
Computer Physics Communications 260 (2021) 107728

K
a

b

c

e
i
t
s
s
l
a
t
2
t
g
c
a
t
e

c
c
D
v

h
0

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Brute-forcing spin-glass problemswith CUDA✩

onrad Jałowiecki b,∗, Marek M. Rams c, Bartłomiej Gardas a,c

Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
Jagiellonian University, Marian Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland

a r t i c l e i n f o

Article history:
Received 9 April 2019
Received in revised form14 September 2020
Accepted 10 November 2020
Available online 20 November 2020

Keywords:
CUDA Fortran
Ising spin-glass
Quantum annealers
Titan V GPU

a b s t r a c t

We demonstrate how to compute the low energy spectrum for small (N ≤ 50), but otherwise arbitrary,
spin-glass instances using modern Graphics Processing Units or similar heterogeneous architecture.
Our algorithm performs an exhaustive (i.e., brute-force) search of all possible configurations to select
S ≪ 2N lowest ones together with their corresponding energies. We mainly focus on the Ising
model defined on an arbitrary graph. An open-source implementation based on CUDA Fortran and
a suitable Python wrapper are provided. As opposed to heuristic approaches, ours is exact and thus
can serve as a references point to benchmark other algorithms and hardware, including quantum and
digital annealers. Our implementation offers unprecedented speed and efficiency already visible on
commodity hardware. At the same time, it can be easily launched on professional, high-end graphics
cards virtually at no extra effort. As a practical application, we employ it to demonstrate that the
recent Matrix Product State based algorithm – despite its one-dimensional nature – can still accurately
approximate the low energy spectrum of fully connected graphs of size N approaching 50.

© 2020 Published by Elsevier B.V.
t

s

1. Introduction

With increasing complexity and interconnectivity in the mod-
rn world, the ability to solve optimization problems becomes
ndispensable. Notwithstanding, these problems are fundamen-
ally hard to resolve as they often require seeking over enormous
paces of possible solutions [1]. A notable example is the famous
pin-glass problem encoded via the Ising model [2], where the
ow energy spectrum (the ground state in particular) is sought
fter. The importance of this system is reflected in the fact
hat many NP-complete [3] optimization problems (i.e. Karp’s
1 problems [4]) can be mapped onto its Hamiltonian [5]. Fur-
hermore, there is growing hardware support for many spin-
lass based models [6–8]. These cutting edge technologies, when
ombined with classical neural networks [9], lead to quantum
rtificial intelligence [10]. A type of artificial intelligence believed
o be powerful enough to simulate many-body quantum systems
fficiently, which is a holy grail of modern physics [11].
The most promising ideas to overcome mathematical diffi-

ulties concerning classical optimization could rely on quantum
omputers [12]. In particular, on quantum annealers such as the
-Wave 2000Q chip [13]. In principle, such machines could solve
ariate of (hard) optimization problems (almost) ‘‘naturally’’ by

✩ The review of this paper was arranged by Prof. David W. Walker.
∗ Corresponding author.

E-mail address: konrad.jalowiecki@smcebi.edu.pl (K. Jałowiecki).
ttps://doi.org/10.1016/j.cpc.2020.107728
010-4655/© 2020 Published by Elsevier B.V.
finding low energy eigenstates [14]. However, current quantum
annealers are extremely noisy and thus not powerful enough
to tackle large scale optimization challenges [15,16]. In contrast,
heuristic approaches, often offering superior performance, can
not typically certify that the solution that has been found is, in
fact, optimal [17,18]. Most heuristic solvers rely on strategies
ranging from famous simulated annealing [19], branch and bound
approaches [20] their chordal extension [18], various Monte Carlo
methods [21] throughout dynamical systems simulations [22] to
tensor network analysis [23].

In this work, we focus on yet another class of solvers, namely
those that perform exact brute-force search [24]. The idea is to
search the entire Hilbert space exhaustively to find configurations
with the lowest energies. Such a search can be performed either
in the probability or energy space [23]. For all classical Hamiltoni-
ans, where all their terms commute, this is essentially equivalent
to the exact diagonalization. However, in contrast to the quantum
case, the eigenvalue problem for classical models can be executed
truly in parallel. An efficient implementation nonetheless is not
rivial.

Although practical applications of such solvers are limited to
mall problem sizes (N ≤ 50), they can solve the Ising model
that is defined on an arbitrary graph. Moreover, with the ex-
haustive search, one can easily certify the output. All of these
features are crucial for testing, benchmarking, and validating
new methods [25], strategies, and paradigms (e.g., memcomput-

ing [22]) for solving classical optimization problems [26]. It is

https://doi.org/10.1016/j.cpc.2020.107728
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2020.107728&domain=pdf
mailto:konrad.jalowiecki@smcebi.edu.pl
https://doi.org/10.1016/j.cpc.2020.107728

K. Jałowiecki, M.M. Rams and B. Gardas Computer Physics Communications 260 (2021) 107728

i
p
b
(
r

w
c
e

a
e
i
A
d
p
a

p
S
o
r
W
o
e
t
s
s
e

2

e
s
u
i
a
v
t
w
T

H

w
w

f
E
t

c
G

s
s
S
f
(

F

t
e
a

Fig. 1. An example of the Ising spin glass model (1). Here, Jij correspond to
weights of the edges of the graph and hi are biases associated with the graph’s
nodes (N = 16). Physically, Jij describe the interaction between spins si , sj and hi
s the external magnetic field imposed on spin si . The picture also demonstrates
ossible spin encoding, with red arrows indicating assignment of si = +1 and
lue ones indicating assignment of si = −1 [or qi = 0 if QUBO (2) is used].
For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

orth mentioning that brute-force approaches however limited
an still serve as a reference point for today’s quantum supremacy
xperiments [27,28].
Our implementation offers excellent flexibility and portability,

s well as the significant efficiency and speed. Our solver can be
xecuted on either CPU (Central Processing Unit) or GPU (Graph-
cs Processing Unit) using Nvidia’s CUDA (Compute Unified Device
rchitecture). The latter architecture is of particular importance
ue to its massive parallel capabilities [29,30]. Moreover, we
rovide a simple Python wrapper that allows users to access both
rchitectures effortlessly [31].
Finally, we employ our solver to test the applicability of a

articular tensor network ansatz – based on the Matrix Product
tate (MPS) – to optimization purposes of a fully connected graph
f growing size. For a detailed description of this algorithm, we
efer the reader to look at Supplementary Information in Ref. [23].
e have verified that indeed, such an ansatz, despite its inherited
ne-dimensional structure, can still successfully capture the low
nergy spectrum for tested graphs up to N = 50. This indicates
hat the MPS ansatz should still perform well also for much larger
ystems having a dominant quasi-one-dimensional nature. At the
ame time, sparse connections at long–range do not necessary
xclude the applicability of the MPS approach.

. Spin-glass problems

In this work, we mainly focus on the Ising Hamiltonian. How-
ver, our approach can easily be extended to include other clas-
ical spin-glass models [32,33]. To begin with, consider a simple
ndirected graph with N nodes (i.e., vertices) as the one drawn
n Fig. 1. We assign a unique spin variable, si ± 1 (blue and red
rrows), to each node. Adjacent nodes labeled as i, j are coupled
ia interaction strength Jij, which may be viewed as a weight of
he edge connecting those two nodes. Additionally, for every spin,
e associate a local magnetic field (bias) hi interacting with it.
hen the energy of such a system of spins is defined as

(s) = −
∑
⟨i,j⟩

Jijsisj −
N∑
i=1

hisi, (1)

here s := (s1, . . . , sL). The first sum runs over all adjacent sites,
hich we denote here as ⟨i, j⟩.
In many practical applications, one is typically interested in

inding a particular spin configuration, say s0, for which H(s0) in
q. (1) admits its minimum value. Such configuration is called
he ground state. Naturally, states with energies above the ground
2

Fig. 2. Scheduling of the energy computation on the GPU. A CUDA program is
executed by threads that are organized by blocks. Both the grid and blocks can
form one, two or three dimensional structures. Our implementation uses a one
dimensional grid structure, where the global thread index, Idi , is converted into
a state q with mapping Idi = (q)2 , cf. Eq. (4). Next, each thread in each block
omputes its own energy, F (q), according to Eq. (3). To fit into, often limited,
PU memory the computation is executed in carefully tailored chunks, cf. Eq. (5).

tate energy are called excited states. Finding the low energy
pectrum (consisting of the ground state energy and a number
≪ 2N of excited states) of the Ising model (1) can also be

ormulated as a Quadratic Unconstrained Optimization Problem
QUBO). Namely,

(q) = −
∑
⟨i,j⟩

aijqiqj −
N∑
i=1

biqi, (2)

where q = (s+ 1)/2 are binary variables whereas

aij = 4Jij, bi = 2hi − 2
∑
⟨i,j⟩

Jij. (3)

The energy offset reads H(s) − F (q) =
∑N

i=1 hi −
∑
⟨i,j⟩ Jij. Note,

if a given qi vanishes so does any product qiqj. Therefore, QUBO
formulation (2) effectively reduces the number of multiplications
almost by half in comparison to Eq. (1).

Despite its straightforward formulation, the problem of solv-
ing spin-glass instances can not be easily tackled using a brute
force approach even for a modest number of spin variables. This
is since the number of possible spin assignments grows exponen-
tially with the number of nodes in the graph. For instance, when
N = 40, the number of possible states is greater than the number
of bits in a 32 GB memory chip. Already when N = 64, the size of
the search space is greater than the estimated age of the Universe
in seconds [34]. In fact, the problem of finding the ground state
of the Ising model defined on an arbitrary graph is long known to
be NP-hard [35]. This means, in particular, that even verifying if
a given configuration minimizes the cost function (1) is difficult.

3. Description of the algorithm

A general idea underlying this work is to perform an ex-
haustive search over the whole state space, taking advantage of
massive parallel capabilities of modern GPUs. This requires an
efficient strategy to encoding all states, q = (q1, q2, . . . , qL), on
a GPU. A naive approach would require storing an array of N in-
egers, qi = 0, 1, for each state q. However, this would also lead to
xcessive use of memory and render this approach inefficient. As
n optimal strategy, one should try to reuse information already

K. Jałowiecki, M.M. Rams and B. Gardas Computer Physics Communications 260 (2021) 107728

s
a

G

tored in the GPU memory. Therefore, in our algorithm, we take
dvantage of the following correspondence

PU thread index = (q)2, (4)

where k = (q)2 denotes the binary representation of an integer
k (see Fig. 2). For instance, when there is N = 8 spins, one may
associate

thread index #13 = (00001101)2, (5)

Theoretically, this strategy allows one to store M = 264
∼ 1019

states with no extra cost, limiting the system size to N = 64 spins.
Nonetheless, this is more than the current architecture, based
on the von Neumann paradigm of computation, can process in
a reasonable time [36]. Indeed, we estimated that optimal search
among 264 states to extract the low energy spectrum consisting
of S = 102 of them would take 821 years on an efficient Titan V
GPU [37]. In comparison, systems of sizes N = 32, 49, 50 can
be solved within 3.5 s, 7 and 14 days, respectively. A detailed
benchmark is presented in Section 5.

One should stress that the fastest (as of 2018) supercomputer
in the world—Summit—is equipped with 27 648 > 214 Nvidia
Tesla V100 GPUs [38]. Therefore, ‘‘only’’ 214 of them (processing
chunks of size 250 each, simultaneously) should be able to reduce
the number of 821 years (for a single GPU tackling N = 64)
substantially. Perhaps, maybe even down to a couple of months.
Nevertheless, a priori, it is hard to estimate the exact numbers
due to various communication bottlenecks. This interesting open
problem is, however, beyond the scope of the current work.

In theory, one could first compute all M = 2N energies in
parallel and only then select S ≪ 2N lowest ones (and the
corresponding states if needed). However, even with an efficient
storage strategy, this approach quickly becomes impractical for
large systems. It requires an exponentially increasing storage
space to encode possible solutions. To overcome this problem,
one could iterate over the solution space in manageable chunks,
each time extracting the desired number of states [e.g., with the
bucket select algorithm [39], for which the mean execution time
scales linearly with the size of the input vector]. Sorting the
energies is executed only in the final step. Since GPU threads and
blocks are labeled in the same way for every chunk, an offset is
required to correctly enumerate all states, i.e.,

GPU thread index+ offset = (q)2, (6)

Note, the energy calculations are independent and thus can be
performed in parallel. The overall parallel speedup is limited by
the serial part (Amdahl’s law [40]) consisting of the lowest en-
ergy states extraction and merging all local information into the
global record. Also note that this idealized description assumes
using number of threads equal to the processed chunk size. This
restriction can be lifted using strided loops, see Section 4.2 for
the details. Algorithm 1 in the below listing summarizes the
underlying structure of our solver.

4. Implementation details

4.1. Languages and technologies employed

The core components of our implementation has been written
in modern Fortran 95/2003 [41], which we have chosen for its
flexibility [42], extensive support for linear algebra [43], perfor-
mance [44] and native support for CUDA technology [45]. To
make our code easier to use, we have wrapped it in a Python
package using the f2py [46] utility and numpy’s fork of distu-
tils package [47]. Whereas Fortran is widely used mostly for
3

Algorithm 1 Searching S ≪ 2N configurations (i.e. states) with
the lowest energies defined in Eq. (1). The adjacency matrix, Jij,
and local magnetic fields, hi, are provided.
k← chunk_size_exponent
for i = 1 to 2N−k do

for j = 1 to 2k do
state_code← j+ (i− 1) · 2k

energies[j]← energy(graph, state_code)
states[j]← state_code

end for
select_lowest(energies, states, num_st)
if i == 1 then
low_en[1: num_st]←energies[1: num_st]
low_st[1: num_st]←states[1: num_st]

else
low_en[num_st+ 1: 2 · num_st]
←energies[1: num_st]

low_st[num_st+ 1: 2 · num_st]←states[1: num_st]
select_lowest(low_en, low_st, num_st)

end if
end for
sort_by_key(low_en, low_st, num_st)

numerical simulations [48], Python is one of the most popular
general-purpose programming language [49].

We have also incorporated the fast k–selection algorithm for
GPU [39], and the Thrust library [50] into our solver for its parallel
implementation of many standard methods such as finding the
minimum and maximum of an array or partitioning thereof. The
Thrust library is utilized both for the GPU implementation and
for the pure CPU implementation with the OMP backend. In
order to take advantage of various Thrust’s functions, we have
written several small C++ modules to bind them into the Fortran
code. The source code of the entire package, together with the
comprehensive documentation, can be found on GitHub [31].

The Python wrapper allows one to execute the algorithm both
on the CPU and GPU. It was designed with simplicity in mind,
and as such, its primary usage does not require any specialized
knowledge. A basic understanding of the underlying optimization
problem is enough, cf. the listing below. In particular, only the
system definition (i.e., the graph or adjacency matrix) and the
desired number of states needs to be provided by the user.
Nevertheless, other parameters, including the chunk sizes, can
also be passed to the wrapper (see Fig. 4).

Listing 1: Simple example of how to use the ising module

import package
from ising import search

adjacency matrix (problem definition)
graph = {(1,1):-1, (1,2):-0.2}
solve the Ising model
solution = search(graph, num_states=4)

shows the states and energies found
print(solution.energies)
print(list(solution.states))

On virtually all Linux platforms, it is possible to install the very
basic version (i.e., with no GPU support) of our solver directly
from the Python Package Index, by issuing

pip install ising (7)

https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

K. Jałowiecki, M.M. Rams and B. Gardas Computer Physics Communications 260 (2021) 107728

C

s

o

w
c
f

p

f
c
e
I
u

4

c
k
b
a
m
i
u

k

Fig. 3. a. Time to solution obtained by our solver for various system sizes N (the inset captures small systems). b. Calculated speedup in comparison to a single
PU core. The speedup is obtained as a ratio of respective execution times. The algorithm computes S ≪ 2N low energy states in a single run (here S = 102). The

problem instances (Jij , hi), on a fully connected graph, were randomly generated. The solid lines show actual measurements: 100 repetitions for each N except for
N = 48 and N = 50 for which time to solution was calculated only once. The dashed lines represent experimentally estimated values for larger system sizes. The
estimate is based on the time necessary to process a single chunk of data [of size M = 229 (CPU), and M = 227 (GTX 1080)]. This estimation is consistent with the
caling (9), which is depicted as a black dotted line. For N ≥ 24 the overhead of parallel computations starts playing less important role and the execution time
becomes linear in the state space size.
Fig. 4. a. The execution time (in seconds) of the proposed algorithm versus the CUDA block size, B, for a given system size, here N = 34. b. Global Store Throughput
f the energy computing kernel. Here, like in the rest of this work, the number of blocks was equal to 215 .
s
i
T
t
2
d
v
t
w
f
a

4

e
S
c
C
e
2

here ising is the name of the package. However, to assure full
ompatibility with modern GPUs, CUDA requires a custom build
rom source which can be initiated via

ython install.py −−usecuda (8)

rom the package source directory. For more details regarding
ustom installation, including CUDA and various Fortran compil-
rs, we refer the reader to documentation [51]. Note, only PGI and
BM XLF support CUDA Fortran. Our package has only been tested
sing the former.

.2. GPU execution scheduling and kernel implementation

Programming GPUs often poses a nontrivial endeavor. The
ore element of our implementation is the compute_energies
ernel presented in Fig. 5. This implementation exhibited the
est performance amongst all of the variants we tested. There
re several factors that affect the performance of this kernel and
ight be easily overlooked. Perhaps the most important detail

s using shared memory for caching the coefficient matrix, and
sing integers of size 1 for bits array.
Among other challenges, one has to design the grid on which

ernels are launched [52]. Our kernel uses strided loops, i.e. a
 1

4

ingle thread computes several energies, each time increasing its
ndex by the stride size equal to the total number of threads.
herefore, our implementation is not constrained to grids with
otal number of threads being equal to the current chunk size
g . We tested our kernel for various launch configurations and
etermined that for sufficiently large grids there is no clearly
isible optimal one. For the purpose of benchmarks presented in
his work, we used a grid of 215 blocks with B = 512 threads. We
ould like to stress, however, that this configuration may need

urther (experimental) adjustment depending on the hardware,
nd the problem size.

.3. Complexity analysis

Our algorithm performs an exhaustive search over the entire,
xponentially large, state space in predefined chunks to find
lowest states (cf. Algorithm 1). Thus, unavoidably its time

omplexity has to be at least exponential in the system size N .
omputing the energy (2) for a single state, q, requires O(N2) op-
rations. The selection procedure executed on a data chunk of size
k, however, requires O(2k) comparisons resulting in O[2k(N2

+

)] operations. Finally, taking into account the total number of

K. Jałowiecki, M.M. Rams and B. Gardas Computer Physics Communications 260 (2021) 107728

i
f
i
d
i

c
d

O

T
w
A
(
p
1
d
a

Fig. 5. Implementation of the energy computing kernel. Here, Q is the QUBO matrix (which is upper triangle), energies and states are output arrays. Finally,
m is the offset that is common to all threads processing the current chunk of size 2sweep_size . For the ith chunk, m = (i− 1)2sweep_size − 1, so that each configuration
n the state space is visited precisely once. The wp and ik denote the kind of the variables (both equal to 8 in all tests), which corresponds to double precision
loating point numbers and 64-bit integers respectively. Typically for CUDA kernels (especially ones launched using one dimensional grid), idx refers to the global
ndex of the current thread being executed within a block of size blockDim%x that is identified by its index blockIdx%x. Moreover, the local index threadIdx%x
istinguishes threads in that block. The threads loop over the current chunk using stride of size blockDim%x * gridDim%x, which is the total number of threads
n the launch configuration.
o

hunks, 2N−k, and adding complexity of the final sorting proce-
ure, O[S log(S)], results in total complexity being

[2N (N2
+ 1)+ S log(S)] = O[2N (N2

+ 1)]. (9)

herefore, essentially the solver’s complexity behaves as O(2N)
hich we also demonstrate experimentally in Section 5 (cf. Fig. 3).
s one can see, the GPU implementation takes 20 seconds
GeForce 1080) and 3.5 s (Titan V) on average to solve the Ising
roblems with N = 32 spins. The same problem requires about
500 seconds on average on a single CPU core. For GPU, the
ifferences in solution times between single and double precision
re close to 10% and are not reported on Fig. 3.
5

5. Benchmarks

5.1. GPU vs. CPU comparison

We have tested our algorithm on the following hardware:

• CPU: 10 Cores IntelR CoreTM i7-6950X;
• GPU(1): Nvidia GeForce GTX 1080, 8 GB GDDR5 global mem-

ory, 2560 CUDA Cores;
• GPU(2): Nvidia Titan V, 12 GB HBM2 global memory, 5120

CUDA Cores.

For benchmarking purposes, we have executed our algorithm
n a fully connected, K = 100 randomly generated (cf. Ref. [53,

54]), problem instances for systems up to N = 50 (on Titan V).

https://ark.intel.com/products/94456/Intel-Core-i7-6950X-Processor-Extreme-Edition-25M-Cache-up-to-3-50-GHz-
https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080
https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080
https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080
https://www.nvidia.com/en-us/titan/titan-v/
https://www.nvidia.com/en-us/titan/titan-v/
https://www.nvidia.com/en-us/titan/titan-v/

K. Jałowiecki, M.M. Rams and B. Gardas Computer Physics Communications 260 (2021) 107728

d
o

Fig. 6. Verification of the Matrix Product State (MPS) based algorithm introduced in Ref. [23]. a. Success rate is defined as the fraction of cases for which the
MPS algorithm was able to find the ground state. All spin-glass instances were generated randomly on a fully connected graph of size N . Parameter D is the bond
imensions characterizing MPS tensors, and dβ denotes the increment of the inverse temperature, see the main text. b. Normalized histogram showing the percent
f instances for which the MPS based algorithm was able to find a given number of configurations out of S = 1000 lowest ones. Here, we use D = 128, dβ = 0.25

and in all panels β = 1.
i
p
t
a

U

w
(
o
e
d
o
e
d
d

β
d

For each instance, we have calculated the low energy spectrum
consisting of S = 102 states in a single run. Typical results
obtained with a high-end CPU (i7-6950X) and both a mid-class
(GeForce 1080) and professional (Titan V) GPU are depicted in
Fig. 3. We have also estimated time to solution experimentally,
for larger systems (up to N = 50 spins) for which the low energy
spectrum can be obtained in a reasonable time (i.e., one month)
on Titan V. The estimate is based on the average time required
to process a single chunk of data [of size M = 229 (CPU), and
M = 227 (GTX 1080)]. Our measurements are consistent with the
complexity analysis discussed in Section 4.3.

5.2. Validation of MPS algorithm

To demonstrate the capabilities of our solver, we employ it
to benchmark a more sophisticated, heuristic, approach based
on a Matrix Product States (MPS) technique (see Supplementary
Material of Ref. [23] for details). Here, we are not interested in
time to solution, but instead, we would like to investigate the
accuracy of the latter. Heuristic algorithms can often solve large
systems (N ≫ 50). However, they cannot certify solutions.

With the MPS based algorithm one aims at approximating the
Boltzmann distribution,

e−βH(s)/2
≈ As1As2 . . . AsL = |Ψ (β)⟩, (10)

for a sufficiently large inverse temperature, β , where each Asi

(i = 1, 2 . . . , L) is matrix of limited dimensions ≤ D (refereed
to as the bond dimensions). The above approximation is usual
depicted – using a network of tensors – as

At each bond, one splits the system into two-halves. The exact
decomposition would require the bond dimension D to grow
exponentially with the number of spins in one half, interacting
with spins in the second half (and arbitrary numerical precision).
The limited bond dimension D reflects on the amount of entan-
glement/correlations (related to a given bipartition), which can
be stored in a ‘‘quantum system’’ decomposed as MPS [55]—here
we understand a ‘‘quantum system’’ as a superposition over all
possible classical spin configurations. Having the approximation
in Eq. (10) in the form of MPS, we can efficiently calculate any
marginal and conditional probability (at the inverse temperature
β) described by |Ψ (β)⟩, and then systematically search for the
6

most probable classical configurations (i.e., the ones with the
smallest energies) using branch and bound strategy—building the
most probable spin configurations one spin at the time.

Finally, to perform the search one needs to find |Ψ (β)⟩, which
s obtained by starting from β = 0 – for which the MPS decom-
osition |Ψ (β = 0)⟩ is trivial – and then subsequently simulating
he imaginary time evolution (i.e., the annealing). To that end, we
pply the sequence of operators,

i(dβ) = e−dβsi(
∑

j>i Jijsj+hi)/2, (11)

hich amount to
∏N

i=1 Ui(dβ) = e−dβH(s)/2. Applying each gate
11) results in doubling of the affected bond dimensions. More-
ver, applying all such operators would result in uncontrollable,
xponential growth of the MPS matrices. However, the one-
imensional (and loop-free) structure of the MPS ansatz allows
ne to systematically, at each step, find its approximation, which
ffectively compresses the information and maintains the bond
imensions limited to D. The whole procedure can be graphically
epicted as

While all the applied operators Ui(dβ) formally commute (in-
dependent of dβ), due to the finite numerical precision and
finite D, it is relevant to reach the final inverse temperature,
, gradually in a couple of consecutive steps, each with smaller
β . Otherwise, for larger dβ , Ui(dβ) effectively act as projectors

trapping the system in a local minima.
The question then becomes how well the MPS ansatz, which

by construction is one-dimensional, is able to encode the struc-
ture of low energy spectrum for fully-connected graphs. In gen-
eral, the bigger the system, the higher D necessary to faithfully
capture the structure of low energy spectrum. We observe that
already moderate D of 128 is enough to find all ground states
for 100 considered instances, see Fig. 6a. The inverse temperature
β = 1 is large enough to sufficiently zoom-in on the low energy
states. At the same time, the importance of small enough time-
step (here dβ = 0.25) is clearly visible. It is also enough to
recover most of the 1000 configurations with lowest energies
for those instances, see Fig. 6b for N = 40. Note that the exact

K. Jałowiecki, M.M. Rams and B. Gardas Computer Physics Communications 260 (2021) 107728

a
d
i
W
C
T

M
2
r

Fig. 7. Low energy spectrum of the Ising model (1) obtained with different
lgorithms and randomly generated instances of size N = 50. Here, the bond
imension for the MPS based algorithm D = 128 and the increment of the
nverse temperature dβ = 0.125 (cf. the main text or Ref. [23] for more details).
e also depicted the approximated solutions obtained with the recent Monte
arlo based algorithm (Entropic Population Annealing), introduced in Ref. [56].
he data was provided by the authors of this paper.

PS decomposition would require the bond dimension of 2N/2
=

20. This demonstrate the magnitude of the compression of the
elevant information encoded in MPS.

A typical lowest energy spectrum for N = 50 spins, and
consisting of S = 103 states, is shown in Fig. 7. Therein, we
have also incorporated an approximated low-energy spectrum
obtained with the recent Monte Carlo based algorithm, intro-
duced in [56], which can determine the density of states. The
numerical data was provided to us by the authors of that paper.

6. Summary

We have demonstrated how to perform an exhaustive (brute-
force) search in the solution space of the Ising spin-glass model
[2] utilizing modern Graphics Processing Units [57]. Our algo-
rithm can also be adapted for different heterogeneous architec-
tures (e.g., Xeon Phi [58]). The Hamiltonian of this particular
model encodes a variety of important optimization problems [5].
Moreover, this model has also been realized experimentally as a
commercially available D-Wave quantum annealer [8].

Our implementation with CUDA Fortran [45] offers unprece-
dented speed and efficiency already visible on commodity hard-
ware (e.g., GeForce 1080). Furthermore, it can be easily tuned
for professional GPUs such as Titan V [37] virtually at no extra
effort. To give an example, our algorithm, when tailored for the
latter GPU, can extract the low energy spectrum (consisting of
N = 102 states) in roughly 3.5 s for the spin system admitting
M = 232

∼ 109 different configurations. In comparison, a single
CPU core takes (on average) 25 min to finish the same task (cf.
Section 5 for detailed benchmark).

Admittedly, practical applications of brute-force algorithms
are constrained to small problem sizes (N ≤ 50). However, they
can not only solve the spin-glass problems for arbitrary topologies
and instances but also certify solutions [17,18,24]. These two fea-
tures are crucial for developing and validating new methods and
strategies for solving classical optimization problems [26]. We
have explicitly exemplified this point by comparing our algorithm
to a sophisticated recent Ising solver based on tensor network
techniques [23]. In particular, we have demonstrated that despite
its one-dimensional nature, the Matrix Product State ansatz is
still able to approximate well the relevant part of the Boltzmann
distribution for a fully connected graph of N ≤ 50. Therefore,
this suggests that the MPS algorithm should be superior for all
problems having a dominant quasi-one-dimensional nature that
allows for sparse connections to span the full problem.
7

Finally, to benefit the community, we have made our code
publicly available as an open-source project [31]. Moreover, for
those users who lack technical knowledge of Fortran or CUDA, we
have provided an easy to install and use Python wrapper [31].

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

We appreciate fruitful discussions with Andrzej Ptok, Jerzy
Dajka, and Piotr Gawron and Masoud Mohseni. We thank Paweł
Wasiak for his valuable remarks regarding solver’s documen-
tation. We gratefully acknowledge the support of NVIDIA Cor-
poration with the donation of the Titan V GPU used for this
research. This work was supported by National Science Center
(NCN, Poland) under projects 2015/19/B/ST2/02856 (KJ) 2016/
20/S/ST2/00152 (BG) and NCN together with European Union
through QuantERA ERA NET program 2017/25/Z/ST2/03028
(MMR). We acknowledge receiving Google Faculty Research
Award 2017 (MMR) and 2018 (MMR and BG).

References

[1] S. Aaronson, Quantum Computing Since Democritus, Cambridge University
Press, 2013.

[2] R. Harris, et al., Science 361 (6398) (2018) 162–165, 30002250.
[3] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness, W. H. Freeman & Co., 1979.
[4] R. Karp, Complexity of Computer Computations, Plenum Press, 1972, pp.

85–103.
[5] A. Lucas, Front. Phys. 2 (2014) 5.
[6] Y. Yamamoto, et al., npj Quantum Inf. 3 (1) (2017) 49.
[7] M. Aramon, et al., 2018, Preprint at arXiv:1806.08815.
[8] J. King, et al., 2015, Preprint at arXiv:1508.05087.
[9] A. Krizhevsky, I. Sutskever, G.E. Hinton, Proceedings of the 25th Interna-

tional Conference on Neural Information Processing Systems - Volume 1,
in: NIPS’12, Curran Associates Inc., 2012, pp. 1097–1105.

[10] B. Gardas, M.M. Rams, J. Dziarmaga, Phys. Rev. B 98 (2018) 184304.
[11] T.A. Elsayed, K. Mølmer, L.B. Madsen, Sci. Rep. 8 (1) (2018) 12704.
[12] R.P. Feynman, Caltech Eng. Sci. 23 (1960) 22–36.
[13] T. Lanting, et al., Phys. Rev. X 4 (2014) 021041.
[14] R. Orus, Ann. Phys. 349 (2014) 117–158.
[15] B. Gardas, S. Deffner, Sci. Rep. 8 (1) (2018) 17191.
[16] B. Gardas, J. Dziarmaga, W.H. Zurek, M. Zwolak, Sci. Rep. 8 (1) (2018) 4539.
[17] J. Czartowski, K. Szymański, B. Gardas, Y. Fyodorov, K. Życzkowski, 2018,

Preprint at arXiv:11812.09251.
[18] F. Baccari, C. Gogolin, P. Wittek, A. Acín, 2018, Preprint at arXiv:1808.

01275.
[19] C. Cook, H. Zhao, T. Sato, M. Hiromoto, S.X.-D. Tan, 2018, arXiv:1807.10750.
[20] F. Rendl, G. Rinaldi, A. Wiegele, Math. Program. 121 (2) (2008) 307.
[21] I. Hen, Phys. Rev. E 96 (2017) 022105.
[22] F. Sheldon, F.L. Traversa, M.D. Ventra, 2018, Preprint at arXiv:1810.03712.
[23] M.M. Rams, M. Mohseni, B. Gardas, 2018, Preprint at arXiv:1811.06518.
[24] M.J.H. Heule, O. Kullmann, Commun. ACM 60 (8) (2017) 70–79.
[25] T. Leleu, Y. Yamamoto, P.L. McMahon, K. Aihara, Phys. Rev. Lett. 122 (2019)

040607.
[26] S. Mandra, H.G. Katzgraber, Quantum. Sci. Technol. 3 (4) (2018) 04LT01.
[27] F. Arute, et al., Nature 574 (7779) (2019) 505–510.
[28] E. Pednault, et al., 2019, arXiv:1910.09534.
[29] M. Januszewski, A. Ptok, D. Crivelli, B. Gardas, Comput. Phys. Commun. 192

(2015) 220–227.
[30] B. Gardas, A. Ptok, J. Comput. Phys. 366 (2018) 320–326.
[31] https://github.com/dexter2206/ising. 2019. accessed: 2019-01-27.
[32] F.Y. Wu, Rev. Modern Phys. 54 (1982) 235–268.
[33] Z. Liu, S.P. Rodrigues, W. Cai, 2018, Preprint at arXiv:1710.04987v1.
[34] P.A.R. Ade, et al., Astron. Astrophys. 594 (2016) A13.
[35] F. Barahona, J. Phys. A: Math. Gen. 15 (10) (1982) 3241.
[36] J. Backus, Commun. ACM 21 (8) (1978) 613–641.
[37] https://www.nvidia.com/en-gb/titan/titan-v/. 2018. accessed: 2019-01-27.
[38] https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/. 2019.

accessed: 2019-09-24.

http://refhub.elsevier.com/S0010-4655(20)30360-X/sb1
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb1
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb1
http://arxiv.org/abs/30002250
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb3
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb3
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb3
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb4
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb4
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb4
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb5
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb6
http://arxiv.org/abs/1806.08815
http://arxiv.org/abs/1508.05087
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb9
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb9
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb9
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb9
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb9
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb10
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb11
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb12
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb13
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb14
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb15
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb16
http://arxiv.org/abs/11812.09251
http://arxiv.org/abs/1808.01275
http://arxiv.org/abs/1808.01275
http://arxiv.org/abs/1808.01275
http://arxiv.org/abs/1807.10750
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb20
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb21
http://arxiv.org/abs/1810.03712
http://arxiv.org/abs/1811.06518
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb24
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb25
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb25
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb25
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb26
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb27
http://arxiv.org/abs/1910.09534
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb29
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb29
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb29
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb30
https://github.com/dexter2206/ising
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb32
http://arxiv.org/abs/1710.04987v1
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb34
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb35
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb36
https://www.nvidia.com/en-gb/titan/titan-v/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

K. Jałowiecki, M.M. Rams and B. Gardas Computer Physics Communications 260 (2021) 107728
[39] T. Alabi, et al., J. Exp. Algorithm. 17 (2012) 4.2:4.1–4.2:4.29.
[40] M.D. Hill, M.R. Marty, Computer 41 (7) (2008) 33–38.
[41] S.J. Chapman, Fortran 95/2003 for Scientists & Engineers, McGraw-Hill,

2007.
[42] L. Rossi, J. Berzosa-Molina, D.M. Stam, Astron. Astrophys. 616 (2018) A147.
[43] E. Wang, et al., High-Performance Computing on the Intel R⃝ Xeon Phi TM ,

Springer, 2014, pp. 167–188.
[44] https://julialang.org/benchmarks/. 2019. accessed: 2019-01-27.
[45] M. Fatica, G. Ruetsch, CUDA Fortran for Scientists and Engineers, Elsevier,

2014.
[46] https://docs.scipy.org/doc/numpy-1.15.0/f2py/index.html, 2018.
[47] https://docs.scipy.org/doc/numpy-1.15.0/reference/distutils.html. 2018. ac-

cessed: 2018-10-23.
[48] M.L. Wall, L.D. Carr, New J. Phys. 14 (2012) 125015.
8

[49] https://insights.stackoverflow.com/survey/2018/. 2018. accessed: 2019-01-
27.

[50] https://thrust.github.io/. 2015. accessed: 2019-01-27.
[51] https://ising.readthedocs.io/en/latest/. 2019. accessed: 2019-01-27.
[52] J. Sanders, E. Kandrot, CUDA by Example: An Introduction to General-

Purpose GPU Programming, first ed., Addison-Wesley Professional,
2010.

[53] J. Marshall, V. Martin-Mayor, I. Hen, Phys. Rev. A 94 (2016) 012320.
[54] F. Hamze, et al., Phys. Rev. E 97 (2018) 043303.
[55] D. Jaschke, M.L. Wall, L.D. Carr, Comput. Phys. Comm. 225 (2018) 59–91.
[56] L. Barash, J. Marshall, M. Weigel, I. Hen, New J. Phys. 21 (7) (2019) 073065.
[57] M. Pharr, R. Fernando, GPU Gems 2: Programming Techniques for

High-Performance Graphics and General-Purpose Computation, first ed.,
Addison-Wesley Professional, 2005.

[58] I.A. Surmin, et al., Comput. Phys. Comm. 202 (2016) 204–210.

http://refhub.elsevier.com/S0010-4655(20)30360-X/sb39
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb40
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb41
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb41
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb41
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb42
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb43
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb43
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb43
https://julialang.org/benchmarks/
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb45
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb45
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb45
https://docs.scipy.org/doc/numpy-1.15.0/f2py/index.html
https://docs.scipy.org/doc/numpy-1.15.0/reference/distutils.html
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb48
https://insights.stackoverflow.com/survey/2018/
https://thrust.github.io/
https://ising.readthedocs.io/en/latest/
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb52
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb52
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb52
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb52
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb52
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb53
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb54
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb55
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb56
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb57
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb57
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb57
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb57
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb57
http://refhub.elsevier.com/S0010-4655(20)30360-X/sb58

	Brute-forcing spin-glass problems with CUDA
	Introduction
	Spin-glass problems
	Description of the algorithm
	Implementation details
	Languages and technologies employed
	GPU execution scheduling and kernel implementation
	Complexity analysis

	Benchmarks
	GPU vs. CPU comparison
	Validation of MPS algorithm

	Summary
	Declaration of competing interest
	Acknowledgments
	References

