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 A B S T R A C T

This work introduces SpinGlassPEPS.jl, a software package implemented in Julia, designed to find low-
energy configurations of generalized Potts models, including Ising and QUBO problems, utilizing heuristic 
tensor network contraction algorithms on quasi-2D geometries. In particular, the package employs the Projected 
Entangled-Pairs States to approximate the Boltzmann distribution corresponding to the model’s cost function. 
This enables an efficient branch-and-bound search (within the probability space) that exploits the locality of the 
underlying problem’s topology. As a result, our software enables the discovery of low-energy configurations for 
problems on quasi-2D graphs, particularly those relevant to modern quantum annealing devices. The modular 
architecture of SpinGlassPEPS.jl supports various contraction schemes and hardware acceleration.
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. Motivation and significance

SpinGlassPEPS.jl provides a robust software package designed 
o find low-energy configurations for generalized Potts models [1], 
ncluding Ising [2] or, equivalently, Quadratic Unconstrained Binary 
ptimization (QUBO) problems. By leveraging heuristic tensor network 
lgorithms, specifically, Projected Entangled-Pairs States (PEPS) [3–6], 
he package enables efficient exploration of low-energy solutions within 
omplex problem topologies. This capability is particularly significant 
n the context of current quantum and classical annealing devices [7–
], where efficient and scalable solutions are essential.

∗ Corresponding author.
E-mail address: lpawela@iitis.pl (Łu. Pawela).

The significance of SpinGlassPEPS.jl lies in its ability to lower 
the entry barrier to applying advanced tensor network (TN) methods 
in classical optimization by offering clean, efficient (GPU-accelerated) 
and modular software written in Julia. Our package functions both 
as a standalone Ising solver and as a source of independent tools 
for developing physics-inspired algorithms. It offers a modular ar-
chitecture that supports various contraction schemes and hardware 
acceleration, making it adaptable to a wide range of problem instances.
SpinGlassPEPS.jl is specifically tailored to solve Ising and QUBO 
problems on the topologies of near-term quantum annealers, such as 
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Pegasus and Zephyr graphs [10,11]. The software has been extensively 
benchmarked [12] on problems defined on these geometries.

2. Software description

SpinGlassPEPS.jl is a collection of Julia [13] packages imple-
menting heuristic tensor-network based algorithm to find low-energy 
states and their corresponding energies (i.e., the spectrum) of general-
ized Potts model, 
𝐸(𝒙) =

∑

⟨𝑚,𝑛⟩∈
𝐸𝑚,𝑛(𝑥𝑚, 𝑥𝑛) +

∑

𝑛∈
𝐸𝑛(𝑥𝑛), (1)

defined on a graph  = ( , ) specified by its edges,  , and vertices, 
 . The method tackles a family of sparse two-dimensional graphs 
called king’s graphs [14], see Fig.  1(b). A particular problem instance 
is defined by real-valued functions, 𝐸𝑛(𝑥𝑛) and 𝐸𝑚,𝑛(𝑥𝑚, 𝑥𝑛), where 𝑛, 
𝑚 ∈  .

In particular, this includes the Ising model, 
𝐸(𝒔) =

∑

⟨𝑖,𝑗⟩∈
𝐽𝑖𝑗𝑠𝑖𝑠𝑗 +

∑

𝑖∈
ℎ𝑖𝑠𝑖, (2)

defined on ′ = ( , ), where 𝑖, 𝑗 ∈  , 𝐽𝑖𝑗 , ℎ𝑖 ∈ R and 𝑠𝑖 ∈ {−1, 1}. 
The Ising model can be considered a special case of the Potts model, 
and we extend this by allowing clusters of spin variables to be grouped 
into effective Potts degrees of freedom with higher dimensions. This 
approach enables the package to manage more complex quasi-2D graph 
geometries, including those relevant to current quantum and classical 
annealing device architectures.

The algorithm executes a branch-and-bound search [15] within the 
probability space defined by the Boltzmann distribution at a specific 
inverse temperature 𝛽. This search process involves constructing a 
predefined number of the most probable local configurations of Potts 
variables, progressing sequentially from one vertex to the next until 
the entire system has been explored. The emphasis on king’s graphs is 
incorporated into the algorithm at two distinct levels.

First, in calculating marginal probabilities, we employ a tensor 
network representation of the classical Boltzmann distribution. For two-
dimensional systems, this representation takes the form of PEPS. The 
marginal and conditional probabilities are derived from the contraction 
of the tensor network. Although the problem of contracting these net-
works is formally #P-hard [16], we utilize an established approximate 
(heuristic) framework to contract two-dimensional PEPS [5,6].

Furthermore, we leverage the locality of interactions within the 
graph to expand the search space by merging partial trial configurations 
that are equivalent in terms of the marginal conditional probabili-
ties considered by the algorithm. Specifically, partial configurations 
with identical values of Potts variables on the boundary adjacent to 
unexplored regions of the graph are combined. This approach also 
enables the identification of information regarding local excitations in 
the system. When two partial configurations share boundary variables, 
they have a well-defined energy associated with the bulk variables, 
where one configuration represents a local ground state and the other 
an excitation localized in the bulk. By collecting such information 
throughout the search, the algorithm generates a candidate for the 
ground state along with a set of excited low-energy states, effectively 
characterizing the low-energy manifold of the optimization problem.

The algorithm workflow is outlined in Fig.  1. The package is de-
signed with a modular architecture that captures the relationships 
between the high-level concepts employed by the algorithm. This mod-
ularity enables the integration of various contraction schemes, lever-
aging the internal structures of individual tensors within the network, 
and allows for hardware acceleration, all facilitated by the multiple 
dispatch capabilities of the Julia language. Detailed explanations of the 
algorithm’s mechanics, along with extensive benchmarks for Pegasus 
and Zephyr geometries, relevant for D-Wave quantum annealers, are 
provided in [12].
2 
2.1. Software architecture

SpinGlassPEPS.jl is composed of three independent
sub-packages, each of which is responsible for the distinct elements of 
the workflow, see Fig.  2. Namely,

• SpinGlassEngine.jl serves as the core package, consisting 
of routines for executing the branch-and-bound method (with 
the ability to leverage the problem’s locality) for a given Potts 
instance. It also includes capabilities for reconstructing the low-
energy spectrum from identified localized excitations and pro-
vides a tensor network constructor.

• SpinGlassNetworks.jl facilitates the generation of an Ising 
graph from a given instance using a set of standard inputs (e.g., in-
stances compatible with the Ocean environment provided by 
D-Wave) and supports clustering to create effective Potts Hamil-
tonians.

• SpinGlassTensors.jl offers essential tools to create and 
manipulate tensors that build the PEPS network, with support 
for CPU and GPU utilization. It manages core operations on ten-
sor networks, including contraction, using the boundary Matrix 
Product State approach [5]. This package primarily functions as 
a backend, and users generally do not interact with it directly.

It is worth adding that all of these subpackages can be used as inde-
pendent tools for developing physics-inspired algorithms or serve as a 
backend for other software.

2.2. Software functionalities

For Ising/QUBO problems, the package requires instances to be 
provided in a specific format, similar to the one used in Stanford Gset 
(reduced from Max-Cut) [17]. In this format, the spins are numbered 
1 to 𝑁 and arranged in rows as 𝑖 𝑗 𝑣, where 𝑣 represents the coupling 
value between vertices 𝑖 and 𝑗, or the local magnetic field when 𝑖 = 𝑗.

The algorithm produces a low-energy spectrum as its output, de-
tailing the states and their corresponding energies for the given input 
instance. In addition, the package provides supplementary information, 
such as the estimated probabilities of these states derived from the 
approximate contraction of the tensor network.

The package’s modular structure offers a range of options to con-
trol various aspects of the main algorithm. These include the details 
and control parameters of the tensor network contraction schemes, 
the ability to utilize either CPU or GPU for low-level operations, 
and the choice between constructing the tensor network in a dense 
or sparse format. The sparse format leverages the internal structures 
of individual tensors and is particularly essential for handling large 
clusters, such as those relevant to Pegasus and Zephyr graphs. Detailed 
information on all required and optional parameters is available in the 
documentation [18].

2.3. Work division between CPU and GPU

Our package allows the user to use either CPU-only computation or 
to offload parts of the computation to a dedicated GPU. Currently, only 
one GPU is utilized. As shown in Fig.  1 the main part of the algorithm 
is the contraction of the constructed PEPS network. We perform this 
contraction using the TensorOperations.jl [19] package, which 
allows us to seamlessly switch computational backends (CPU or GPU). 
When in the CPU mode, the tensor expressions are converted into native 
Julia code run on Julia’s linear algebra backend (either OpenBLAS or 
MKL).

In the GPU mode, the TensorOperations.jl package translates 
the tensor expressions into calls to Julia’s cuTENSOR [20] wrapper. 
This approach allows us to achieve high levels of code reusability and 
readability while maintaining high performance in both CPU and GPU 
computation. Finally, the computations have a relatively small memory 
footprint. For example, all the examples run on a consumer-grade GPU 
with 24 GB of vRAM.
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Fig. 1. Execution flow. The Ising problem in (a) is mapped to a Potts Hamiltonian defined on a king’s graph in (b). This allows the partition function of that Hamiltonian to be 
represented as a PEPS tensor network on a square lattice, as in (c). The main algorithm executes the branch and bound search in the probability space, building the most probable 
configurations by adding one Potts variable at a time. The marginal conditional probabilities follow from an approximate contraction of the corresponding tensor network in (d). 
The full branch and bound sweep results in a candidate for the most probable (ground state) configuration in (e), together with a set of localized excitations on top of it in (f).
Fig. 2. Interoperability between all SpinGlassPEPS.jl packages. The input Ising problem file is processed by SpinGlassNetworks.jl, transforming it into a Potts 
Hamiltonian. The latter is then passed to SpinGlassEngine.jl, together with solver’s and contraction’s parameters. The SpinGlassEngine.jl module serves as the core 
branch and bound solver. It passes the problem of marginal probabilities’ calculation to SpinGlassTensors.jl, that constructs and approximately contracts the corresponding 
tensor network. Finally, the solution (ground state, excitations, and their energies) is returned to the user as an output.
3. Illustrative examples

We illustrate the capabilities and modularity of SpinGlass
PEPS.jl by addressing two distinct problems. First, we solve an Ising 
problem defined on a quasi-2D graph, see Fig.  1(a). Although this 
example focuses on a specific topology, the approach is applicable to 
other structures, including those used in D-Wave systems. The second 
example tackles an inpainting problem formulated through the Potts 
model [21–23].

While the Ising model on a king’s graph should compute relatively 
fast, the latter two examples (an inpainting example and a small 
pegasus-type graph) can take a long time to finish if run on the CPU 
only. It is recommended to run them using GPU.

3.1. Ising model on a king’s graph

In the listing below, we show a complete Julia script to define and 
solve an Ising problem defined on a graph in Fig.  1(a).
using SpinGlassPEPS

function get_instance(topology::NTuple{3, Int})
m, n, t = topology
"$(@__DIR__)/instances/$(m)x$(n)x$(t).txt"

end
3 
function run_square_diag_bench(::Type{T}; topology::NTuple{3, Int}) where {T}
m, n, _ = topology
instance = get_instance(topology)
lattice = super_square_lattice(topology)

hamming_dist = 5
eng = 10

best_energies = T[]

potts_h = potts_hamiltonian(
ising_graph(instance),
spectrum = full_spectrum,
cluster_assignment_rule = lattice,

)

params = MpsParameters{T}(; bond_dim = 16, num_sweeps = 1)
search_params = SearchParameters(; max_states = 2^8, cut_off_prob = 1E-4)

for transform in all_lattice_transformations
net = PEPSNetwork{KingSingleNode{GaugesEnergy}, Dense, T}(

m, n, potts_h, transform,
)

ctr = MpsContractor(SVDTruncate, net, params;
onGPU = false, beta = T(2), graduate_truncation = true,

)

single = SingleLayerDroplets(eng, hamming_dist, :hamming)
merge_strategy = merge_branches(

ctr; merge_type = :nofit, update_droplets = single,
)

sol, _ = low_energy_spectrum(ctr, search_params, merge_strategy)
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push!(best_energies, sol.energies[1])
clear_memoize_cache()

end

ground = best_energies[1]
@assert isapprox(ground, best_energies)

println("Best energy found: $(ground)")
end

T = Float64
@time run_square_diag_bench(T; topology = (3, 3, 2))

In the example above, transform specifies a rotation of the quasi-
2D graph. The branch-and-bound search operates with a fixed order of 
sweeping through local variables, corresponding to the fixed order of 
tensor network contraction. By rotating the network, the search and 
contraction can effectively begin from different starting points on the 
2D grid, thereby enhancing the stability of the results. This example 
performs the search across all eight possible transformations of the 2D 
grid, comparing the best energies obtained for each configuration.

Other control parameters include Sparsity, which determines 
whether dense or sparse tensors should be used. The concept of sparse 
tensors was introduced to manage large clusters containing (10−20)
Ising variables (i.e., spins) each, where explicit construction of PEPS 
tensors, triggered by Sparsity=Dense, quickly becomes infeasible. 
Conversely, Sparsity=Sparse circumvents the need for direct con-
struction of individual tensors by performing optimal contractions on 
small tensor diagrams utilizing internal structure of individual tensors. 
These diagrams are then combined to efficiently contract the entire 
network. Finally, Node = KingSingleNode{GaugesEnergy} specifies 
the type of the node used within the tensor networks (e.g., switching 
between king’s graph or a square lattice); Layout = GaugesEnergy 
denotes the division of the PEPS network into boundary Matrix Product 
States [5,6] used to contract the network.

Low-energy excitations (i.e., droplets) above the best solution can 
be identified during the optional merge_branches step. This option 
can be provided as an argument to the function that executes the 
branch-and-bound algorithm, low_energy_spectrum (see [12] for 
extended discussion). To view all droplets found, one may invoke 
unpack_droplets(solution).

The algorithm searches for diverse excitations within a specified 
energy range above the ground state. An excitation is accepted only 
if its Hamming distance from any previously identified excitation ex-
ceeds a predefined threshold. This is governed by the parameters 
energy_cutoff, which sets the maximum allowed energy above the 
ground state, and hamming_cutoff, which determines the minimum 
Hamming distance required between excitations for them to be consid-
ered distinct.

We present a selected set of benchmark results in Fig.  3, focusing 
on two problem sets with 2500 and 5000 spins (a 50 × 50 grid with 
1 and 2 spins per cluster, respectively). The reference results are com-
pared against those obtained from the Simulated Bifurcation Machine 
(SBM) [8] and CPLEX solvers [24]. The benchmarks were performed 
utilizing GPU acceleration. We used NVIDIA Titan RTX and GeForce 
RTX 3090, both of which have 24 GB of VRAM. CPLEX results were 
obtained on a Intel Core i9-10920X 12 core, 24 thread CPU.

For an instance with 2500 spins, SpinGlassPEPS.jl success-
fully found the ground states for all cases, as certified by CPLEX, 
outperforming SBM in these tests. This demonstrates that, in certain 
scenarios (e.g., king’s graph), our approach can exceed state-of-the-
art methods. For 5000 spins, SBM delivers the best results; however,
SpinGlassPEPS.jl still performs better than CPLEX, which faces 
challenges with larger problem sizes.

Both SpinGlassPEPS.jl and SBM can output multiple solutions 
(i.e., low-energy states), whereas CPLEX generates only one. When 
considering time to solution, our method is typically the most time-
intensive, while SBM is the fastest across all tested solvers since it can 
be GPU-accelerated efficiently.
4 
3.1.1. Large unit cells
Our package can target the graphs that can be manufactured by 

quantum annealing vendors (cf., D-Wave processors depicted in Fig. 
4). We provide an extensive benchmark of our approach for those 
geometries elsewhere [12].

3.2. Solving Potts model - inpainting problem

The Potts model defined in Eq. (1) is general enough to describe a 
wide array of phenomena. One of them is the problem of inpainting in 
computer vision. It refers to filling in missing or corrupted parts of an 
image in a way that makes the reconstruction visually plausible [28]. 
In this example, we use a relatively small benchmarking instance 
given by [21,23]. It is a discretized triple junction inpainting problem, 
as shown in Fig.  5. The software accepts instances formatted as in 
OpenGM Benchmark dataset [23] with only the nearest neighbor and 
diagonal interactions.
instance = "$(@__DIR__)/instances/triplepoint4-plain-ring.h5"
# We add size of picture in pixels
potts_h = potts_hamiltonian(instance, 120, 120)

In this case, when searching for droplets, one should set mode
parameter in SingleLayerDroplets to :RMF.

droplets = SingleLayerDroplets(; max_energy = 100, min_size = 100,
metric = :hamming, mode=:RMF)

The remaining setup is analogous to the king’s graph scenario 
described in the preceding section.

4. Impact and conclusion

Tensor networks offer a powerful suite of tools, most notably em-
ployed in quantum many-body simulations. Our package reduces the 
hurdles for applying these methods to classical optimization [29] by 
being clean, efficient (by utilizing sparse tensor structures, GPU accel-
eration, etc.), and modular. Building on the framework introduced in 
Ref. [30] – originally targeting simpler Chimera-like graphs – Spin-
GlassPEPS.jl provides a flexible software platform for a broader 
range of problem topologies, such as Pegasus and Zephyr graphs of the 
near-term quantum annealers. This is particularly relevant given the 
recent surge in physics-inspired Ising/QUBO solver research (cf. [31–
33]). Additionally, We offer features such as droplet discovery [34,
35], Schmidt spectrum calculation [36], and energy level degeneracy 
analysis [37].

As such, SpinGlassPEPS.jl acts as a practical reference tool to 
develop and work with quantum and classical annealing technologies. 
The examples presented show that the tensor network approach can 
achieve high-quality solutions comparable to those of CPLEX, a state-
of-the-art solver in operational research [24]. Notably, for certain king’s 
graphs [14], our solutions surpass those from Toshiba’s Simulated 
Bifurcation Machines (SBM [8]), which is an unexpected result that 
merits further investigation. This highlights a potential weakness in 
the SBM family of algorithms, demonstrating the practical value of our 
software.

Future development of SpinGlassPEPS.jl will focus on three 
main directions.

The first one is to expand available features. This includes im-
plementing alternative contraction schemes for the PEPS network, 
e.g., Corner Transfer Matrix (CTM [38,39]), or expanding the avail-
able geometries of the Potts Hamiltonian, e.g., the Lechner-Hauke-
Zoller architecture [40]. Also features that focus on aiding physical 
research, such as calculating approximations of some thermodynamical 
properties (e.g., free energy) [41].

Another direction is adding multi-GPU support. This part will re-
quire a careful re-examination of the underlying tensor network algo-
rithm [12] in order to identify the most efficient way to achieve this 
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Fig. 3. Benchmarking SpinGlassPEPS.jl for two sets of Ising problems defined on graphs from Fig.  1(a) with 𝑁 = 50 × 50 × 𝑑 spins, for 𝑑 = 1 (top row) and 𝑑 = 2 (bottom 
row). As reference solvers, We employ a Simulated Bifurcation machine (SBM) [25] and CPLEX. The results were obtained using GPU acceleration, where it was available. Panels 
(a) and (d) show time to solution to the best energy for a median instance (𝐸best is the best results among the considered solvers), and in (b) and (e), we show instance-wise 
results for 10 instances. In (c) and (f), we show the diversity of obtained solutions, i.e., the number of solutions within approximation ratio 𝑎𝑟 = 0.01 (𝐸 −𝐸best < 𝑎𝑟 ⋅ 2 ⋅𝐸best ), where 
each pair has a Hamming distance greater than 𝑁∕2.

Fig. 4. Problems defined on Chimera, Pegasus, and Zephyr graphs [10,11,26,27], employed in the past and current D-Wave quantum annealers, can be mapped to the Potts 
Hamiltonian on king’s graph upon grouping 8, 24, and 16 spins, respectively. Due to the large unit cell size of the latter two graphs, they require further processing. In particular, 
sparse connectivity structures between unit cells and GPU acceleration. Both are supported by SpinGlassPEPS.jl package.

Fig. 5. The picture in panel (a) shows the used inpainting problem. Data is given on the circular boundary, and the solution should fill in the black region. It is part of the 
OpenGM2 Benchmark dataset [23]. The picture in panel (b) shows the ground state obtained by SpinGlassPEPS.jl. Due to the introduced anisotropy by the grid used in 
discretization, the results show a bias toward axis-parallel edges [21]. Yellow region in (c) shows a low-energy excitation, i.e., a group of variables that should be collectively 
filliped to obtain another low-energy solution.
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feature. This will involve researching whether multi-GPU parallelism 
can be achieved (i.e. processing various parts of the contraction in 
parallel, or can we process larger tensors sequentially on multiple 
GPUs?)

Lastly, a possible future feature is an implementation of the auto-
embedding of instances into the relevant Potts Hamiltonian [42,43]. 
Currently, the user has to choose the embedding. An automatic selec-
tion of the embedding would require the development of a heuristic 
algorithm for choosing an appropriate embedding. Aside from coding 
the new functionality, this feature would require a significant amount 
of research to develop such heuristics.
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Appendix. Instalation and examples

The SpinGlassPEPS.jl can be installed using the Julia package 
manager for Julia v1.11. In Julia REPL type ] to enter Pkg REPL, then 
type:

pkg> add SpinGlassPEPS
6 
The code for all the examples presented in the paper can be found 
in the main repository [44] folder ‘‘examples’’. To run them, first, 
clone the repository. Then, run Julia inside the ‘‘examples’’ folder. 
The environment needed to execute the provided code is given by the
Project.toml file. It can be activated by typing ] in Julia REPL and 
then:

pkg> activate .

pkg> instantiate

next in Julia REPL type:

julia> include("ising_model_on_a_kings_graph.jl")

Alternatively, one can run the examples by typing:

$ julia --project=. -e "using Pkg; Pkg.instantiate()"

$ julia --project=. ising_model_on_a_kings_graph.jl

in the preferred shell.
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