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a b s t r a c t

Obtaining a thermodynamically accurate phase diagram through numerical calculations is a computa-
tionally expensive problem that is crucially important to understanding the complex phenomena of solid
state physics, such as superconductivity. In this work we show how this type of analysis can be signif-
icantly accelerated through the use of modern GPUs. We illustrate this with a concrete example of free
energy calculation in multi-band iron-based superconductors, known to exhibit a superconducting state
with oscillating order parameter (OP). Our approach can also be used for classical BCS-type superconduc-
tors.With a customized algorithm and compiler tuningwe are able to achieve a 19×speedup compared to
the CPU (119×compared to a single CPU core), reducing calculation time from minutes to mere seconds,
enabling the analysis of larger systems and the elimination of finite size effects.
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models.

Solution method: Parallel parameter space search for a global minimum of free energy.

Unusual features: The same core algorithm is implemented in Fortran with OpenMP and OpenACC com-
piler annotations, as well as in CUDA C. The original Fortran implementation targets the CPU architecture,
while the CUDA C version is hand-optimized for modern GPUs.
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Running time: Problem-dependent, up to several seconds for a single value of momentum and a linear
lattice size on the order of 103

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The last decade brought a dynamic evolution of the comput-
ing capabilities of graphics processing units (GPUs). At that time,
the performance of a single card increased from tens of GFLOPS
in NVxx to TFLOPS in the newest Kepler/Maxwell NVIDIA chips [1].
This rawprocessing power did not go unnoticed by the engineering
and science communities, which started applying GPUs to acceler-
ate a wide array of calculations in what became known as GPGPU—
general-purpose computing on GPUs. This led to the development
of special GPU variants optimized for high performance comput-
ing (e.g. the NVIDIA Tesla line), but it should be noted that even
commodity graphics cards, such as those from the NVIDIA GeForce
series, still provide enormous computational power and can be a
very economical (both from the monetary and energy consump-
tion point of view) alternative to large CPU clusters.

The spread of GPGPU techniques was further facilitated by
the development of CUDA and OpenCL—parallel programming
paradigms allowing efficient exploitation of the available GPU
compute power without exposing the programmer to too many
low-level details of the underlying hardware. GPUs were used suc-
cessfully to accelerate many problems, e.g. the numerical solution
of stochastic differential equations [2,3], fluid simulations with
the lattice Boltzmann method [4,5], molecular dynamics simula-
tions [6], classical [7] and quantum Monte Carlo [8] simulations,
exact diagonalization of the Hubbard model [9], etc.

Parallel computing in general, and its realization in GPUs in par-
ticular, can also be extremely useful in many fields of solid state
physics. For a large number of problems, the ground state of the
system and its free energy are of special interest. For instance,
in order to determine the phase diagram of a model, free energy
has to be calculated for a large number of points in the parameter
space. In this paper, we address this very issue and illustrate it on a
concrete example of a superconducting system with an oscillating
order parameter (OP), specifically an iron-basedmulti-band super-
conductor (FeSC). Our algorithm is not limited to systems of this
type and can also be used for systems in the homogeneous super-
conducting state (BCS).

The discovery of high temperature superconductivity in
FeSC [10] began a period of intense experimental and theoretical
research [11]. All FeSC include a two-dimensional structure which
is shown in Fig. 1(a). The Fermi surfaces (FS) in FeSC are com-
posed of hole-like Fermi pockets (around the Γ = (0, 0) point)
and electron-like Fermi pockets (around the M = (π, π) point)—
Fig. 1(b). Moreover, in FeSC we expect the presence of s± symme-
try of the superconducting OP [12]. In this case the OP exhibits
a sign reversal between the hole pockets and electron pockets.
For one Fe ion in the unit cell, the OP is proportional to cos kx
· cos ky.

FeSC systems showcomplex low-energy band structures,which
have been extensively studied [12–17]. A consequence of this is
a more sensitive dependence of the FS to doping [18]. In the
superconducting state, the gap is found to be of the order of 10
meV, small relative to the breadth of the band [19]. This increases
the required accuracy of calculated physical quantities needed to
determine the phase diagram of the superconducting state, such as
free energy [20,21].
In this paper we show how the increased computational cost
of obtaining thermodynamically reliable results can be offset by
parallelizing the most demanding routines using CUDA, after a
suitable transformation of variables to decouple the interacting
degrees of freedom. In Section 2 we discuss the theoretical
background of numerical calculations. In Section 3 we describe
the implementation of the algorithm and compare its performance
when executed on the CPU and GPU. We summarize the results in
Section 4.

2. Theoretical background

Many theoretical models of FeSC systems have been proposed,
with two [22], three [23–25], four [26] and five bands [16,17]. Most
of the models mentioned describe one Fe unit cell and closely
approximate the band and FS structure (Fig. 1(b)) obtained by
LDA calculations [15,19,27,28]. In every model the non-interacting
tight-binding Hamiltonian of FeSC in momentum space can be
described by:

H0 =


αβkσ

Tαβ

kσ cĎαkσ cβkσ , (1)

where cĎαkσ (cαkσ ) is the creation (annihilation) operator for a spin
σ electron of momentum k in the orbital α (the set of orbitals is
model dependent). The hopping matrix elements Tαβ

kσ = Tαβ

k −

δαβ(µ + σh) determine the model of FeSC. Here, µ is the chemical
potential and h is an external magnetic field parallel to the FeAs
layers. For our analysis we have chosen the minimal two-band
model proposed by Raghu et al. [22] and the three-band model
proposed by Daghofer et al. [23,24] (described in Appendices A and
B respectively). The band structure and FS of the FeSC system can
be reconstructed by diagonalizing the Hamiltonian H0:

H ′

0 =


εkσ

Eεkσd
Ď
εkσdεkσ , (2)

where dĎεkσ (dεkσ ) is the creation (annihilation) operator for a spin
σ electron of momentum k in the band ε.
Superconductivity in multi-band iron-base systems in high mag-
netic fields. FeSC superconductors are layered [15,19,27–30], clean
[31,32] materials with a relatively high Maki parameter α ∼ 1–2
[32–36]. All of the features are shared with heavy fermion
systems, in which strong indications exist to observe the Fulde–
Ferrell–Larkin–Ovchinnikov (FFLO) phase [37,38]—a supercon-
ducting phase with an oscillating order parameter in real space,
caused by the non-zero value of the total momentum of Cooper
pairs.

In contrast to the BCS state where Cooper pairs form a singlet
state (k ↑, −k ↓), the FFLO phase is formed by pairing states
(k ↑, −k + q ↓). These states can occur between the Zeeman-
split parts of the Fermi surface in a high external magnetic field
(when the paramagnetic pair-breaking effects are smaller than the
diamagnetic pair-breaking effects) [39]. In one-bandmaterials, the
FFLO can be stabilized by anisotropies of the Fermi-surface and
of the unconventional gap function, [40] by pair hopping inter-
action [41] or, in systems with nonstandard quasiparticles, with
spin-dependent mass [42–45]. This phase can be also realized in
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Fig. 1. (Color online) (Panel a) FeAs layers in FeSC are built by Fe ions (red dots)
forming a square lattice surrounded by As ions (green dots) which also form a
square lattice. As ions are placed above or under the centers of the squares formed
by Fe. This leads to two inequivalent positions of Fe atoms, so that there are two
ions of Fe and As in an elementary cell. (Panel b) True (folded) Fermi surface in
the first Brillouin zone for two Fe ions in unit cell. The colors blue, red and green
correspond to the FS for the 1st, 2nd, and 3rd band, respectively.

inhomogeneous systems in the presence of impurities [46–48] or
spin density waves [49]. In some situations, the FFLO can be also
stable in the absence of an external magnetic field [50]. In multi-
band systems, the experimental [32,33,51–53] and theoretical
[21,54–59] works point to the existence of the FFLO phase in FeSC.
Through the analysis of the Cooper pair susceptibility in the min-
imal two-band model of FeSC, such systems are shown to support
the existence of an FFLO phase, regardless of the exhibited OP sym-
metry. It should be noted that the state with nonzero Cooper pair
momentum, in FeSC superconductors with the s± symmetry, is the
ground state of the system near the Pauli limit [21,56]. This holds
true also for the three-band model (e.g. Appendix C and Ref. [59]).

Free energy for intra-band superconducting phase. In absence
of inter-band interactions, the BCS and the FFLO phase (with
Cooper pairs with total momentum qε equal zero and non-zero
respectively) can be described by the effective Hamiltonian:

HSC =


εk


∆εkdεk↑dε,−k+qε↓

+ H.c.

, (3)

where ∆εk = ∆εη(k) is the amplitude of the OP for Cooper pairs
with total momentum qε (in band ε with symmetry described by
the form factor η(k)—for more details see Ref. [56]). Using the
Bogoliubov transformation we can find the eigenvalues of the full
Hamiltonian H = H0 + HSC :

E±

εk =
Eεk↑ − Eε,−k+q↓

2
±


Eεk↑ + Eε,−k+q↓

2

2

+ |∆εk |
2. (4)

In this case we formally describe two independent bands. The total
free energy for the system is given by Ω =


ε Ωε , where

Ωε = −
1
β


α∈{+,−}


k

ln

1 + exp(−βEα

εk)


+


k


Eεk↓ −

2|∆ε|
2

Vε


, (5)

corresponding to the free energy in εth band, where Vε is the
respective interaction intensity and β = 1/kBT .

Historical and technical note. The historically basic concept of the
FFLO phase was simultaneously proposed by two independent
groups, Fulde–Ferrell [37] and Larkin–Ovchinnikov [38] in 1964.
The first group proposed a superconducting phase where Cooper
pairs have only one non-zero total momentum q, and the super-
conducting order parameter in real space ∆(R j) ∼ exp(iR j · q). In
the second case, Cooper pairs have two possible momenta: q and
the opposite −q, with an equal amplitude of the order parameter.
Thus in real space the superconducting order parameter is given by
∆(R j) ∼ exp(iR j · · · q) + exp(−iR j · q) = cos(R j · · · q). However,
the most general case of FFLO is a superconducting order parame-
ter given by a sum of plane waves, where the Cooper pairs have all
compatible values of the momentum qα in the system:

∆(Rj) =

M
α=1

∆α exp(iR j · qα) (6)

whereM is the cardinality of the first Brillouin zone (in the square
lattice it is equal to Nx × Ny). For the historical reasons described
above, whenever M = 1 (q1 ≠ 0 and ∆1 ≠ 0) we can speak about
the Fulde–Ferrell (FF) phase, whereas for M = 2 (and q1 = −q2,
∆1 = ∆2) about the Larkin–Ovchinnikov (LO) phase.

Larger M impose a more demanding spatial decomposition of
the order parameter, both in the theoretical and computational
sense. However, every time it can be reduced to the diagonalization
of the (block) matrix representation of the Hamiltonian. Using the
translational symmetry of the lattice, the problem for the FF phase
(M = 1) in one-band systems corresponds to the independent
diagonalization of 2 × 2 matrices (with eigenvalues given like in
Eq. (4) with the number of bands ε = 1) for each of the Nx × Ny
different momentum sectors. In case of the LO phase (M = 2),
the calculation can be similarly decomposed in momentum space
or using other spatial symmetries of the system (an example of
this procedure can be found in Ref. [49]), with a much greater
computational effort due to the lower degree of symmetry, leading
to Nx independent diagonalization problems of size 2Ny × 2Ny.
In the full FFLO phase (i.e. in a system with impurities [46–48]
or a vortex lattice [60]), the spatial decomposition is determined
in real space using the self-consistent Bogoliubov–de Gennes
equations, which require the full diagonalization of a Hamiltonian
of maximal rank 2(NxNy) [61–64] at every self-consistent step. To
work around these limitations, iterative methods [65,66] or the
Kernel Polynomial Method [67] can be used. These methods are
based on the idea of expressing functions of the energy spectrum
in an orthogonal basis, e.g. Chebyshev polynomial expansion
[68–74]. By doing so, it becomes possible to conduct self-consistent
calculations in the superconducting state without performing the
diagonalization procedure. The time expense of iterative methods
can also be reduced by a careful GPU implementation, which is
currently a work in progress.

In the present work, we describe how the calculation of the free
energy can be accelerated in the FF phase, which due to its greater
symmetry allows optimal parallelization on a GPU architecture.

3. Parallel calculation of free energy

3.1. Programming models—OpenMP, OpenACC and CUDA C

Parallel programming can be realized in CPUs and GPUs in
many different ways. In this section we compare the performance
of the same algorithm implemented using OpenMP [75], PGI
CUDA/OpenACC Fortran [76], and directly in CUDA C [1].

The first two are generic extensions of Fortran/C++ that make
it easy to, respectively, use multiple CPU cores, and compile a
subset of existing Fortran/C++ code for a GPU. They take the
form of annotations which can be added to existing code, and
as such, enable the use of additional computational power with
very little overhead by the programmer. Typically, much better
efficiency can be achieved by the third option—i.e. a specifically
optimized implementation targeting the GPU architecture directly.
This requires more work on the part of the programmer, both in
adjusting the algorithms and in rewriting the code, but it makes it
possible to fully utilize the available resources.
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Fig. 2. (Color online) Free energy Ωε for different parameters Vε in h ≃ hBCS
C —results for hBCS

C = 0.025 eV (panels a, c and e) and 0.005 eV (panels b, d and f).
3.2. GPU algorithm

The global ground state for a fixedmagnetic field strength h and
temperature T is found by minimizing the free energy over the set
of ∆ε and qε . In case of n independent bands this corresponds to
globalminimization of the free energyΩε in every band separately,
for every qε in the first Brillouin zone (FBZ)—Algorithm 1.

For the calculation of the free energy Ωε , we must know the
eigenvalues Eεkσ reconstructing the band structure of our systems.
In the case of the two-band model, it can simply be found analyti-
cally (seeAppendixA). However, formodelswithmore bands (such
as the three-band model— Appendix B) the band structure has to
be determined numerically (e.g. using a linear algebra library, such
as Lapack (CPU) or Magma (GPU) [77]). With this approach, the
calculation of Eεk↑ and Eε,−k+q↓ becomes a computationally costly
procedure, and if it were to be repeated inside the inner loop of
Algorithm 1, it would significantly impact the execution time. For
this reason, we propose to precalculate the eigenvalues for every
momentum vector k ∈ FBZ and store them in memory for models
with more than two bands. The main downside of this approach is
the large increase in memory usage.

While Algorithm 1 is simple to realize on a CPU, its execution
time is proportional to the system size Nx × Ny, and as such scales
quadraticallywithNx for a square lattice (Nx andNy are the number
of lattice sites in the x and y direction, respectively).

Sometimes the physical properties of the system make it
possible to reduce the amount of computation – for instance when
it is known that theminimumof the energy is attained for values of
momentum qε in specific directions –Fig. 2 [21,41,48,49,56,59,78].
Algorithm1 Findingqε and∆ε corresponding to a globalminimum
of free energy in band ε.
1: for qε ∈ FBZ do
2: generate matrices Eεk↑ and Eε,−k+qi↓ for k ∈ FBZ
3: for ∆ε = 0 to ∆max do
4: calculate matrices E±

εk for k ∈ FBZ – Eq. (4)
5: calculate Ωε

6: find and save ∆ε corresponding to a fixed qε and minimal
value Ωε

7: end for
8: find and save qε and ∆ε corresponding to minimum of Ωε

9: end for

In this case, the outer loop of Algorithm 1 can be restricted to qε ∈

Q ⊂ FBZ , whereQ is a set ofN ≪ Nx×Ny vectors. Such reductions
are not unique to linear systems with translational symmetry but
are also the case for systems with rotational symmetry [61–63].

In the case of BCS-type superconductivity where Cooper pairs
have zero total momentum (qε = 0), Algorithm 1 can be further
simplified by taking into account the following property of the
dispersion relation: Eε,−k = Eεk in Eq. (4). This can be particularly
useful in determining the system energy in the presence of the BCS
phase—i.e. either in complete absence of external magnetic fields
or when only weak fields are present.

Amore general approach to the reduction of the execution time
of our algorithm is to exploit the large degree of parallelism inher-
ent in the problem. In fact, Algorithm 1 can be classified as ‘‘em-
barrassingly parallel’’ since the vast majority of computation can
be carried out independently for all combinations of {qε, k, ∆ε}.
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For simplicity, in this paper we concentrate on optimizing the in-
ner loop, as all the presented methods apply to the outer loop in a
similar fashion.

We present two approaches to this problem. The first is to
parallelize the execution of the serial loop over ∆ε with OpenMP
to fully utilize all available CPU cores. This has the advantage of
simplicity, as the implementation requires minimal changes to the
original (serial) code.

The second approach is to implement Algorithm 1 on a GPU
using the CUDA environment. Modern GPUs are capable of simul-
taneously executing thousands of threads in SIMT (Same Instruc-
tion, Multiple Threads) mode. From a programmer’s point of view,
all the threads are laid out in a 1-, 2- or 3-dimensional grid and
are executing a kernel function. The grid is further subdivided into
blocks (groups of threads), which are handled by a physical com-
putational subunit of the GPU (the so-called streaming multipro-
cessor). Threads within a block can exchange data efficiently dur-
ing execution, but cross-block communication can only take place
through global GPU memory, which is significantly slower.

To fully utilize the GPU hardware, we split Algorithm 1 into
three steps. In the first step,we execute theComputeFreeEnergy
kernel (Algorithm 2) on a 3D grid Nx × Ny × ∆max (see Fig. 3).
To take advantage of the efficient intra-block communication, we
also carry out partial sums within the block (corresponding to a
subset of values spanning Nx) using the parallel sum-reduction
algorithm [79]. In the second step, we execute the sum-reduction
algorithm again on the partial sums that were generated by
Algorithm 2. In the third and final step, we copy the output of step
2 from GPU memory to host memory, and look for the value of
∆i corresponding to the lowest free energy with a linear search.
Depending on the exact configuration of the kernels in steps 1 and
2, the summationmight not be complete at the beginning of step 3.
If this is the case,we carry out the remaining summationwithin the
serial loop computing ∆i. With block sizes of 128 and 1024 used
for the kernels in steps 1 and 2, we can sum up to 217 terms in
parallel on the GPU. We found that the remaining summation was
not worth the overhead of carrying it out on the GPU. Should this
not be the case for some larger problems, further parallel execution
can be trivially achieved by repeating step 2 one more time.

Algorithm 2 The ComputeFreeEnergy CUDA kernel.
1: compute ∆i and k corresponding to the current thread
2: load Eik↑ and Ei,−k+qε↓

from global memory (precomputed by
a separate kernel)

3: compute E±

ik and Ωi
4: sum Ωi for a range of k corresponding to one block of threads
5: save the partial sum from the previous step in global GPU

memory

3.3. Performance evaluation

To test our approach, we executed Algorithms 1 and 2 on Linux
machines with the following hardware:

• CPU: Intel(R) Core(TM) i7-3960X CPU @ 3.30 GHz—6 cores / 12
threads;

• GPU: NVIDIA Tesla K40 (GK180) with the SM clock set to 875
MHz.

The programs were run for a single value of qi and 200 values
of ∆i. Calculations were done for a square lattice of size N × N
for various values of N . The execution times (including only the
computation part of the code, and excluding any time spent on
startup or input/output) are presented in Fig. 4.
Fig. 3. Schematic representation Algorithm 1 mapped to GPU hardware.

Comparing the best CPU execution time (with OpenMP) to the
GPU Fortran code using OpenACC, we find a speedup factor of 5.8
in the limit of large lattices. The custom GPU code shows slightly
better performance, with a 7× speedup for the double precision
version, and additional speedup factors of 1.7 for single precision,
and 1.6 for intrinsic functions. When taken together, the fastest
GPU version is 19.2 times faster than the OpenMP code and 119.1
times faster than the serial CPU code utilizing only a single core.

It is remarkable that the original Fortran code enhanced
with OpenACC annotations provides performance comparable to
a manual implementation in CUDA C. This result shows the
power of appropriately used annotations marking parallelizable
regions of the code. While still requiring explicit input from the
programmer and a good understanding of the structure of the code,
this approach is in practice significantly faster than writing the
program from scratch in CUDA C and dealing with low level details
of GPU programming and resource allocation. This conclusion
however only applies in the limit of large lattices (see the left
panel in Fig. 4). For smaller ones, the CUDA C code can be seen
to be noticeably faster than OpenACC, which is likely caused by
the automatically generated GPU code introducing unnecessary
overhead.

It should be noted that the last two speedup factors were
achieved by trading off precision of calculations for performance—
e.g. intrinsic functions are faster, but less precise implementations
of transcendental functions. In our tests, we obtained the same
results with all three approaches. This might not be true for some
other systems though, so we advise careful experimentation. With
a factor of 2.8× between the most and least precise methods,
it might also be worthwhile to run larger parameter scans at
lower precision and then selectively verify with double precision
calculations.

4. Summary

The rich phenomenology and the subtle competing and inter-
playing phenomena of high-TC materials such as FeSC (Section 1),
require us to probe fine regimes and precisely determine possible
experimental signatures of exotic phases such as FFLO (Section 2).

By conducting our calculations in momentum space, and by
fully exploiting the symmetries of the system, we are able to
increase the size of the studied system by two orders of magnitude
compared to previously reported results and practically eliminate
finite size effects. The cost is borne by the increased complexity
of the efficient custom-tailored GPU implementation, described in
Section 3. Our method shown here on the example of an iron-
basedmulti-band superconductor exhibiting a FFLOphase, can also
be used in calculations of the ground state in standard BCS-type
superconductors.
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Fig. 4. (Color online) Left panel: Execution time of Algorithms 1 and 2 for one vector qi . Right panel: speedup factors for all configurations at N = 2000. The last 3 case
names correspond to runs of the same CUDA C code in double precision (DP), single precision (SP), and single precision with fast intrinsic functions (SPFM). All versions of
the Fortran code used double precision calculations.
Overall, we achieved a 19× speedup compared to the CPU im-
plementation (119× compared a single CPU core). In the spec-
trumofGPU-accelerated results in physics, this puts us towards the
higher end, with the highest speedups being ≈700× for compute-
bound problems with large inherent parallelism [2].
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Appendix A. Two-band model of Raghu et al.

The model of FeSC proposed by Raghu et al. in Ref. [22], is a
minimal two-band model of iron-base pnictides describing the dxz
and dyz orbitals with hybridization:

T 11
k = −2


t1 cos kx + t2 cos ky


− 4t3 cos kx cos ky (A.1)

T 22
k = −2


t2 cos kx + t1 cos ky


− 4t3 cos kx cos ky (A.2)

T 12
k = T 21

k = −4t4 sin kx sin ky, (A.3)

where t1 = −1.0, t2 = 1.3, t3 = −0.85, t4 = −0.85. |t1| is the
energy unit. Half-filling, a configurationwith two electrons per site
requires µ = 1.54|t1|. The model is exactly diagonalizable, with
eigenvalues:

E±,k =
T 11
k + T 22

k

2
±


T 11
k − T 22

k

2

2

+ (T 12
k )2. (A.4)

The spectrum Eαk reproduces the band structure and Fermi surface
of FeSC—for α = +(−) we get the electron-like (hole-like) band.

Appendix B. Three-band model Daghofer et al.

This model of FeSC was proposed by Daghofer et al. in Ref. [23]
and improved in Ref. [24]. Beyond the dxz and dyz orbitals, the
model also accounts for the dxy orbital:

T 11
k = 2t2 cos kx + 2t1 cos ky + 4t3 cos kx cos ky

+ 2t11(cos(2kx) − cos(2ky)) + 4t12 cos(2kx) cos(2ky), (B.1)

T 22
k = 2t1 cos kx + 2t2 cos ky + 4t3 cos kx cos ky
Fig. A.5. Unfolded 1Fe/cell (panel a) and folded 2Fe/cell (panel b) Fermi surface
for the three-band model of pnictides proposed by Daghofer et al. in Ref. [24]. The
dashed gray line in panel (a) shows the true Brillouin zone. The colors blue, red
and green correspond to the FS for the 1st, 2nd, and 3rd band, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

− 2t11(cos(2kx) − cos(2ky)) + 4t12 cos(2kx) cos(2ky), (B.2)

T 33
k = ϵ0 + 2t5(cos kx + cos ky) + 4t6 cos kx cos ky

+ 2t9(cos(2kx) + cos(2ky))

+ 4t10(cos(2kx) cos ky + cos kx cos(2ky)), (B.3)

T 12
k = T 21

k = 4t4 sin kx sin ky, (B.4)

T 13
k = T̄ 31

k = 2it7 sin kx + 4it8 sin kx cos ky, (B.5)

T 23
k = T̄ 32

k = 2it7 sin ky + 4it8 sin ky cos kx. (B.6)

In Ref. [24] the hopping parameters in electron volts are given as:
t1 = −0.08, t2 = 0.1825, t3 = 0.08375, t4 = −0.03, t5 = 0.15,
t6 = 0.15, t7 = −0.12, t8 = 0.06, t9 = 0.0, t10 = −0.024,
t11 = −0.01, t12 = 0.0275 and ϵ0 = 0.75. The average number
of particles in the system n = 4 is attained for µ = 0.4748. The FS
for this model is shown in Fig. A.5.

Appendix C. The static Cooper pair susceptibility in the three-
band model

The static Cooper pair susceptibility indicates the possible
formation of the FFLO phase [56,78]:

χ∆
εε′(q) ≡ lim

ω→0
−

1
N


ij

exp(iq · (i − j))⟨⟨∆εε′i|∆Ď
εε′j⟩⟩

r , (C.1)

where ⟨⟨.|.⟩⟩r is the retarded Green’s function and ∆εi =


j ϑ(j −

i)dεi↑dεj↓ is the OP in band ε. The operator dεiσ in real space
corresponds to the operator dεkσ in momentum space. The factor
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Fig. C.6. (Color online) The static Cooper pair susceptibility χ∆
εε′ in magnetic field

h = 0.025 eV and temperature kBT ≃ 0 eV.

ϑ(j − i) defines the OP symmetries—for s± pairing, ϑ(δ) is
equal to 1 for next nearest neighbors and zero otherwise [56]. In
momentum space:

χ∆
εε′(q) = lim

ω→0
−

1
N


kl

η(−k − q)η(−l − q)Gεε′(k, l, q, ω), (C.2)

Gεε′(k, l, q, ω) = ⟨⟨dεk↑dε′,−k−q↓|dĎ
ε′,−l−q↓d

Ď
εl↑⟩⟩

r

= δkl
f (−Eεk↑) − f (Eε′,−k−q↓)

ω − Eεk↑ − Eε′,−k−q↓
(C.3)

where η(k) = 4 cos(kx) cos(ky) is the structure factor correspond-
ing to the s±-wave symmetry, and f is the Fermi function. This
quantity can be calculated numerically similarly to the procedure
used for free energy in Section 2 (see Fig. C.6).
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