102257
push!(best_energies, sol.energies[1])
clear_memoize_cache()

end

ground = best_energies[1]
@assert isapprox(ground, best_energies)

println("Best energy found: $(ground)")
end

T = Float64
@time run_square_diag_bench(T; topology = (3, 3, 2))

In the example above, transform specifies a rotation of the quasi-
2D graph. The branch-and-bound search operates with a fixed order of
sweeping through local variables, corresponding to the fixed order of
tensor network contraction. By rotating the network, the search and
contraction can effectively begin from different starting points on the
2D grid, thereby enhancing the stability of the results. This example
performs the search across all eight possible transformations of the 2D
grid, comparing the best energies obtained for each configuration.

Other control parameters include Sparsity, which determines
whether dense or sparse tensors should be used. The concept of sparse
tensors was introduced to manage large clusters containing (10−20)
Ising variables (i.e., spins) each, where explicit construction of PEPS
tensors, triggered by Sparsity=Dense, quickly becomes infeasible.
Conversely, Sparsity=Sparse circumvents the need for direct con-
struction of individual tensors by performing optimal contractions on
small tensor diagrams utilizing internal structure of individual tensors.
These diagrams are then combined to efficiently contract the entire
network. Finally, Node = KingSingleNode{GaugesEnergy} specifies
the type of the node used within the tensor networks (e.g., switching
between king’s graph or a square lattice); Layout = GaugesEnergy
denotes the division of the PEPS network into boundary Matrix Product
States [5,6] used to contract the network.

Low-energy excitations (i.e., droplets) above the best solution can
be identified during the optional merge_branches step. This option
can be provided as an argument to the function that executes the
branch-and-bound algorithm, low_energy_spectrum (see [12] for
extended discussion). To view all droplets found, one may invoke
unpack_droplets(solution).

The algorithm searches for diverse excitations within a specified
energy range above the ground state. An excitation is accepted only
if its Hamming distance from any previously identified excitation ex-
ceeds a predefined threshold. This is governed by the parameters
energy_cutoff, which sets the maximum allowed energy above the
ground state, and hamming_cutoff, which determines the minimum
Hamming distance required between excitations for them to be consid-
ered distinct.

We present a selected set of benchmark results in Fig. 3, focusing
on two problem sets with 2500 and 5000 spins (a 50 × 50 grid with
1 and 2 spins per cluster, respectively). The reference results are com-
pared against those obtained from the Simulated Bifurcation Machine
(SBM) [8] and CPLEX solvers [24]. The benchmarks were performed
utilizing GPU acceleration. We used NVIDIA Titan RTX and GeForce
RTX 3090, both of which have 24 GB of VRAM. CPLEX results were
obtained on a Intel Core i9-10920X 12 core, 24 thread CPU.

For an instance with 2500 spins, SpinGlassPEPS.jl success-
fully found the ground states for all cases, as certified by CPLEX,
outperforming SBM in these tests. This demonstrates that, in certain
scenarios (e.g., king’s graph), our approach can exceed state-of-the-
art methods. For 5000 spins, SBM delivers the best results; however,
SpinGlassPEPS.jl still performs better than CPLEX, which faces
challenges with larger problem sizes.

Both SpinGlassPEPS.jl and SBM can output multiple solutions
(i.e., low-energy states), whereas CPLEX generates only one. When
considering time to solution, our method is typically the most time-
intensive, while SBM is the fastest across all tested solvers since it can
be GPU-accelerated efficiently.
4
3.1.1. Large unit cells
Our package can target the graphs that can be manufactured by

quantum annealing vendors (cf., D-Wave processors depicted in Fig.
4). We provide an extensive benchmark of our approach for those
geometries elsewhere [12].

3.2. Solving Potts model - inpainting problem

The Potts model defined in Eq. (1) is general enough to describe a
wide array of phenomena. One of them is the problem of inpainting in
computer vision. It refers to filling in missing or corrupted parts of an
image in a way that makes the reconstruction visually plausible [28].
In this example, we use a relatively small benchmarking instance
given by [21,23]. It is a discretized triple junction inpainting problem,
as shown in Fig. 5. The software accepts instances formatted as in
OpenGM Benchmark dataset [23] with only the nearest neighbor and
diagonal interactions.
instance = "$(@__DIR__)/instances/triplepoint4-plain-ring.h5"
We add size of picture in pixels
potts_h = potts_hamiltonian(instance, 120, 120)

In this case, when searching for droplets, one should set mode
parameter in SingleLayerDroplets to :RMF.

droplets = SingleLayerDroplets(; max_energy = 100, min_size = 100,
metric = :hamming, mode=:RMF)

The remaining setup is analogous to the king’s graph scenario
described in the preceding section.

4. Impact and conclusion

Tensor networks offer a powerful suite of tools, most notably em-
ployed in quantum many-body simulations. Our package reduces the
hurdles for applying these methods to classical optimization [29] by
being clean, efficient (by utilizing sparse tensor structures, GPU accel-
eration, etc.), and modular. Building on the framework introduced in
Ref. [30] – originally targeting simpler Chimera-like graphs – Spin-
GlassPEPS.jl provides a flexible software platform for a broader
range of problem topologies, such as Pegasus and Zephyr graphs of the
near-term quantum annealers. This is particularly relevant given the
recent surge in physics-inspired Ising/QUBO solver research (cf. [31–
33]). Additionally, We offer features such as droplet discovery [34,
35], Schmidt spectrum calculation [36], and energy level degeneracy
analysis [37].

As such, SpinGlassPEPS.jl acts as a practical reference tool to
develop and work with quantum and classical annealing technologies.
The examples presented show that the tensor network approach can
achieve high-quality solutions comparable to those of CPLEX, a state-
of-the-art solver in operational research [24]. Notably, for certain king’s
graphs [14], our solutions surpass those from Toshiba’s Simulated
Bifurcation Machines (SBM [8]), which is an unexpected result that
merits further investigation. This highlights a potential weakness in
the SBM family of algorithms, demonstrating the practical value of our
software.

Future development of SpinGlassPEPS.jl will focus on three
main directions.

The first one is to expand available features. This includes im-
plementing alternative contraction schemes for the PEPS network,
e.g., Corner Transfer Matrix (CTM [38,39]), or expanding the avail-
able geometries of the Potts Hamiltonian, e.g., the Lechner-Hauke-
Zoller architecture [40]. Also features that focus on aiding physical
research, such as calculating approximations of some thermodynamical
properties (e.g., free energy) [41].

Another direction is adding multi-GPU support. This part will re-
quire a careful re-examination of the underlying tensor network algo-
rithm [12] in order to identify the most efficient way to achieve this

T. Śmierzchalski et al.

Fig. 3. Benchmarking SpinGlassPEPS.jl for two sets of Ising problems defined on graphs from Fig. 1(a) with 𝑁 = 50 × 50 × 𝑑 spins, for 𝑑 = 1 (top row) and 𝑑 = 2 (bottom
row). As reference solvers, We employ a Simulated Bifurcation machine (SBM) [25] and CPLEX. The results were obtained using GPU acceleration, where it was available. Panels
(a) and (d) show time to solution to the best energy for a median instance (𝐸best is the best results among the considered solvers), and in (b) and (e), we show instance-wise
results for 10 instances. In (c) and (f), we show the diversity of obtained solutions, i.e., the number of solutions within approximation ratio 𝑎𝑟 = 0.01 (𝐸 −𝐸best < 𝑎𝑟 ⋅ 2 ⋅𝐸best), where
each pair has a Hamming distance greater than 𝑁∕2.

Fig. 4. Problems defined on Chimera, Pegasus, and Zephyr graphs [10,11,26,27], employed in the past and current D-Wave quantum annealers, can be mapped to the Potts
Hamiltonian on king’s graph upon grouping 8, 24, and 16 spins, respectively. Due to the large unit cell size of the latter two graphs, they require further processing. In particular,
sparse connectivity structures between unit cells and GPU acceleration. Both are supported by SpinGlassPEPS.jl package.

Fig. 5. The picture in panel (a) shows the used inpainting problem. Data is given on the circular boundary, and the solution should fill in the black region. It is part of the
OpenGM2 Benchmark dataset [23]. The picture in panel (b) shows the ground state obtained by SpinGlassPEPS.jl. Due to the introduced anisotropy by the grid used in
discretization, the results show a bias toward axis-parallel edges [21]. Yellow region in (c) shows a low-energy excitation, i.e., a group of variables that should be collectively
filliped to obtain another low-energy solution.

SoftwareX 31 (2025) 102257

5

T. Śmierzchalski et al. SoftwareX 31 (2025) 102257
feature. This will involve researching whether multi-GPU parallelism
can be achieved (i.e. processing various parts of the contraction in
parallel, or can we process larger tensors sequentially on multiple
GPUs?)

Lastly, a possible future feature is an implementation of the auto-
embedding of instances into the relevant Potts Hamiltonian [42,43].
Currently, the user has to choose the embedding. An automatic selec-
tion of the embedding would require the development of a heuristic
algorithm for choosing an appropriate embedding. Aside from coding
the new functionality, this feature would require a significant amount
of research to develop such heuristics.

CRediT authorship contribution statement

Tomasz Śmierzchalski: Writing – review & editing, Writing –
original draft, Visualization, Validation, Software, Conceptualization.
Anna M. Dziubyna: Writing – review & editing, Writing – original
draft, Visualization, Validation, Software. Konrad Jałowiecki: Writing
– review & editing, Writing – original draft, Software, Methodology,
Investigation. Zakaria Mzaouali: Writing – original draft, Software,
Investigation. Łukasz Pawela: Writing – review & editing, Writing
– original draft, Validation, Supervision, Software, Resources, Project
administration, Methodology, Investigation, Funding acquisition, For-
mal analysis, Conceptualization. Bartłomiej Gardas: Writing – review
& editing, Writing – original draft, Supervision, Software, Resources,
Project administration, Methodology, Investigation, Funding acquisi-
tion, Formal analysis, Conceptualization. Marek M. Rams: Writing
– review & editing, Writing – original draft, Supervision, Software,
Resources, Project administration, Methodology, Investigation, Funding
acquisition, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Lukasz Pawela reports financial support was provided by Foundation
for Polish Science. Bartlomiej Gardas reports financial support was pro-
vided by Foundation for Polish Science. Tomasz Smierzchalski reports
financial support was provided by National Science Centre Poland.
Zakaria Mzaouali reports financial support was provided by National
Science Centre Poland. Marek M. Rams reports financial support was
provided by National Science Centre Poland. Anna M Dziubyna reports
financial support was provided by National Science Centre Poland. If
there are other authors,they declare that they have no known com-
peting financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

This project was supported by the National Science Center (NCN),
Poland, under Projects: Sonata Bis 10, No. 2020/38/E/ST3/00269
(T.S., Z.M.) and 2020/38/E/ST3/00150 (A.D., M.R.) and Foundation
for Polish Science (grant no POIR.04.04.00-00-14DE/18-00 carried out
within the Team-Net program co-financed by the European Union
under the European Regional Development Fund) (B.G., Ł.P.).

Appendix. Instalation and examples

The SpinGlassPEPS.jl can be installed using the Julia package
manager for Julia v1.11. In Julia REPL type] to enter Pkg REPL, then
type:

pkg> add SpinGlassPEPS
6
The code for all the examples presented in the paper can be found
in the main repository [44] folder ‘‘examples’’. To run them, first,
clone the repository. Then, run Julia inside the ‘‘examples’’ folder.
The environment needed to execute the provided code is given by the
Project.toml file. It can be activated by typing] in Julia REPL and
then:

pkg> activate .

pkg> instantiate

next in Julia REPL type:

julia> include("ising_model_on_a_kings_graph.jl")

Alternatively, one can run the examples by typing:

$ julia --project=. -e "using Pkg; Pkg.instantiate()"

$ julia --project=. ising_model_on_a_kings_graph.jl

in the preferred shell.

References

[1] Kinzel W, Domany E. Critical properties of random Potts models. Phys Rev B
1981;23:3421–34. http://dx.doi.org/10.1103/PHYSREVB.23.3421.

[2] Lucas A. Ising formulations of many NP problems. Front Phys 2014;2(5). http:
//dx.doi.org/10.3389/fphy.2014.00005.

[3] Nishino T, Hieida Y, Okunishi K, Maeshima N, Akutsu Y, Gendiar A.
Two-dimensional tensor product variational formulation. Progr Theoret Phys
2001;105(3):409–17. http://dx.doi.org/10.1143/PTP.105.409.

[4] Verstraete F, Wolf MM, Perez-Garcia D, Cirac JI. Criticality, the area law,
and the computational power of projected entangled pair states. Phys Rev Lett
2006;96(22):220601. http://dx.doi.org/10.1103/PhysRevLett.96.220601.

[5] Verstraete F, Cirac JI, Murg V. Matrix Product States, Projected Entangled Pair
States, and variational renormalization group methods for quantum spin systems.
Adv Phys 2008;57(2):143–224. http://dx.doi.org/10.1080/14789940801912366.

[6] Orús R. A practical introduction to tensor networks: Matrix product states and
projected entangled pair states. Ann Physics 2014;349:117–58. http://dx.doi.org/
10.1016/j.aop.2014.06.013.

[7] King AD, et al. Quantum critical dynamics in a 5,000-qubit programmable
spin glass. Nature 2023;617(7959):61–6. http://dx.doi.org/10.1038/s41586-023-
05867-2.

[8] Goto H, Endo K, Suzuki M, Sakai Y, Kanao T, Hamakawa Y, et al. High-
performance combinatorial optimization based on classical mechanics. Sci Adv
2021;7(6):eabe7953. http://dx.doi.org/10.1126/sciadv.abe7953.

[9] Wang J, Ebler D, Wong KYM, Hui DSW, Sun J. Bifurcation behaviors shape how
continuous physical dynamics solves discrete Ising optimization. Nat Commun
2023;14(1):2510. http://dx.doi.org/10.1038/s41467-023-37695-3.

[10] Boothby K, King D, Raymond J. Zephyr topology of D-wave quantum
processors. Tech. rep. 14-1056A-A, D-Wave; 2021, https://www.dwavesys.com/
media/2uznec4s/14-1056a-a_zephyr_topology_of_d-wave_quantum_processors.pdf.
[Accessed 31 January 2024].

[11] Dattani N, Szalay S, Chancellor N. Pegasus: The second connectivity graph
for large-scale quantum annealing hardware. 2019, http://dx.doi.org/10.48550/
arXiv.1901.07636, arXiv:1901.07636.

[12] Dziubyna AM, Śmierzchalski T, Gardas B, Rams MM, Mohseni M. Limitations
of tensor-network approaches for optimization and sampling: A comparison to
quantum and classical Ising machines. Phys. Rev. Appl. 2025;23(5):054049.
http://dx.doi.org/10.1103/PhysRevApplied.23.054049.

[13] Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: A fresh approach to
numerical computing. SIAM Rev 2017;59(1):65–98. http://dx.doi.org/10.1137/
141000671.

[14] Chang GJ. Algorithmic aspects of domination in graphs. In: Pardalos PM, Du D-Z,
Graham RL, editors. Handbook of combinatorial optimization. New York, NY:
Springer New York; 2013, p. 221–82. http://dx.doi.org/10.1007/978-1-4419-
7997-1_26.

[15] Morrison DR, Jacobson SH, Sauppe JJ, Sewell EC. Branch-and-bound algorithms:
A survey of recent advances in searching, branching, and pruning. Discrete Optim
2016;19:79–102. http://dx.doi.org/10.1016/j.disopt.2016.01.005.

[16] Schuch N, Wolf MM, Verstraete F, Cirac JI. Computational complexity of
Projected Entangled Pair States. Phys Rev Lett 2007;98(14):140506. http://dx.
doi.org/10.1103/PhysRevLett.98.140506.

[17] Standford University. Index of /∼yyye/yyye/Gset. 2003, https://web.stanford.
edu/~yyye/yyye/Gset/. [Accessed 19 May 2024].

http://dx.doi.org/10.1103/PHYSREVB.23.3421
http://dx.doi.org/10.3389/fphy.2014.00005
http://dx.doi.org/10.3389/fphy.2014.00005
http://dx.doi.org/10.3389/fphy.2014.00005
http://dx.doi.org/10.1143/PTP.105.409
http://dx.doi.org/10.1103/PhysRevLett.96.220601
http://dx.doi.org/10.1080/14789940801912366
http://dx.doi.org/10.1016/j.aop.2014.06.013
http://dx.doi.org/10.1016/j.aop.2014.06.013
http://dx.doi.org/10.1016/j.aop.2014.06.013
http://dx.doi.org/10.1038/s41586-023-05867-2
http://dx.doi.org/10.1038/s41586-023-05867-2
http://dx.doi.org/10.1038/s41586-023-05867-2
http://dx.doi.org/10.1126/sciadv.abe7953
http://dx.doi.org/10.1038/s41467-023-37695-3
https://www.dwavesys.com/media/2uznec4s/14-1056a-a_zephyr_topology_of_d-wave_quantum_processors.pdf
https://www.dwavesys.com/media/2uznec4s/14-1056a-a_zephyr_topology_of_d-wave_quantum_processors.pdf
https://www.dwavesys.com/media/2uznec4s/14-1056a-a_zephyr_topology_of_d-wave_quantum_processors.pdf
http://dx.doi.org/10.48550/arXiv.1901.07636
http://dx.doi.org/10.48550/arXiv.1901.07636
http://dx.doi.org/10.48550/arXiv.1901.07636
http://arxiv.org/abs/1901.07636
http://dx.doi.org/10.1103/PhysRevApplied.23.054049
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1007/978-1-4419-7997-1_26
http://dx.doi.org/10.1007/978-1-4419-7997-1_26
http://dx.doi.org/10.1007/978-1-4419-7997-1_26
http://dx.doi.org/10.1016/j.disopt.2016.01.005
http://dx.doi.org/10.1103/PhysRevLett.98.140506
http://dx.doi.org/10.1103/PhysRevLett.98.140506
http://dx.doi.org/10.1103/PhysRevLett.98.140506
https://web.stanford.edu/~yyye/yyye/Gset/
https://web.stanford.edu/~yyye/yyye/Gset/
https://web.stanford.edu/~yyye/yyye/Gset/

T. Śmierzchalski et al. SoftwareX 31 (2025) 102257
[18] Śmiechrzalski T, Dziubyna AM, Pawela Ł, omiej Gardas B, Rams MM. Spin-
GlassPEPS.jl documentation. 2025, https://euro-hpc-pl.github.io/SpinGlassPEPS.
jl. [Accessed 30 January 2025].

[19] Lukas Devos JH, contributors. TensorOperations.jl. 2023, http://dx.doi.org/10.
5281/zenodo.3245496, URL https://github.com/Jutho/TensorOperations.jl.

[20] Besard T, Foket C, De Sutter B. Effective extensible programming: Unleashing
Julia on GPUs. IEEE Trans Parallel Distrib Syst 2018. http://dx.doi.org/10.1109/
TPDS.2018.2872064, arXiv:1712.03112.

[21] Lellmann J, Schnörr C. Continuous multiclass labeling approaches and al-
gorithms. SIAM J Imaging Sci 2011;4(4):1049–96. http://dx.doi.org/10.1137/
100805844.

[22] Kappes JH, Speth M, Reinelt G, Schnörr C. Towards efficient and exact
MAP-Inference for large scale discrete computer vision problems via combina-
torial optimization. In: 2013 IEEE conference on computer vision and pattern
recognition. 2013, p. 1752–8. http://dx.doi.org/10.1109/CVPR.2013.229.

[23] Kappes JH, Andres B, Hamprecht FA, Schnörr C, Nowozin S, Batra D, et al. A
comparative study of modern inference techniques for structured discrete energy
minimization problems. Int J Comput Vis 2015;1–30. http://dx.doi.org/10.1007/
s11263-015-0809-x.

[24] CPLEX, IBM ILOG. Users manual for CPLEX. 2024, URL https://www.ibm.com/
docs/en/icos/22.1.1?topic=optimizers-users-manual-cplex.

[25] Goto H, Tatsumura K, Dixon AR. Combinatorial optimization by simu-
lating adiabatic bifurcations in nonlinear Hamiltonian systems. Sci Adv
2019;5(4):eaav2372. http://dx.doi.org/10.1126/sciadv.aav2372.

[26] Boothby K, Bunyk P, Raymond J, Roy A. Next-generation topology of
D-Wave quantum processors. Tech. rep. 14-1026A-C, D-Wave; 2019,
https://www.dwavesys.com/media/jwwj5z3z/14-1026a-c_next-generation-
topology-of-dw-quantum-processors.pdf. [Accessed 31 January 2024].

[27] Lanting T, et al. Entanglement in a quantum annealing processor. Phys Rev X
2014;4(2):021041. http://dx.doi.org/10.1103/PhysRevX.4.021041.

[28] Zeng Y, Lin Z, Yang J, Zhang J, Shechtman E, Lu H. High-resolution im-
age inpainting with iterative confidence feedback and guided upsampling. In:
Vedaldi A, Bischof H, Brox T, Frahm J-M, editors. Computer vision – ECCV
2020. Cham: Springer International Publishing; 2020, p. 1–17. http://dx.doi.org/
10.1007/978-3-030-58529-7_1.

[29] Cichocki A. Tensor networks for big data analytics and large-scale optimization
problems. 2014, http://dx.doi.org/10.48550/arXiv.1407.3124, arXiv:1407.3124.

[30] Rams MM, Mohseni M, Eppens D, Jałowiecki K, Gardas B. Approximate opti-
mization, sampling, and spin-glass droplet discovery with tensor networks. Phys
Rev E 2021;104(2):025308. http://dx.doi.org/10.1103/PhysRevE.104.025308.

[31] Schulz S, Willsch D, Michielsen K. Learning-driven annealing with adaptive
Hamiltonian modification for solving large-scale problems on quantum devices.
2025, http://dx.doi.org/10.48550/arXiv.2502.21246, arXiv:2502.21246.
7
[32] Munoz-Bauza H, Lidar D. Scaling advantage in approximate optimization with
quantum annealing. Phys Rev Lett 2025;134:160601. http://dx.doi.org/10.1103/
PhysRevLett.134.160601.

[33] Pawłowski J, Tuziemski J, Tarasiuk P, Przybysz A, Adamski R, Hendzel K, et
al. VeloxQ: A fast and efficient QUBO solver. 2025, http://dx.doi.org/10.48550/
arXiv.2501.19221, arXiv:2501.19221.

[34] Newman CM, Stein DL. Critical droplets and replica symmetry breaking. Front
Phys 2024;12. http://dx.doi.org/10.3389/fphy.2024.1473378.

[35] Shen M, Ortiz G, Liu Y-Y, Weigel M, Nussinov Z. Universal fragility of spin
glass ground states under single bond changes. Phys Rev Lett 2024;132:247101.
http://dx.doi.org/10.1103/PhysRevLett.132.247101.

[36] Zhou P-F, Lu Y, Wang J-H, Ran S-J. Tensor network efficiently represent-
ing Schmidt decomposition of quantum many-body states. Phys Rev Lett
2023;131:020403. http://dx.doi.org/10.1103/PhysRevLett.131.020403.

[37] Pelofske E. Biased degenerate ground-state sampling of small Ising models with
converged QAOA. 2024, http://dx.doi.org/10.48550/arXiv.2411.05294, arXiv:
2411.05294.

[38] Lukin IV, Sotnikov AG. Corner transfer matrix renormalization group approach
in the zoo of Archimedean lattices. Phys Rev E 2024;109:045305. http://dx.
doi.org/10.1103/PhysRevE.109.045305, URL https://link.aps.org/doi/10.1103/
PhysRevE.109.045305.

[39] Mangazeev VV, Hagan B, Bazhanov VV. Corner transfer matrix approach to the
yang-lee singularity in the two-dimensional Ising model in a magnetic field. Phys
Rev E 2023;108:064136. http://dx.doi.org/10.1103/PhysRevE.108.064136, URL
https://link.aps.org/doi/10.1103/PhysRevE.108.064136.

[40] Lechner W, Hauke P, Zoller P. A quantum annealing architecture with all-
to-all connectivity from local interactions. Sci Adv 2015;1(9):e1500838. http:
//dx.doi.org/10.1126/sciadv.1500838.

[41] Nishimori H. Instability of the ferromagnetic phase under random fields in
an Ising spin glass with correlated disorder. Phys Rev E 2025;111:044109.
http://dx.doi.org/10.1103/PhysRevE.111.044109.

[42] Gomez-Tejedor A, Osaba E, Villar-Rodriguez E. Addressing the minor-embedding
problem in quantum annealing and evaluating state-of-the-art algorithm
performance. 2025, http://dx.doi.org/10.48550/arXiv.2504.13376, arXiv:2504.
13376.

[43] Pelofske E. 4-Clique network minor embedding for quantum annealers.
Phys Rev Appl 2024;21:034023. http://dx.doi.org/10.1103/PhysRevApplied.21.
034023, URL https://link.aps.org/doi/10.1103/PhysRevApplied.21.034023.

[44] Śmiechrzalski T, Dziubyna AM, Pawela Ł, omiej Gardas B, Rams MM.
SpinGlassPEPS.jl code. 2025, https://github.com/euro-hpc-pl/SpinGlassPEPS.jl.
[Accessed 30 Jan 2025].

https://euro-hpc-pl.github.io/SpinGlassPEPS.jl
https://euro-hpc-pl.github.io/SpinGlassPEPS.jl
https://euro-hpc-pl.github.io/SpinGlassPEPS.jl
http://dx.doi.org/10.5281/zenodo.3245496
http://dx.doi.org/10.5281/zenodo.3245496
http://dx.doi.org/10.5281/zenodo.3245496
https://github.com/Jutho/TensorOperations.jl
http://dx.doi.org/10.1109/TPDS.2018.2872064
http://dx.doi.org/10.1109/TPDS.2018.2872064
http://dx.doi.org/10.1109/TPDS.2018.2872064
http://arxiv.org/abs/1712.03112
http://dx.doi.org/10.1137/100805844
http://dx.doi.org/10.1137/100805844
http://dx.doi.org/10.1137/100805844
http://dx.doi.org/10.1109/CVPR.2013.229
http://dx.doi.org/10.1007/s11263-015-0809-x
http://dx.doi.org/10.1007/s11263-015-0809-x
http://dx.doi.org/10.1007/s11263-015-0809-x
https://www.ibm.com/docs/en/icos/22.1.1?topic=optimizers-users-manual-cplex
https://www.ibm.com/docs/en/icos/22.1.1?topic=optimizers-users-manual-cplex
https://www.ibm.com/docs/en/icos/22.1.1?topic=optimizers-users-manual-cplex
http://dx.doi.org/10.1126/sciadv.aav2372
https://www.dwavesys.com/media/jwwj5z3z/14-1026a-c_next-generation-topology-of-dw-quantum-processors.pdf
https://www.dwavesys.com/media/jwwj5z3z/14-1026a-c_next-generation-topology-of-dw-quantum-processors.pdf
https://www.dwavesys.com/media/jwwj5z3z/14-1026a-c_next-generation-topology-of-dw-quantum-processors.pdf
http://dx.doi.org/10.1103/PhysRevX.4.021041
http://dx.doi.org/10.1007/978-3-030-58529-7_1
http://dx.doi.org/10.1007/978-3-030-58529-7_1
http://dx.doi.org/10.1007/978-3-030-58529-7_1
http://dx.doi.org/10.48550/arXiv.1407.3124
http://arxiv.org/abs/1407.3124
http://dx.doi.org/10.1103/PhysRevE.104.025308
http://dx.doi.org/10.48550/arXiv.2502.21246
http://arxiv.org/abs/2502.21246
http://dx.doi.org/10.1103/PhysRevLett.134.160601
http://dx.doi.org/10.1103/PhysRevLett.134.160601
http://dx.doi.org/10.1103/PhysRevLett.134.160601
http://dx.doi.org/10.48550/arXiv.2501.19221
http://dx.doi.org/10.48550/arXiv.2501.19221
http://dx.doi.org/10.48550/arXiv.2501.19221
http://arxiv.org/abs/2501.19221
http://dx.doi.org/10.3389/fphy.2024.1473378
http://dx.doi.org/10.1103/PhysRevLett.132.247101
http://dx.doi.org/10.1103/PhysRevLett.131.020403
http://dx.doi.org/10.48550/arXiv.2411.05294
http://arxiv.org/abs/2411.05294
http://arxiv.org/abs/2411.05294
http://arxiv.org/abs/2411.05294
http://dx.doi.org/10.1103/PhysRevE.109.045305
http://dx.doi.org/10.1103/PhysRevE.109.045305
http://dx.doi.org/10.1103/PhysRevE.109.045305
https://link.aps.org/doi/10.1103/PhysRevE.109.045305
https://link.aps.org/doi/10.1103/PhysRevE.109.045305
https://link.aps.org/doi/10.1103/PhysRevE.109.045305
http://dx.doi.org/10.1103/PhysRevE.108.064136
https://link.aps.org/doi/10.1103/PhysRevE.108.064136
http://dx.doi.org/10.1126/sciadv.1500838
http://dx.doi.org/10.1126/sciadv.1500838
http://dx.doi.org/10.1126/sciadv.1500838
http://dx.doi.org/10.1103/PhysRevE.111.044109
http://dx.doi.org/10.48550/arXiv.2504.13376
http://arxiv.org/abs/2504.13376
http://arxiv.org/abs/2504.13376
http://arxiv.org/abs/2504.13376
http://dx.doi.org/10.1103/PhysRevApplied.21.034023
http://dx.doi.org/10.1103/PhysRevApplied.21.034023
http://dx.doi.org/10.1103/PhysRevApplied.21.034023
https://link.aps.org/doi/10.1103/PhysRevApplied.21.034023
https://github.com/euro-hpc-pl/SpinGlassPEPS.jl

	SpinGlassPEPS.jl: Tensor-network package for Ising-like optimization on quasi-two-dimensional graphs
	Motivation and significance
	Software description
	Software Architecture
	Software Functionalities
	Work division between CPU and GPU

	Illustrative Examples
	Ising model on a king's graph
	Large unit cells

	Solving Potts model - inpainting problem

	Impact and Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix. Instalation and Examples
	References

