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ABSTRACT Wedevelop amethodology forMulti-Channel Joint Forecasting-Scheduling (MC-JFS) targeted
at solving the Medium Access Control (MAC) layer Massive Access Problem of Machine-to-Machine
(M2M) communication in the presence of multiple channels, as found in Orthogonal Frequency Division
Multiple Access (OFDMA) systems. In contrast with the existing schemes that merely react to current
traffic demand, Joint Forecasting-Scheduling (JFS) forecasts the traffic generation pattern of each Internet
of Things (IoT) device in the coverage area of an IoT Gateway and schedules the uplink transmissions of the
IoT devices over multiple channels in advance, thus obviating contention, collision and handshaking, which
are found in reactive protocols. In this paper, we present the general form of a deterministic scheduling
optimization program for MC-JFS that maximizes the total number of bits that are delivered over multiple
channels by the delay deadlines of the IoT applications. In order to enable real-time operation of the
MC-JFS system, first, we design a heuristic, called Multi-Channel Look Ahead Priority based on Average
Load (MC-LAPAL), that solves the general form of the scheduling problem. Second, for the special
case of identical channels, we develop a reduction technique by virtue of which an optimal solution of
the scheduling problem is computed in real time. We compare the network performance of our MC-JFS
scheme against Multi-Channel Reservation-based Access Barring (MC-RAB) and Multi-Channel Enhanced
Reservation-based Access Barring (MC-ERAB), both of which serve as benchmark reactive protocols. Our
results show that MC-JFS outperforms both MC-RAB and MC-ERAB with respect to uplink cross-layer
throughput and transmit energy consumption, and thatMC-LAPALprovides high performance as anMC-JFS
heuristic. Furthermore, we show that the computation time of MC-LAPAL scales approximately linearly
with the number of IoT devices. This work serves as a foundation for building scalable JFS schemes at IoT
Gateways in the near future.

INDEX TERMS Forecasting, scheduling, massive access, IoT, M2M communication.

I. INTRODUCTION
It is expected that the majority of the connections on the Inter-
net in the near future will be between machines that operate
without human intervention [1]. This new paradigm, which is
referred to as Machine-to-Machine (M2M) communication,
typically originates at an Internet of Things (IoT) device
that reports data and ends at an Artificial Intelligence (AI)

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Feng .

algorithm at a server that makes intelligent decisions based
on the report. While Fourth Generation (4G) cellular sys-
tems were designed to support Human-to-Human (H2H),
Machine-to-Human (M2H) and Human-to-Machine (H2M)
traffic [2], Fifth Generation (5G) and future wireless systems
must effectively address the new challenges [3] brought by
M2M communication.

A significant challenge of M2M communication is the
Massive Access Problem, namely the problem of grant-
ing wireless access to a massive number of IoT devices.
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It is estimated that in the near future, approximately
5000 - 35,000 smart utility meters will fall in the coverage
of a single base station [4]. Since utility meters constitute
merely a subclass of the wide range of IoT devices, the access
attempts of the entire set of IoT devices to the wired infras-
tructure are expected to lead to Physical Random Access
Channel (PRACH) overload [2], [3] in current cellular sys-
tems. As a result, novel approaches are required in order to
provide wireless access to such a massive number of IoT
devices while satisfying the diverse Quality of Service (QoS)
requirements of IoT applications.

While all of the articles [5]–[20] on the Massive Access
Problem have modeled the traffic generation pattern of each
IoT device by random arrivals, recent work [21] has shown
that machine and deep learning schemes are able to predict
the future traffic generation patterns of IoT devices in a fore-
casting system that minimizes the symmetric Mean Absolute
Percentage Error (sMAPE). In [22] and [23], this observation
was utilized in the design of a Joint Forecasting-Scheduling
(JFS) system, in which an IoT Gateway forecasts the future
traffic generation pattern of each of the IoT devices in its
coverage area and schedules the traffic of these devices in
advance over a scheduling window. JFS has a significant
advantage over schemes that react to current traffic demand
in that it obviates contention, collision and handshaking.

The main contribution of this article is the design of a
multi-channel JFS system (abbreviated as MC-JFS),1 which
is expected to be implemented at an IoT Gateway such that
the system meets the delay constraints of a diverse set of
IoT applications. (We note that both [22] and [23] develop
single-channel JFS, whereas the development of a framework
for JFS over multiple channels is the focus of this work.)
Our MC-JFS system is comprised of a Multi-Layer Percep-
tron (MLP) forecaster and a multi-channel scheduler. Since
many practical systems utilize multiple physical channels at
the physical layer, e.g. as found in Orthogonal Frequency
Division Multiple Access (OFDMA) systems, it is essential
that real-time, multi-channel scheduling techniques that oper-
ate in tandemwith real-time forecasting be developed in order
to enable the practical deployment of JFS in next-generation
IoT gateways. A major goal of this work is the design of
deterministic multi-channel scheduling techniques that uti-
lize point estimates of the traffic generation pattern of each
IoT device in order to achieve a high system throughput as
well as low energy consumption.

In this work, first, we formulate the uplink scheduling
optimization program over multiple channels for the general
case. Second, we develop a two-step algorithm that finds an
optimal solution of this optimization program. Third, for the
case of identical channels, we show that the two-step algo-
rithm over multiple channels can be reduced such that its opti-
mal solution can be computed in real time. Fourth, in order

1We emphasize that this article constitutes fundamental work and our
design does not conform to the LTE or IEEE 802.11 standards. Our goal
is to present work that has the potential to impact the evolution of wireless
systems beyond the existing standards.

to solve the general form of the multi-channel scheduling
optimization program in real time, we develop a heuristic,
called Multi-Channel Look Ahead Priority based on Average
Load (MC-LAPAL).

Based on the above mathematical framework, we com-
pare the network performance of our MC-JFS system
against Multi-Channel Reservation-based Access Barring
(MC-RAB) and Multi-Channel Enhanced Reservation-based
Access Barring (MC-ERAB), which serve as benchmark
reactive protocols. Our results show that MC-JFS outper-
forms both MC-RAB and MC-ERAB with respect to uplink
cross-layer throughput and transmit energy consumption, and
that MC-LAPAL achieves high performance as an MC-JFS
heuristic. Finally, we show that the computation time of
MC-LAPAL scales approximately linearly with the number
of IoT devices.

The rest of this paper is organized as follows: In Section II,
we discuss the related work in this area. In Section III,
we review the basic assumptions, the system design as well
as the forecasting scheme for joint forecasting-scheduling.
In Section IV, we present our mathematical framework for
MC-JFS. In Section V, we present our results. In Section VI,
we present our conclusions and directions for future work.

II. RELATIONSHIP TO THE STATE OF THE ART
In this section, we relate our work to the articles in the
literature in six respects: (1) We contrast our approach with
the reactive schemes that have been proposed to solve the
massive access problem. (2) We explain the differences
between this work and the few proactive MAC-layer tech-
niques that have appeared in the literature, albeit for H2H
communication. In addition, we highlight the differences
between this work and the recent results in [21], [22] and [23].
(3) We contrast our work with those that have also used
network traffic forecasting, albeit on aggregate traffic pat-
terns. (4)We contrast the methodological contributions of our
work with related, recently proposed scheduling techniques.
(5) We state the relationship of this work to Multiple Input
Multiple Output (MIMO) and to Non-Orthogonal Multiple
Access (NOMA) networks. (6) We contrast our work with
joint forecasting-scheduling schemes that have appeared out-
side the context of IoT and networking.

First, there is a significant difference between this work
and the reactive schemes [5]–[20] that have been proposed as
solutions to the Massive Access Problem.2 While these reac-
tive schemes react to the current traffic demand, modeled via
random arrivals, JFS forecasts the traffic generation pattern
of each individual IoT device and schedules the uplink traffic
of all of the IoT devices over multiple channels in advance
based on these forecasts.

We shall now distinguish our work in this paper further
from particular reactive schemes that have been proposed for
both industrial IoT networks as well as for cellular systems.
In [24], a ‘‘slot stealing’’ MAC-layer protocol was proposed

2For a classification of these past reactive schemes, see [23].
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for industrial wireless sensor networks, in which aperiodic,
time-critical applications are allowed to steal slots on the
fly from periodic, non-critical applications whose slots have
been scheduled a priori. However, no forecasting takes place
for aperiodic data. In contrast, in this paper, we predict
the amount of periodically occurring traffic as well as the
amount and timing of aperiodic traffic (albeit with laxer delay
constraints than in [24]) via machine learning. Furthermore,
we use these predictions to schedule the traffic of all IoT
devices in the coverage area of an IoT Gateway in advance.3

In order to solve the massive access problem, in [25],
the authors devised a scheme in which the base station probes
the number of colliding devices, and based on the result,
divides the colliding devices into groups and pushes the traffic
of these devices onto an access queue. The performance
is measured via the average access delay. Similarly, Refer-
ence [26] uses the average blocking probability as well as the
average access delay to characterize performance based on a
random access traffic model. Reference [27] uses probability
of successful access as themain performancemetric forM2M
traffic in the presence of H2H traffic. Reference [28] pro-
poses the use of virtual preambles to distinguish IoT devices
and characterizes the access performance via the number of
retrials required for successful access in addition to the above
measures. In contrast with these articles that address only
access, our focus in this paper is the design of joint access
and scheduling schemes for massive IoT.

In [29] and [30], joint access control and resource allo-
cation schemes were proposed for massive access of M2M
devices. While both the access and data scheduling aspects
have been handled in these works, the models and the sim-
ulation results therein are based on random access and do
not utilize any forecasting of M2M traffic. In contrast, in this
paper, our MC-JFS scheme utilizes forecasting of M2M traf-
fic in order to enable joint access and resource allocation for
all IoT devices in a coverage area. In [31], a comparison
of collision-free and contention-based access protocols for
IoT is presented; however, the treatment there is based on
random generation of small packets by IoT devices and does
not investigate the predictability of M2M traffic.

Second, prior to the development of JFS, only a few
works [32]–[34] used predictions of the traffic from individ-
ual devices for MAC-layer scheduling. The main differences
between these articles and JFS are as follows: (1) While
these articles have addressed only Human-to-Human (H2H)
applications, we focus entirely on M2M traffic for IoT in this
paper. (2) Our methodology differs significantly from [32]
and [33] in that we develop deterministic scheduling tech-
niques while they use probabilistic scheduling. (3) While
these papers focus on application-layer flows without any
physical layer modeling, our emphasis is on the MAC-layer
scheduling in the presence of multiple channels at the physi-
cal layer (as in OFDMA systems).

3Our work does not handle emergency and event-triggered traffic types,
which are addressed in [24].

For M2M communication, the recent results in [21] have
indicated that machine and deep learning schemes can be
used to forecast the traffic generation pattern of an IoT device
to achieve a relatively high accuracy in the sMAPE metric.
However, the effects of these results on MAC-layer schedul-
ing were not explored.

Reference [22] presented a comparison of the net-
work throughput of JFS under three forecasting models:
Long-Short Term Memory (LSTM), Multi-Layer Percep-
tron (MLP), and Autoregressive Integrated Moving Average
(ARIMA). The key differences between this reference and
the current work are as follows: (1) Whereas [22] assumes
a single channel, the current work develops a novel opti-
mization framework for the scheduling problem overmultiple
channels. (2) In [22], a simple scheduling heuristic, named
Priority based on Average Load (PAL), was developed for the
single-channel case. In contrast, in the current work, a novel
scheduling heuristic, called MC-LAPAL, is developed in
order to solve the scheduling problem overmultiple channels.
(3) Whereas [22] compares the network throughput of JFS
across distinct forecasting schemes, the major focus of the
current work is to evaluate both the network throughput and
the energy consumption of multi-channel JFS under novel
scheduling techniques while keeping the forecasting scheme
fixed.4

Reference [23] developed a multi-scale algorithm for JFS.
The key differences between this reference and our work
are as follows: (1) Reference [23] assumes that there is a
single channel for scheduling. In contrast, JFS over multiple
channels is the main emphasis of our current work. (2) The
multi-scale algorithm of Reference [23] represents the past
traffic pattern of each IoT device at multiple time scales in
order to enable accurate forecasting of its future traffic over
successively longer time windows. In contrast, in this work,
no such multi-scale approach is utilized; instead, our empha-
sis is on the development of JFS over multiple channels.5

(3) While [23] uses load balancing (at all scales except the
lowest time scale) and optimal scheduling (at the lowest time
scale), the current work develops a novel heuristic, called
MC-LAPAL, that is targeted at scheduling in the presence of
multiple channels.

Third, we distinguish our work from those articles that
have used network traffic forecasting. Reference [35] pro-
vides a systematic survey of the recent work [36]–[43] in
this area. The key difference between all of these articles and
our work is that while they focus on predicting aggregate
traffic metrics (e.g. link load and traffic volume), we forecast
the traffic generation pattern of each IoT device, which is
required in order to be able to schedule in advance the uplink
traffic of all IoT devices in a given coverage area.

4We shall compare the performance of distinct forecasting schemes for
multi-channel JFS in our future work.

5We plan to develop a multi-scale, multi-channel JFS system that com-
bines the multi-scale algorithm of [23] and the multi-channel techniques of
the current paper in our future work.
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We now focus on further articles on network traffic
forecasting in order to contrast each one with our work:
By utilizing Reinforcement Learning (RL) for M2M traf-
fic forecasting, Reference [44] proposes to schedule the
delay-tolerant IoT traffic to the off-peak hours of traditional
(e.g. H2H) traffic. Similarly, Reference [45] devises a scheme
to delay the uplink transmissions of IoT devices to mini-
mize the peak data rate demand. In this reference, the traffic
generation patterns of individual IoT devices are modeled as
random, which stands in contrast with our work in which
the traffic generation pattern of each IoT device is pre-
dicted. By utilizing Q-learning (a particular RL technique),
Reference [46] proposes a smart congestion control scheme
for delay-tolerant networks. Reference [47] separates traffic
into delay-sensitive and delay-tolerant classes and devises an
admission control scheme for M2M communication. Their
model aggregates all delay-tolerant requests by routing them
to a single low-priority queue, aiming to reduce the number
of access requests from individual IoT devices. The main dif-
ference between all of these past articles and our work is that
while their emphasis is on minimizing network congestion,
we focus on the access andMAC-layer scheduling problem of
individual IoT devices.While these past works take the traffic
generation patterns of individual IoT devices as random and
focus on their aggregate impact on network congestion, our
work focuses on predicting the traffic from individual IoT
devices and enabling their uplink access in a collision-free
manner.

Fourth, we contrast the methodological contributions of
our work with those in the recent literature on scheduling
techniques. Reference [48] develops a resource management
technique based on deep reinforcement learning. Associating
the resources with the channels in our work, we note that
the experiment presented in [48] uses only two resources
and takes 80 s per iteration to converge in a multi-threaded
implementation on a 24-core CPU server. In contrast, our
application is targeted at OFDMA, for which the number
of channels (i.e. resources) in practical systems is typically
much larger than 2. In order to focus on scalable designs with
manageable time complexity, we have chosen to focus on
the development of scheduling techniques that do not utilize
reinforcement learning in this paper.

Reference [49] presents a dynamic inter-channel resource
allocation technique for massive M2M control signaling
storm mitigation. Their model calculates the demand on
the control and data channels and re-allocates the resources
among these two types of channels. This demand is calculated
based on the prediction of the number of devices whose data
packet size is less than 1 kB; however, the traffic generation
pattern of each individual device is not predicted. In contrast,
in our model, the IoT Gateway allocates the wireless channel
resources based on the prediction of the traffic generation
pattern of each device in its coverage area.

Fifth, we note that we focus on MAC-layer scheduling
over a set of parallel channels in this paper and present our
simulation results for OFDMA as an example of a system

that utilizes parallel channels over the frequency domain.
However, since our scheduling techniques are general, they
can potentially be applied to MIMO systems [50] in which
parallel spatial channels are formed, and to Non-Orthogonal
Multiple Access (NOMA) systems [51]–[54] in which users
are placed at distinct power levels and separated via
successive interference cancellation at the receiver (in
power-domain NOMA) or via placement onto different codes
(in code-domain NOMA). We emphasize that the general
MAC-layer scheduling techniques in this paper are appli-
cable to the extent that in each of these systems, a set of
parallel channels can be established at the Physical Layer.
The main differences between the techniques presented in
this paper and the above recent work on NOMA are as
follows: (1) Our emphasis is on MAC-layer scheduling while
the above works utilize a cross-layer design for optimizing
the usage of resources at the physical layer, and (2) the
above works do not forecast the future traffic generation
patterns of IoT devices, whereas the performance of joint
forecasting-scheduling is our focus in this paper.

Sixth, outside the context of IoT and networking, Refer-
ence [55] employed parametric forecasting for call-center
workforce scheduling. Furthermore, Reference [56] used
probabilistic forecasts to schedule renewable energy sources.
Besides the respective contexts in which the techniques were
developed, each of which is significantly different from ours,
the key methodological difference between these works and
ours is that they use probabilistic forecastingmodels, whereas
we use machine learning based forecasting that produces
point estimates. In addition, in contrast with [55], which
develops a stochastic programming model for scheduling,
we use fast, deterministic scheduling based on the point
estimates.

III. REVIEW OF THE BASIC ASSUMPTIONS, SYSTEM
DESIGN AND FORECASTING SCHEME FOR JOINT
FORECASTING-SCHEDULING
In this section, we review the basic assumptions, the system
design as well as the forecasting scheme for JFS, while
specializing the discussion to MC-JFS, wherever applicable.
The contents of this section constitute the preliminaries that
are required for the development of multi-channel scheduling
techniques, which will be described in the next section. A list
of themathematical symbols in the order in which they appear
in this paper is shown in Table 1.

A. ASSUMPTIONS
In our wireless architecture model, a set of IoT devices are
assumed to be located in the coverage area of a single IoT
Gateway. The IoT Gateway is denoted by G, and the set of
IoT devices is denoted by N . We let N denote the cardi-
nality of N . We shall denote the coverage area of G by CG.
We assume that each IoT device (called ‘‘device’’ for short)
remains in CG at all times. (This includes both the case of
static (that is, non-moving) devices in CG as well as the case
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TABLE 1. List of symbols.

of mobile devices that move within CG at all times.6) The goal
of each device i inN is to send its traffic directly to G on the
wireless link that exists from i to G.

6The latter case may correspond, e.g. to devices in the coverage area of
a single IoT Gateway in a smart factory. An extension of JFS to the case in
which mobile devices move into or out of CG is addressed in Section VII
of [23].

Each IoT device is assumed to generate its traffic in bursts,
where a ‘‘burst’’ j is defined, following [23], to be theminimal
set of bits that correspond to j such that the failure to deliver
any one of the bits of burst j to G causes the delivery of
the remaining bits of the burst to be useless from the per-
spective of the application layer. The bit representation at
the physical layer of each of the following application-layer
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data constitutes an example of a burst: A single reading from
a smart meter, a single GPS coordinate of a truck in fleet
management applications, and a single bit that indicates that
a smart bin is full in smart cities.

This paper is based on the assumption that a cross-layer
design is used in which the beginning of each burst is
marked by a preamble at the MAC layer. While this would
result in unacceptable overhead for traditional H2H applica-
tions, since IoT devices typically send small bursts at sparse
intervals, communication of this high-level information to
the MAC layer is viable for IoT. A key advantage of this
cross-layer design, whichwe shall exploit, is that no resources
will be spent on sending parts of bursts in scheduling; either
all of the bits in a burst are scheduled to be transmitted, or no
bits of that bursts are transmitted at all.

We assume that for each IoT application, there exists an
end-to-end delay budget.7 As part of this delay budget, each
burst j, generated by an IoT device, has an uplink MAC-layer
delay constraint from the device to the IoT Gateway. The
duration of this uplink MAC-layer delay constraint shall be
denoted by 1j.
In this work, each uplink MAC-layer slot (which shall

be referred to as a ‘‘slot’’) on the wireless link from the
IoT device to the IoT Gateway G shall be denoted by t .
Furthermore, the uplink channels of all of the devices toG are
assumed to have been synchronized at G at the resolution of
a slot. As in [22] and [23], the ‘‘traffic generation pattern’’ of
device i is defined to be the collection each element of which
is the number of bits generated by device i during each slot t .
The traffic generation pattern of device i will be denoted by
{xi[t]}, which is a set indexed by t .8

If all of the bits of burst j have been transmitted to G in a
collision-free manner such that the1j delay constraint is sat-
isfied, that burst is said to have been ‘‘successfully delivered.’’
As in [22] and [23], the uplink cross-layer throughput η from
N to G is defined to be the ratio of the total number of bits
in successfully delivered bursts to the total number of bits of
traffic generated by the devices inN over a single scheduling
window.

We now state our assumptions regarding the Physi-
cal (PHY) layer. We emphasize that throughout this paper,
only the coverage area of a single IoT Gateway is considered.
Inter-cell interference [57] that would result, in our case,
from adjacent IoT Gateways is not modeled. Furthermore,
we assume a collision-based multi-channel model in which
a collision may be experienced at the IoT Gateway in any
slot-channel pair. (As shall be detailed in the next section, our
MC-JFS system will schedule the transmissions free of col-
lisions in this slot-synchronized system; hence, there will be
no intra-cell interference for MC-JFS. However, the reactive

7Even for applications such as residential smart utility meters, there exists
a delay constraint, which may extend to 1 hour. All IoT applications, whose
delay constraints may potentially span a wide range, are included in our
framework.

8Throughout this paper, t will be used a discrete-time index forMAC-layer
slots.

protocols against which we compare MC-JFS are suscepti-
ble to collisions.) For our simulations, we shall specify the
detailed PHY layer channel model, based on OFDM, for the
uplink transmission from each device to the IoT Gateway in
Section V-A2.

B. SYSTEM DESIGN
In our system, a multi-channel joint forecaster-scheduler,
which resides at the IoT Gateway G, is comprised of a Fore-
castingModule and a SchedulingModule, as shown in Fig. 1.
In this figure, the Forecasting Module forecasts the traffic
generation pattern {xi[t]} of each IoT device i ∈ N over the
scheduling window of duration Tsch. Then, the Scheduling
Module schedules the devices’ uplink transmissions in a
collision-free manner in advance over multiple channels on
this window based on the output of the Forecasting Mod-
ule. (This process is repeated over successive scheduling
windows.9)

FIGURE 1. Main idea behind the joint forecasting-scheduling system that
resides at an IoT Gateway: The past traffic generation patterns of all the
IoT devices in the coverage area of the IoT Gateway are fed into the
Forecasting Module. The forecasts are subsequently used to schedule the
future traffic of all of the devices in advance over a scheduling window.
This paper focuses on the development of multi-channel scheduling
techniques for the Scheduling Module that appears in this figure.

Throughout this paper, Frequency Division Duplex-
ing (FDD) is assumed to be utilized at the physical layer.
In our design, device i is informed by G on a broadcast
channel on the downlink as to what uplink resources have
been allocated to i for the next burst of i that has been fore-
cast by the Forecasting Module. Furthermore, each device i
compresses its actual traffic generation pattern since the last
time it communicated to G and appends the result whenever
it transmits to G on the uplink. Subsequently, G utilizes
{xi[t]} in forecasting the future values of the traffic generation
pattern of device i.

Although the emphasis of this paper is on the MAC layer,
we distinguish two possible PHY-layer designs that may
accompany the MAC layer algorithms developed in this
paper. First, in a power-adaptive design, the data rate from
each device i to G is kept constant as a function of time by
continuously varying the uplink transmit power of i based on
the PHY-layer channel feedback from G on the downlink.
In this case, MC-JFS requires no estimation of the future
channel state, since the uplink data rate, which is held con-
stant for each device i, is sufficient to compute theMAC-layer
slot capacities, whichwill be discussed in Section IV. Second,
in a rate-adaptive design, the uplink transmit power of each

9Whereas forecasting is performed for each device without regard to
what channel resources are available, scheduling is performed over mul-
tiple channels. Hence, the phrase ‘‘multi-channel’’ is in reference to only
the resources available for scheduling; it does not refer to the forecasting
schemes employed.
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device i is held constant. In this case, as the channel condition
changes, the data rate as well as the slot capacities used by
MC-JFS will vary. Thus, for MC-JFS, large-scale Channel
State Information (CSI) [58], [59] must be obtained for the
uplink of each device i to G at the resolution of succes-
sive MAC-layer slots10 over the duration of the upcoming
scheduling window. For static IoT devices, the large-scale
CSI can be obtained since the position of the IoT device
does not change in this case. For mobile IoT devices, channel
sounding data based on the positions of mobile IoT devices
relative to the IoT Gateway G may be used as in [58], [59] to
obtain the required large-scale CSI.11

C. FORECASTING SCHEME
In [21], IoT traffic for M2M communication was classified
into device classes that are distinguished by two features:
First, if the number of bits generated by a device at each
of its traffic generation instances is equal, then the device is
said to be ‘‘Fixed Bit,’’ and a device is said to be ‘‘Variable
Bit’’ otherwise. Second, a device that generates at regular
time intervals is said to be ‘‘Periodic,’’ and a device is said
to be ‘‘Aperiodic’’ otherwise.12 Accordingly, all IoT devices
may be classified based on these two features into one of
these 4 classes: Fixed Bit Periodic (FBP); Fixed Bit Aperi-
odic (FBA); Variable Bit Periodic (VBP); and Variable Bit
Aperiodic (VBA). We adopt the same terminology for these
device classes in this paper.

FIGURE 2. The forecaster for device i at Gateway G. Note that the
Forecasting Module of Fig. 1 is comprised of a bank of such forecasters for
individual IoT devices in the coverage area of G, as i ranges from 1 to N .

Within the forecasting module of the JFS system,
we employ for each IoT device i a separate forecaster,
as shown in Fig. 2. The forecaster takes as input the last ni0
values as well as the current value of the traffic generation
pattern of device i, namely {xi[t − l]}l∈{0,...,ni0}

. We define
Ki as the maximum value of k for k-step ahead prediction
of the traffic generation pattern of device i. In the figure,

10As opposed to PHY layer channel estimation, which operates over
PHY-layer symbols, the channel state averaged over a MAC-layer slot is
sufficient for MC-JFS.

11The PHY-layer issues in regard to this rate-adaptive scenario will be
taken up in our future work.

12Note that ‘‘Periodic’’ in this context does not imply that the same value
is repeated at these regular time intervals.

the forecaster outputs the k-step ahead prediction for the
traffic generation pattern of device i, where k ranges from 1
to Ki. The predicted values are shown as {x̂i[t + k]}k∈{1,...,Ki}
in Fig. 2.

In this paper, for forecasting, we follow the same method-
ology as in [23]: First, we use an MLP architecture for
forecasting, since such an architecture was demonstrated to
provide an effective trade-off between network performance
and execution time. Second, we exhaustively search over all
of theMLP architectures parameterized by the number of past
inputs ni0 in the range (n

i
0)min to (ni0)max. (The values of these

two parameters shall be specified in Section V-A.) For each
ni0 in the range (ni0)min ≤ ni0 ≤ (ni0)max, we search for a
local optimum of the remaining architectural parameters of
the MLP for device i, which are the number of hidden layers,
denoted by Ei, and the number of neurons nie in each hidden
layer e such that 1 ≤ e ≤ Ei. We select the local optimal
values ofEi and nie for e, where e ∈ {1, . . . ,Ei}, via theNeural
Network Selection Algorithm (NNSA) that appears in [21],
which we adapt to this work by minimizing the Mean Square
Error (MSE) in the place of sMAPE.

IV. MATHEMATICAL FRAMEWORK FOR MULTI-CHANNEL
JOINT FORECASTING-SCHEDULING (MC-JFS)
The main contribution of this work is the design of
multi-channel scheduling techniques for the Scheduling
Module in Fig. 1. While we shall use the MLP forecaster
described in the previous section for the Forecasting Module,
our main goal in this section will be to schedule the uplink
traffic of IoT devices to the IoTGateway onmultiple channels
over the scheduling window. To this end, first, we formulate
the general form of the scheduling optimization program that
will be run inside the SchedulingModule. Second, we present
a reduced program for the special case of identical chan-
nels, i.e. the case where each of the uplink channels of any
given device has an identical capacity. Third, we present
our MC-LAPAL heuristic that is targeted at solving the
general form of the scheduling optimization program in
real time.

Our scheduling scheme works over non-overlapping, adja-
cent MAC-layer slots, each of which has duration τMAC , over
a scheduling window of duration Tsch, which is chosen to be
an integer multiple of τMAC . We assume that the transmission
of a burst consumes at least one slot-channel pair.13 We allow
at most one burst to be scheduled in each slot-channel pair.
Furthermore, each burst is transmitted ‘‘preemptively’’; in
other words, the transmission of the burst may be scheduled
over non-adjacent slots.

An example of such a schedule is shown in Fig. 3. In this
figure, the scheduling window, which is shown on the hori-
zontal axis, lasts only 5 MAC-layer slots. Furthermore, there

13Given the typical sizes of bursts from IoT devices, each burst is expected
to fill at least one slot-channel pair.
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FIGURE 3. An example schedule for three bursts: In this simple example,
the scheduling window lasts only 5 MAC-layer slots (shown in the
horizontal direction), and there are 4 channels (shown in the vertical
direction). Each slot-channel pair in this grid is assigned to at most one
burst by the Scheduling Module. The generation time rj and the deadline
dj of each burst j ∈ {1,2,3} are also shown on the horizontal axis.

are only 4 channels, which extend over the vertical axis.14

In this example, there are three bursts, whose bits are split
across the slot-channel pairs. The generation time rj and the
deadline dj of each burst j ∈ {1, 2, 3} are shown on the
horizontal axis in the figure. Preemption is exemplified by
the schedule of Burst 2, whose bits appear over a set of
non-adjacent time slots.

We assume that each frequency channel is of equal band-
width (in Hertz); however, by virtue of the uplink modulation
scheme used by the IoT device, the spectral efficiency and
thus the data rate on each of these channels may vary. We let
R̃mi denote the uplink data rate of device i on channel m.
If burst j belongs to device i, then the data rate at which
burst j can be transmitted on channel m is thus equal to
R̃mi. In order to effect the change of index from device i to
any of its bursts j, we define f to be the function that maps
each burst j to the device i that generated that burst; that is,
i = f (j). Then, we let Rmj denote the data rate at which burst j
can be transmitted by the device i that generated the burst;
that is, Rmj = R̃m(f (j)).
Throughout this paper, J denotes the collection of bursts

generated by the devices in N on the scheduling window.
Furthermore, M denotes the collection of all channels that
are available for scheduling. Finally, we note that the proof
of each theorem that appears in this section is presented in
the Appendix.

A. GENERAL FORM OF THE SCHEDULING OPTIMIZATION
PROGRAM
In this section, first, we present the general form of the
multi-channel scheduling optimization program. Second,

14In practice and in our simulations, the duration of the scheduling win-
dow will be much larger than τMAC . Furthermore, the number of channels
will typically be larger than the one in this example. This example serves
merely as an illustration of the basic concepts.

we present a two-step algorithm which returns an optimal
solution of this optimization program.

The general form of the scheduling optimization program
is as follows:

max
∑
j∈J

ajuj (1)

subject to∑
j∈J

wmjt ≤ 1 ∀t ∈ T+, ∀m ∈M (2)

Qmjt ≤ Cmjwmjt ∀t ∈ T+, ∀j ∈ J , ∀m ∈M (3)

wmjt ≤ uj ∀t ∈ T+, ∀j ∈ J , ∀m ∈M (4)
dj−1∑
t=rj

∑
m∈M

Qmjt = ujaj ∀j ∈ J (5)

Above, aj, rj, dj and Cmj are parameters, and wmjt , uj and
Qmjt are decision variables. We shall give the definitions of
all of the parameters and the decision variables that appear
in (1)-(5) before we state the physical meaning of the objec-
tive function and the constraints. The parameter aj is the total
number of bits in burst j. Furthermore, rj is the slot at the
beginning of which burst j is generated, and dj is the slot
by the beginning of which G must receive the delivery of
all of the bits of burst j. The parameter Cmj, called the ‘‘slot
capacity’’ or simply ‘‘capacity’’15 of channel m for burst j,
is defined to be the maximum number of bits of burst j that
can be transmitted on channelm in a singleMAC-layer slot.16

Thus, Cmj = RmjτMAC .
In the program above, uj and wmjt are binary decision

variables, and Qmjt is an integer decision variable. We note
that t takes on only integer values and indexes the time slots.
The variable wmjt is defined only on the interval rj ≤ t ≤
dj−1, andwmjt = 1 if any of the bits of burst j are scheduled to
be transmitted on channel m in slot t and wmjt = 0 otherwise.
Above, T+ is the set of t’s for which at least onewmjt has been
defined. Furthermore, uj = 1 if all of the bits of burst j are
transmitted by the end of slot dj−1 and uj = 0 otherwise. The
variable Qmjt denotes the number of bits of burst j scheduled
on channel m in slot t .

We now explain the physical meaning of the objective
function and the constraints that appear in (1)-(5). The burst j
is said to have been ‘‘completed’’ if all of the bits in burst j
have been delivered to G by the beginning of slot dj. Hence,
the objective in (1) is to maximize the total number of bits
in completed bursts. We focus on delivering all of the bits in
any given burst because, as stated in Section III-A, a burst is
defined as a set of bits such that even if a single bit of the
burst is not delivered by the delay deadline, the delivery of
the remaining bits of the burst is useless from the perspective
of the application layer.17 The constraint in (2) ensures that

15Throughout this paper, the term ‘‘capacity,’’ whenever it is used by itself,
refers only to ‘‘slot capacity’’; it does not refer to Shannon capacity.

16Recall that we use collision-free scheduling throughout this paper.
17Examples of bursts that support this definition for IoT applications are

given in Section III-A.
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in each channel, in any given time slot, the bits of at most
one burst is scheduled.18 The constraint in (3) states that
(A) if any of the bits of burst j is scheduled on channel m
in slot t (that is, if wmjt = 1), then the total number of bits
of burst j on channel m in slot t , namely Qmjt , is less than
or equal to the maximum number of bits of burst j that can
be transmitted on channel m in a single MAC-layer slot, and
(B) if no bits of burst j is scheduled on channel m in slot t
(that is if wmjt = 0), then the total number of bits of burst j on
channelm in slot t , namelyQmjt , is zero. Thus, this constraint
provides the coupling that must exist between Qmjt and wmjt .
The constraint in (4) states that if not all of the bits of burst j
are transmitted by the deadline dj, then no slot-channel pair is
allocated to burst j. Thus, this constraint provides the coupling
that must exist between thewmjt ’s and uj. The constraint in (5)
states that the total number of bits allocated to burst j over all
slot-channel pairs equals the total number of bits in burst j if
all of the bits of j are transmitted by dj (that is if uj = 1), and
no bits of burst j are scheduled on any of the slot-channel pairs
otherwise (that is, if uj = 0). Thus, this constraint provides
the coupling that must exist between the Qmjt ’s and uj.
We now present a two-step algorithm that returns an opti-

mal solution of the general form of the scheduling optimiza-
tion program above. The main idea behind this algorithm is to
write a single constraint in the place of (3)-(5) by relaxing the
variableswmjt (that appear in the general form of the program)
in the first step of the algorithm below and then tightening
the relaxed variables. We shall prove that this two-step algo-
rithm returns an optimal solution of the general form of the
scheduling optimization program in (1)-(5). Subsequently,
we will use the two-step algorithm to establish a reduction
of the general form of the scheduling optimization program
to that of scheduling on a single channel for the special case
of identical channels.
Two-Step Algorithm:
Step 1: Solve the following program:

max
∑
j∈J

ajuj (6)

subject to∑
j∈J

w̃mjt ≤ 1 ∀t ∈ T+, ∀m ∈M (7)

dj−1∑
t=rj

∑
m∈M

Cmjw̃mjt ≥ ujaj ∀j ∈ J (8)

Above, aj, rj, dj and Cmj are parameters, and w̃mjt and uj
are binary decision variables. The definitions of the param-
eters are the same as those in the general form of the pro-
gram (1)-(5). The variable w̃mjt is defined only on the interval
rj ≤ t ≤ dj−1, and w̃mjt = 1 if any of the bits of burst j are
allowed to be scheduled on channel m in slot t , and w̃mjt = 0
otherwise. Above, T+ is the set of t’s for which at least one

18This constraint is reasonable since bursts are typically occur at sparse
interval for massive IoT applications. In our system design, each MAC-layer
slot is devoted at most to the bits of a single burst.

w̃mjt has been defined. Furthermore, uj = 1 if all of the
bits of burst j are transmitted by the end of slot dj − 1 and
uj = 0 otherwise. As in (1)-(5), we say that burst j has been
‘‘completed’’ if all of the bits in burst j have been transmitted
to G by the beginning of slot dj.

Thus, the objective in (6) is to maximize the total number
of bits in completed bursts. The constraint in (7) ensures that
in each channel, in any given time slot, the bits of at most one
burst is scheduled. The constraint in (8) states that the sum of
the maximum number of bits of burst j that can be transmitted
over the set of allowed slot-channel pairs is at least the total
number of bits aj of burst j if all of the bits of j are transmitted
by the deadline dj, and no constraint is placed on the w̃mjt ’s
otherwise.
Step 2: For every j ∈ J with uj = 1 at the end of Step 1:

First, arrange the elements of the set W̃j ≡ {w̃mjt |w̃mjt = 1}
in the order of non-increasing Cmj (breaking ties arbitrarily),
and let 〈W̃j〉 be the resulting sequence. Second, schedule the
transmission of the total number of bits aj of burst j on the
slot-channel pairs (t,m) in the order that they appear in 〈W̃j〉

such that we allocate all of the available bits in a slot-channel
pair up to its capacity Cmj before beginning the allocation
of the remaining bits on the next slot-channel pair in the
sequence. This procedure terminates when each of the aj bits
has been scheduled on some slot-channel pair. We definewmjt
as a binary variable such that wmjt = 1 if any of the bits of
burst j has been scheduled on (t,m), and wmjt = 0 otherwise.
The collection of wmjt ’s with which the procedure terminates
constitutes the ‘‘schedule’’ for transmitting all of the bursts
that satisfy uj = 1 in Step 1. Finally, for all j with uj = 0 at
the end of Step 1, we set wmjt = 0 for all (t,m).

Intuitively, the w̃mjt ’s in Step 1 above are temporary vari-
ables that allow a disjoint allocation of bursts to slot-channel
pairs such that all of the aj bits in each burst j can be
transmitted while maximizing the total number of bits in
completed bursts. For those bursts that will be completed
(i.e. uj = 1), the wmjt ’s in Step 2 above constitute the sched-
ules obtained by tightening the loose allocation obtained in
Step 1 to those slot-channel pairs that have the largest Cmj
capacities. The tightening is targeted at reducing the transmit
energy consumption of the devices byminimizing the number
of slot-channel pairs over which each burst is transmitted. For
any burst j that will not be scheduled at all (i.e. uj = 0) in
Step 1, no slot-channel pair is allocated in Step 2.

The following theorem establishes the relationship
between the general form of the scheduling optimization
program and the Two-Step Algorithm.
Theorem 1 (Optimality via the Two-Step Algorithm): The

Two-Step Algorithm returns an optimal solution of the gen-
eral form of the scheduling optimization program in (1)-(5).

B. SPECIAL FORM OF THE SCHEDULING OPTIMIZATION
PROGRAM FOR IDENTICAL CHANNELS
We shall now address a special case of the scheduling opti-
mization program in which the data rate is identical on each
channel for a given device. In this case, Rmj = Rj and
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Cmj = Cj for each burst j; that is, we drop the channel
index m and define Rj and Cj to be the common data rate and
the common MAC-layer slot capacity, respectively, for each
burst j across all of the channels.19

The assumption of identical channels typically arises in
the scenario where the PHY layer does not communicate
Channel State Information (CSI) to the MAC layer. In this
case, the design at the MAC layer assumes that the data rate
on each channel is identical.20

In the case of identical channels, the scheduling pro-
gram can be formulated more simply (in lieu of (1)-(5) in
Section IV-A) as follows:

max
∑
j∈J

ajuj (9)

subject to∑
j∈J

wmjt ≤ 1 ∀t ∈ T+, ∀m ∈M (10)

dj−1∑
t=rj

∑
m∈M

wmjt = ujdaj/Cje ∀j ∈ J (11)

Now, letM ≡ |M|. Then, we state the following theorem.
Theorem 2 (Reduction for Identical Channels): For any

given IoT device, if the data rate on each of its uplink
channels to the IoT Gateway is identical, then the following
Reduced Two-Step Algorithm returns an optimal solution to
the scheduling optimization program in (9)-(11) for identical
channels:
Reduced Two-Step Algorithm:
Step 1: Solve the following ‘‘reduced program’’:

max
∑
j∈J

ajuj (12)

subject to∑
j∈J

yjt ≤ M ∀t ∈ T+ (13)

dj−1∑
t=rj

yjt = ujdaj/Cje ∀j ∈ J (14)

Above, yjt is the number of slot-channel pairs allocated
to burst j over all channels in slot t . The constraint in (13)

19Recall that each burst j is generated by device i = f (j). Hence, when the
data rate of each of the uplink channels of a device is identical, this implies
that the data rate for each burst of that device is also identical across all of
the uplink channels of that device.

20Note that the MAC layer allocates slots to devices at the resolution
of τMAC , which is much larger than the symbol interval at the PHY layer.
Hence, in this case, the MAC layer aims at achieving only a coarse allocation
of resources on the slot-channel grid. From the perspective of cross-layer
design that allocates resources optimally by optimizing the MAC layer and
the PHY layer jointly, the resulting allocation will be suboptimal except in
the following scenario: In the case where the coherence bandwidth for the
uplink transmission of an IoT device to Gateway G is much larger than the
total bandwidth available to that device for its communication, the value of
the transfer function on each of the OFDM channels allocated to that device
is approximately the same. Hence, in this special case of a flat channel across
the entire communication bandwidth, the assumption of identical data rates
across all of the uplink OFDM channels of a device will produce an optimal
resource allocation.

states that for each slot, the total number of slot-channel pairs
allocated to all of the bursts cannot exceed the number of
channels available.21 The constraint in (14) states that the
total number of slot-channel pairs allocated to burst j equals
the number of such slot-channel pairs required to send aj bits
if any of the bits of burst j are scheduled to be transmitted,
and equals 0 otherwise.
Step 2: Set wmjt in the original program as follows: Fix

any ordering of the bursts in J and any ordering of the
channels inM. Then, for each slot t , starting with burst 1 and
channel 1, assign channel indices that begin at channel index∑k=j−1

k=0 ykt + 1 and end at channel index
∑k=j−1

k=0 ykt + yjt to
burst j (where we take y0t = 0).

Since each of the Two-Step Algorithm and the Reduced
Two-Step Algorithm utilizes an optimization program in its
statement, the time complexity of each of these algorithms
depends on the particular method that is used to solve the opti-
mization program. In Section V-C, we shall demonstrate the
empirical time complexity of the Reduced Two-Step Algo-
rithm for our simulations in the case of identical channels.

C. DESIGN OF THE MC-LAPAL HEURISTIC
While the Two-Step Algorithm in (6)-(8) results in a reduc-
tion in the empirical time complexity required to compute
an optimal solution to the general form of the scheduling
optimization program in (1)-(5), we validated in our simula-
tions that the resulting reduction is not sufficient to produce a
solution of the general form of the program in real time. Since
real-time scheduling at IoT Gateways is key for the practical
deployment of JFS, we designed a fast scheduling heuristic,
namedMulti-Channel Look Ahead Priority based on Average
Load (MC-LAPAL), that solves (1)-(5) in real time.

Below, we first give an intuitive description of
MC-LAPAL. Second, we state MC-LAPAL formally via
pseudo-code. Third, we compute the time complexity as
well as the space complexity of MC-LAPAL. The analytical
results that we present on the time complexity ofMC-LAPAL
tie in with the empirical results on its computation time that
appear in Section V-C.

1) INTUITIVE DESCRIPTION OF MC-LAPAL
In line with the basic framework for all of the scheduling
techniques in this paper, MC-LAPAL aims to schedule the
uplink traffic of all IoT devices in the coverage area of
Gateway G over a scheduling window of duration Tsch based
on the point estimates of the traffic of all of the IoT devices
in this scheduling window. Hence, the algorithm is run once
per scheduling window.

We first define the variables that we will use in describing
the operation of MC-LAPAL: The number of bits of burst j
that have not yet been scheduled by the beginning of the
current slot t shall be denoted by ãj[t]. (From this point on,
in our description of MC-LAPAL, we shall refer to ‘‘the
beginning of the current slot t’’ as ‘‘the current slot t .’’)

21The assumption that no more than one burst is allowed to be allocated
to each slot-channel pair is retained.
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We shall let 1̃j[t] denote the duration that remains, measured
at the current slot t , until the beginning of slot dj, namely
until the delay deadline of burst j. Furthermore, Jactive[t]
denotes22 the set of ‘‘active bursts,’’ which is defined to be
the set of bursts, each of which satisfies the following two
properties: (1) even though the burst has been generated, it has
not been processed in its entirety; (2) the delay deadline of
the burst has not expired by the current slot t . We define
the ‘‘effective load’’ for each j ∈ Jactive[t], measured at the
current slot t , as γj[t] ≡ ãj[t]/1̃j[t]. Furthermore, we let
Jupcoming[t] denote the set of bursts whose generation times
are later than the current time slot t .23 Then, we define
rmin[t] ≡ minj∈Jupcoming[t] rj. Finally, for each burst j, let 〈Mj〉

denote the sequence of channels that have been sorted in the
descending order of Rmj.

FIGURE 4. An example of the decomposition of the scheduling window
into subgrids in the operation of MC-LAPAL.

We shall describe MC-LAPAL intuitively before we state
it formally: The main idea behind this algorithm is that the
algorithm decomposes the slot-channel grid that extends over
the entire scheduling window into subgrids, each of which
extends between the generation times of two successive bursts
within the scheduling window, as shown in the example
in Fig. 4. In this figure, there are three subgrids, namely
those that span the intervals [r2, r1], [r1, r3], and [r3, d3]. (The
last interval extends from the latest generation time r3 to the
end of the scheduling window.) The algorithm creates sched-
ules for successive subgrids; that is, in forming its schedule,
the algorithm ‘‘looks ahead’’ only to the next burst generation
time rather than to the end of the entire scheduling window.
Now, within each subgrid, the algorithm orders the bursts in
the set Jactive[tk ] in the order of non-increasing γj[tk ], where
tk is the time at the beginning of the subgrid k . (The ordering
breaks ties arbitrarily wherever necessary.) Starting at the
beginning of the ordered list of bursts, the algorithm examines

22This definition of the set of active bursts is identical to the one
that appeared in [22] in the description of the Priority based on Average
Load (PAL) heuristic, which was targeted at the single-channel case. In con-
trast, we develop a heuristic for the multi-channel case in this paper. The full
set of differences between the single-channel and the multi-channel cases
appear in Section II.

23Recall that JFS forms a schedule based on the forecast bits of IoT
devices. Hence, the ‘‘generation time’’ of a burst is the generation time of a
forecast burst within the current scheduling window. Similarly, all references
to bursts within the scheduling window are those that refer to forecast bursts.

each burst j and decides whether it can be ‘‘processed,’’
that is, whether it can be scheduled by using the available
resources up to (and excluding) slot dj. If it can be processed,
the algorithm schedules the bits of burst j on the available
slot-channel pairs in that subgrid, selecting the channels in the
order in which they appear in 〈Mj〉. (The only exception is
that the last slot-channel pair that will be used for scheduling
burst j is selected as one whose capacity is greater than or
equal to and closest to the remaining number of bits of burst j
that are to be scheduled.) After each of the slot-channel pairs
in subgrid k has been allocated to some burst, if there is a
burst such that only a part of its bits could be allocated within
subgrid k , the remaining bits of this burst shall be carried
over to the next subgrid k + 1. (Note that there can be at
most one such ‘‘left-over’’ burst.) After the algorithm finishes
its allocations for subgrid k , it moves onto the next subgrid
k+1 and repeats this procedure until it reaches the end of the
scheduling window.

2) FORMAL DESCRIPTION OF MC-LAPAL
The pseudo-code of MC-LAPAL is shown in Fig. 5. In this
pseudo-code, we assume that the following parameters are
globally available: the total number of channelsM , the dura-
tion of the scheduling window Tsch, the duration of a
MAC-layer slot τMAC , the capacity matrix C (whose entry
(m, j) is equal to Cmj), the collection of burst generation times
{rj}j∈J , and the entire set of bursts J . Each element of J
is a burst, which is a structure that contains the following
fields: (1) burstID, which is the unique identification (ID) of
a burst, (2) deviceID, which is the unique ID of the device
that generated the burst, (3) residualNumberOfBits (which
has been initialized to aj), (4) generationTime, which is the
global index of the slot in which the burst is generated, and
(5) deadline, which is the global index of the slot by the
beginning of which the burst must be delivered.

We now state only the essential definitions and expla-
nations that complement the pseudo-code for MC-LAPAL
in Fig. 5. On Line 4, the SetupSequenceOfSubgrids function
takes {rj}j∈J as inputs and calculates the sequence of subgrids
〈D〉. Each element of this sequence, namely a subgrid, is com-
prised of the following fields: (1) beginningOfSubgrid, which
denotes the global slot index for the beginning of the subgrid,
and (2) endOfSubgrid, which denotes the global slot index
for the end of the subgrid. On Line 5, the schedule matrix S is
initialized to the zero schedule matrix, whose number of rows
equalsM andwhose number of columns equals the number of
MAC-layer slots within the scheduling window, computed as
Tsch/τMAC . The entry (m, t) of S equals i if slot t on channelm
has been allocated to device i ∈ {1, . . . ,N } and equals 0 if the
slot-channel pair (m, t) has not been allocated to any device.
In each iteration k of the outer loop (Line 6) of MC-LAPAL,
the algorithm calls the ComputeSchedule function (Line 7),
which computes a schedule given the leftOver burst as well
as 〈Jactive〉 for the current subgrid 〈D〉[k] and returns the
resulting leftOver burst and 〈Jactive〉 to be passed to the next
subgrid 〈D〉[k + 1] for scheduling.
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FIGURE 5. Pseudo-code of the MC-LAPAL heuristic.

Similarly, we describe the ComputeSchedule function,
which begins on Line 11 in Fig. 5. On Line 13, the Find-
BurstsForSubgrid function finds the sequence of bursts 〈J̃ 〉,
each of whose generation time falls at the beginning of the
current subgrid. (Recall thatJ , which appears as an argument
of the FindBurstsForSubgrid function, denotes the entire set
of bursts over the current scheduling window.) We define ãj
for each burst j in J as the value of the residualNumberOf-
Bits field of burst j. On Line 15, the CalculateAverageLoad
function calculates, for each burst j in 〈J ′〉, the average load
at the beginning of slot tinit as γj[tinit] = ãj/(dj − tinit).

The for loop that begins on Line 19 attempts to schedule
each burst in 〈Jsorted 〉 within the current subgrid. We shall
see that if the scheduling of the 0th element of 〈Jsorted 〉
has been attempted (ending in success or failure), 〈Jsorted 〉
will be updated by removing this 0th element. On Line 20,

the 0th element of 〈Jsorted 〉 is attempted to be scheduled
by the ScheduleBurst function, which returns two flags:
First, the ‘‘status’’ flag takes one of the following val-
ues: completed, skipped, and thereIsLeftOver. (The mean-
ing of each of these values will be explained shortly.) Sec-
ond, the ‘‘noSpaceLeft’’ flag equals 1 if the entire set of
slot-channel pairs in the current subgrid have been filled by
the ScheduleBurst function and equals 0 otherwise. From
this point onwards, we shall refer to the burst that is being
scheduled as the ‘‘current burst.’’ If all of the bits of the
current burst have so far been scheduled by the ScheduleBurst
function on Line 20, the status flag is set to ‘‘completed.’’
If the ScheduleBurst function has decided to skip over the
current burst, then the status flag is set to ‘‘skipped.’’ If only
a part of the current burst has been scheduled and thus there
are remaining bits of the current burst (after the scheduling of
the entire subgrid has been completed), then the status flag is
set to ‘‘thereIsLeftOver.’’

In Fig. 6, we display the pseudo-code of the ScheduleBurst
function that is called by the ComputeSchedule function. We
define tend as the latest time slot up to which the bits of burst j
can be scheduled within the current subgrid. On Line 11,
the total capacity of the available slot-channel pairs until
tend, denoted by ctotalWithinSubgrid, is calculated. On Line 12,
the total capacity of the available slot-channel pairs until
dj, denoted by ctotalUpToDeadline, is calculated. On Line 15,
the elements of (∗s)24 that correspond to the available
slot-channel pairs between tinit and tend are set to i. On Lines
19-40, the ScheduleBurst function makes a reservation for
device i on the available slot-channel pairs within the current
subgrid in a manner that will be described below.

The goal of Line 20 is to find the subsequence 〈M+〉 of the
entire set of channelsM such that for each channel in 〈M+〉,
there is at least one slot-channel pair that is available between
tinit and tend. To this end, first, the submatrix of the schedule
matrix (∗s) that contains only the columns between tinit and
tend is formed. Second, the function Prod multiplies, for
each row of this submatrix, all of the entries along that row,
which results in an M × 1 vector.25 Third, the function Find
returns the sequence of indices of all of the zero entries of the
resulting vector. On Line 21, the SortChannels function sorts
the channels in 〈M+〉 in descending order with respect to
the sequence of capacities C̃[〈M+〉, j] for burst j and returns
the resulting sorted sequence of channels 〈Msorted

+ 〉. The goal
of Lines 22-39 is to allocate the resources in each channel
〈Msorted
+ 〉[m′] (where m′ ∈ {0, . . . , length(〈Msorted

+ 〉) − 1})
for burst j in the order in which the channels appear in
〈Msorted
+ 〉.

3) TIME AND SPACE COMPLEXITY OF MC-LAPAL
In this section, we state our results on the worst-case time
complexity and space complexity of MC-LAPAL.

24(∗s) is the schedule matrix to which s points.
25The second argument of Prod, namely ‘‘2,’’ indicates that the multipli-

cation is performed along the second dimension of the submatrix.
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FIGURE 6. Pseudo-code of the ScheduleBurst function.

Let V ≡ Tsch/τMAC ; that is, we let V denote the number of
MAC-layer slots in a scheduling window. Recall thatM is the
total number of channels. Furthermore, let J denote the total
number of bursts over the entire scheduling window; that is,
J ≡ |J |.

Theorem 3 (Time Complexity of MC-LAPAL): The
worst-case time complexity of MC-LAPAL is

O((J log J ) min(J ,V )+ JM logM + JMV ).

Theorem 4 (Space Complexity of MC-LAPAL): The
worst-case space complexity of MC-LAPAL isO(M (J+V )).
The most important implication of the above two theorems

is that both the worst-case time complexity and the space
complexity of MC-LAPAL are polynomial in the system
parameters V , M , and J . When we take into account the
fact that the logarithmic terms are weakly growing functions,
we see that the asymptotic growth with respect to each of
these parameters is close to linear for both the time and the
space complexity. This fact implies that MC-LAPAL can be
implemented in practice at IoT Gateways.

In Section V-C, we shall compare the worst-case time
complexity of MC-LAPAL obtained in Theorem 3 above
against the empirical computation time of MC-LAPAL that
we observe in our simulations in Section V.

D. REACTIVE PROTOCOL BENCHMARKS: MC-RAB AND
MC-ERAB
In this section, we describe two protocols that we have
developed, which will serve as reactive protocol benchmarks
against which to compare the performance of MC-JFS.

MC-RAB is a protocol that reacts to the current traf-
fic demand and allocates the traffic on multiple channels.
MC-RAB uses a parameter pRAB, which is similar to the
access probability pACB in the Access Class Barring (ACB)
protocol [1]. However, in contrast with ACB, which governs
only the access of devices and not the scheduling of data
traffic, MC-RAB is targeted at both giving access to devices
and scheduling the device traffic on multiple channels via
reservations.

In MC-RAB, in each slot t , the state of each device i is
uniquely described by the set of the following indicator vari-
ables: (1) zTXmi [t] = 1 if and only if device i is transmitting on
channelm in slot t , and zTXmi [t] = 0 otherwise, (2) zbackoffmi [t] =
1 if and only if device i is in backoff on channelm in slot t , and
zbackoffmi [t] = 0 otherwise, and (3) zwaitingmi [t] = 1 if and only if
device i is waiting (for any of the other devices’ reservations
to terminate) on channel m in slot t , and zwaitingmi [t] = 0
otherwise.

All of the generated bursts of device i are ordered with
respect to their generation times. The device moves onto the
processing of its next burst only after it has received the
acknowledgment that all parts of the current burst j have
successfully been received by Gateway G.26

All of the bits of burst j on which device i has not yet
received an acknowledgment within a time-out duration27

26For massive IoT, the delay deadline of each burst j, namely1j, which is
determined by the IoT application, is typically less than or equal to the traffic
generation period Ti of the device i that generates burst j. This implies that
the delay deadline of the current burst that is processed will have expired by
the time that the next burst of the same device is generated.

27The time-out duration may be set to the minimum time required for the
acknowledgment from G to be received by device i.
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from G are queued in the transmission queue. We define the
‘‘residual’’ of burst j as the entire set of those bits of burst j
whose reception has not been acknowledged by G within
the time-out duration. In our simulations, in order to give
full advantage to MC-RAB over the proactive protocols that
we have designed in Sections IV-A and IV-C, we assume
that in MC-RAB, any acknowledgment from G is received
instantaneously by each device to which the acknowledgment
is transmitted.

We shall now describe how device i processes the residual j̃
of the current burst j. (Note that this includes the case in
which burst j is being processed for the first time. In that
case, the residual j̃ is the entire burst j.) At the beginning of
each slot t , we shall let M̃+

i [t] denote the set of available
channels on which device i is not waiting (i.e. zwaitingmi [t] = 0),
is not in backoff (i.e. zbackoffmi [t] = 0), and is not transmitting
(zTXmi [t] = 0) based on a reservation that has already been
made for device i on channel m in slot t . At the beginning
of slot t , if slot t has already been reserved for device i,
then zTXmi [t] = 1; otherwise, if device i has the residual j̃
in its transmission queue, it decides to access each channel
m ∈ M̃+

i [t] with probability pRAB independently across all
of the channels in M̃+

i [t]. Let M
sel
j̃
[t] denote the subset

of channels that have been selected by device i using this
procedure for residual j̃ at the current time slot t . Let 1̃j[t]
denote the time remaining at the current time t until the
deadline dj.28 Then, device i divides the set of bits in residual j̃
as follows: First, the maximum number of bits of residual j̃
that device i can send on each channel m from the beginning
of slot t to the end of slot dj − 1 is calculated as amax

mj̃
[t] ≡

Cmjd
1̃j[t]
τMAC
e ∀m ∈Msel

j̃
[t]. Second, letBj̃ denote the number

of bits in residual j̃. Furthermore, let J̃m denote the set of
bits of residual j̃ that i decides to send on channel m, and
let AJ̃m

denote the number of bits in J̃m. Then, i computes
AJ̃m

by setting the number of bits of residual j̃ allocated to
channel m as directly proportional to the slot capacity Cmj of
channelm up to the maximum number of bits amax

mj̃
[t] that can

be transmitted on channelm by the deadline of residual j̃. That
is,

AJ̃m
= min

Bj̃ Cmj∑
m′∈Msel

j̃
[t] Cm′j

, amax
mj̃

[t]

 (15)

Thus, for each J̃m, the processing time (measured in
MAC-layer slots) is pJ̃m

= dAJ̃m
/Cmje. The device i

prepends the value of pJ̃m
to the set of bits J̃m that are

transmitted on channel m ∈Msel
j̃
[t].29 For each channel m ∈

28The deadline for the residual of burst j is dj, namely the deadline for
burst j.

29In MC-RAB, Gateway G acknowledges the reception of each such set
J̃m without waiting for successive such sets to accumulate in order to ensure
that the deadline of this set of bits does not expire due to an unnecessary
delay at G.

Msel
j̃
[t], whenever G receives the value of pJ̃m

, if pJ̃m
≥ 2,

G reserves the next (pJ̃m
− 1) slots30 of channel m for the set

of bits J̃m and acknowledges the reception of J̃m by sending
the set of slot-channel pairs that have been reserved for J̃m
to all of the devices31 (including i). We shall denote this
acknowledgment by ACKJ̃m

. When each of the other devices
besides i receives this ACKJ̃m

, it transitions into the wait state
for channel m for the next (pJ̃m

− 1) slots.

If device i has transmitted J̃m to G on channel m and does
not receive the ACKJ̃m

(which happens only due to an uplink
collision on channel m in our model), device i re-queues
J̃m for re-transmission and goes into the backoff state for
channel m (zbackoffmi = 1) for a duration that is modeled as an
exponential random variable with parameter λ.32 If device i
has received acknowledgments that encompass all of the bits
of burst j, it moves onto its next burst (whenever the next burst
is generated) and repeats the procedure above for this new
burst.

MC-ERAB, which stands for ‘‘Multi-Channel Enhanced
Reservation-based Access Barring,’’ is a protocol that
enhancesMC-RAB by adding only the following extra condi-
tion, which aids in improving the throughput performance of
the protocol: After device i completes the channel selection
process that computesMsel

j̃
[t] for residual j̃, device i checks

the condition
∑

m′∈Msel
j̃
[t] a

max
m′ j̃

[t] ≥ Bj̃. This condition states

that the total capacity (in bits) available across all of the set
of selected channels is sufficient to send all of the Bj̃ bits
of residual j̃. If the condition is satisfied, device i calculates
AJ̃m

in accordance with (15) and continues the protocol as
in MC-RAB; otherwise, in the next time slot t + 1, if t +
1 < dj, device i repeats the entire process that begins with
the selection of the set of channels Msel

j̃
[t + 1] anew until

either the condition above is satisfied or the delay deadline of
residual j̃ has expired.33

V. RESULTS
In this section, our main goal is to compare the performance
of MC-JFS against those of MC-RAB andMC-ERAB, which
serve as reactive benchmark protocols. To this end, first,

30Note that there is no separate access channel in MC-RAB. Thus, data
reception at G has already begun in the first slot, which contains both the
value of pJ̃m

and those bits of J̃m that fall in the first slot. As a result, G
makes a reservation for the remaining number of slots that will be required
to receive the rest of J̃m.

31The downlink control channel, on which this information is broadcast
to all of the devices in N simultaneously, typically does not constitute the
bottleneck for IoT.

32We follow the common usage in the literature that models the backoff
duration as an exponentially distributed random variable with parameter λ.
However, note that since the MAC-layer slots impose a discrete structure,
the corresponding random variable in our case has a geometric distribution
whose parameter is calculated based on the λ of the underlying exponential
random variable.

33Recall that for massive IoT, the delay constraint of burst j, which relates
to the IoT application, is typically less than or equal to the traffic generation
interval Ti of the device i that generates burst j. Hence, new bursts typically do
not accumulate at device i as i attempts to send the current burst by repeating
this procedure until dj.
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we describe our simulation methodology. Second, we discuss
our results for the general case of the scheduling optimization
program (Section IV-A) and for the special case of identi-
cal channels, in which single-channel reduction is possible
(Section IV-B). Finally, we present our results on the compu-
tation time of our MC-LAPAL heuristic.

A. METHODOLOGY
In this subsection, first, we describe our methodology for
traffic generation and forecasting. Second, we state how we
determine the channel capacities based on our wireless chan-
nel model. Third, we specify our computation platform on
which all of our simulation results have been obtained.

1) TRAFFIC GENERATION AND FORECASTING
First, for traffic generation and forecasting, we use the same
data sets for IoT device traffic generation as in [22] and [23],
which were formed based on the data collection and pro-
cessing methodology (which includes bootstrapping traffic
generation patterns from a set of IoT devices) detailed in
Section VI-A of [23].

We use the same set of MLP forecasters for the above
data set as in [23]. In particular, regarding the parameters
discussed in Section III-C of the current work, we set (ni0)min
to 3 and (ni0)max to 100. The set of delay constraints across
the IoT devices are as follows: 1(1)

= 180, 1(2)
= 180,

1(3)
= 1, 1(4)

= 0.5, 1(5)
= 2, 1(6)

= 180, 1(7)
= 600

and 1(8)
= 3600 s. The set of traffic generation intervals for

the same set are T1 = 180, T2 = 180, T3 = 180, T4 = 180,
T5 = 3600, T6 = 180, T7 = 3600 and T8 = 3600 s. We set
Tsch = 100 s in our simulations.34

2) WIRELESS CHANNEL MODEL
Second, we shall explain how we obtain the values of the
parameters R̃mi and C̃mi for each m ∈ M and each i ∈ N
based on a wireless channel model at the physical layer, for
both the general case and for the special case of identical
channels.

For the general case (Section IV-A), we model the chan-
nel in the time domain for OFDM systems according to
the Rayleigh fading model [50]. In this model, the complex
channel gain hi[l] of tap l for the uplink of device i has a
real part āi[l] and an imaginary part b̄i[l], which are indepen-
dent, circular symmetric Gaussian random variables. Each
of the āi[l] and b̄i[l] has mean 0 and variance κ/2L, where
κ is a positive parameter, and L is the number of channel
taps. In our simulations, we set κ = 0.1.35 For simplicity,

34Even though this results in the generation of at most one burst from each
device over the scheduling window, this is a practical choice for Tsch in order
to be able to compute schedules in real time. The capability to schedule over a
much longer scheduling window requires a generalization of the multi-scale
algorithm that appeared in [23] to the case of multiple channels, which is
beyond the scope of the current work.

35For this value of κ = 0.1 and the remaining channel parameters,
which shall be specified in this subsection, the communication system is
in the power-limited regime. This choice of operating the system in the
power-limited regime is especially suitable for battery-limited IoT devices.

in this work, we assume that the number of channel taps L is
identical across all of the devices.36 We took L = 10 in our
simulations.

For the uplink of device i to GatewayG, the complex gains
across all of the channels (in the frequency domain) shall be
denoted by the sequence 〈h̃mi〉 over m ∈ M. This sequence
of complex channel gains is obtained by taking the M -point
discrete Fourier transform of the sequence formed by zero
padding the sequence 〈hi[l]〉 (which ranges over 1 ≤ l ≤ L)
by an additionalM − L entries [50].37

We let P denote the total transmit power of each of the
devices in N over the entire set of M channels. Because
we assume an OFDM system, the amount of transmit power
allocated by a device to a single OFDM subcarrier on the
uplink of a device is P/M .38 By virtue of Shannon’s capacity
formula for an Additive White Gaussian Noise (AWGN)
channel,39 the data rate40 on channel m for device i is R̃mi =
W̃m log2(1+ (|h̃mi|2(P/M ))/(NoW̃m)), where W̃m is the band-
width (in Hz) of channel m (which is assumed to be identical
across all devices), and No is the value of the single-sided
power spectral density of the white noise at the receiver of
Gateway G, which is identical for every channel m for the
uplink of every device i. We let No = 5× 10−3 (in Watts/Hz)
∀m ∈M and ∀i ∈ N in our simulations.
We let W denote the common total bandwidth used

by all of the devices to communicate to the Gateway.
In our simulations, we set the total communication band-
width W = 26 MHz and the bandwidth of each subcarrier
W̃m = 1 MHz.41 Hence, M = 26 in our simulations.42

Finally, the MAC-layer capacity of each channel m for
device i is given by C̃mi

= R̃miτMAC , where τMAC =
0.1 second.

For the special case of identical channels (Section IV-B),
the channel capacity on the uplink of device i is chosen as

36Since we focus on the MAC-layer scheduling of IoT devices in this
work rather than the design of physical layer schemes, taking the number
of channel taps to be the same across all devices provides a coarse approx-
imation. The multipath profiles of the IoT devices to the IoT Gateway will
have a similar number of taps if the physical environment that exists from
each device to the Gateway is similar to that of the other devices.

37Note that M ≥ L.
38Since our work is aimed at the MAC layer, we do not use Discrete

Multitone Modulation (DMT), which would distribute the total power via
waterfilling based on the uplink channel gain, if there were CSI fed back to
the device on the downlink.

39The channel seen by each OFDM subcarrier is approximately a flat
channel; hence, Shannon’s capacity formula for the AWGN channel can be
applied to each such subcarrier.

40We assume that well-known capacity-achieving channel codes, such as
turbo or Low Density Parity Check (LDPC) codes, are used at the physical
layer on each such OFDM subcarrier (i.e., on each channel m ∈M in our
terminology). As a result, we take the data rate to be the Shannon capacity
achieved in this way on each such OFDM subcarrier.

41While this paper presents fundamental work on MC-JFS, we based
our choice of the total available bandwidth as well as the bandwidth per
subcarrier on one of the possible choices for the physical layer configuration
of the IEEE 802.11ah standard.

42The reason for keepingM fixed in our simulations is that for a constant
total bandwidth W and an equal power allocation of P/M by a device for
each subcarrier, the total capacity does not vary significantly as M changes.
In contrast, the total capacity varies as P changes.
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the numerical average of the capacities C̃mi over m ∈M that
were obtained for the general case above. This choice allows
us to compare the network performance for the special case
of identical channels against that for the general case.

In our simulation results that appear in the next section,
we shall examine the network perform performance for val-
ues of P in the set {5, 10, 15, 20} mW. While this paper
constitutes fundamental work and is not based on any partic-
ular standard, the reason for our selection of these particular
values of P is that 5 and 10 mW correspond to the transmit
power levels for the IEEE 802.11ah standard in China and
Europe [60], while the values 15 and 20 mW correspond
to range extensions on these systems via an increase in the
transmit power. As a result, while this is not the main goal
of this paper, our simulation results also give indications on
the network performance that would be attained in systems
similar to those that implement the physical layer of the IEEE
802.11ah standard.43

3) COMPUTATION PLATFORM
Third, we note that all of the experiments were performed
on a 2.30 GHz Intel Xeon Gold 5118 24-Core Proces-
sor with 128 GB of RAM running Python 3.7 under the
Windows 10 operating system with no other concurrent
compute-intensive processes. In addition, the docplex library
on Python was used to produce an optimal solution of the
program in (12)-(14), which appears as part of the Reduced
Two-Step Algorithm. (We note that the branch and cut
method for integer linear programs in this library was used
in solving (12)-(14).)

B. NETWORK PERFORMANCE
Our aim in this section is to present the results on the net-
work performance of MC-JFS. First, for the general case,
we demonstrate the performance of our proactive heuristic
MC-LAPAL against those of the reactive protocols, namely
MC-RAB and MC-ERAB. Second, for the special case in
which the capacities of those channels on the uplink of any
individual device are identical, we compare the performance
of these protocols against that of optimal scheduling.

1) PERFORMANCE COMPARISON FOR THE GENERAL CASE
In this subsection, we present our results for the general case
(Section IV-A), in which the uplink capacity of a device
across distinct channels need not be identical and are gen-
erated according to the wireless channel model described in
Section V-A.

We shall build our results in a bottom-up fashion, begin-
ning with low-level metrics, such as the average fraction of
the capacity of a single slot-channel pair that is allocated
and the fraction of utilization of the slot-channel grid, and
subsequently use the insights gained in order to explain the

43It is important to note that this paper does not implement the MAC layer
of IEEE 802.11ah, as our aim is to employ MC-JFS at the MAC layer rather
than that of the IEEE 802.11ah standard.

behavior of high-level network performance metrics, such
as uplink cross-layer throughput η and the average transmit
energy consumption per bit.

Recall that P denotes the total transmit power of each
device (which is identical across all devices) over the entire
set M of uplink channels. In the results that follow, we shall
graph eachmetric in four subplots, each of which corresponds
to a distinct value ofP in the set {5, 10, 15, 20}mW. In each of
the subplots, we keep the value ofPfixed and vary the number
of devices N .44 In all of our simulations, the percentage of
devices in each device class remains at 25%.45

For each of the reactive protocols, namely MC-RAB and
MC-ERAB, for each N , we maximize the throughput η by
selecting the parameters (λRAB, pRAB) for MC-RAB and
(λERAB, pERAB) forMC-ERAB via exhaustive search. Hence,
all of the plots for the reactive protocols in this section
correspond to their η-optimal performance for each N .

We begin our discussion with the presentation of
low-level performance metrics. For the MC-LAPAL schedul-
ing scheme, we let g denote the average fraction of the
capacity of a single slot-channel pair, assuming that this pair
is allocated for the transmission of bits. Fig. 7 displays g
under perfect forecasts as well as under MLP forecasting.
In this figure, first, we see that g is greater than 0.988 across
all N and all P. Since each burst fills slot-channel pairs
successively in the MC-LAPAL scheduling scheme, the only
potential inefficiency that would result in the underallocation
of the capacity of a slot-channel pair could occur in the
last slot-channel pair that is used by a given burst.46 Now,
Line 27 of the ScheduleBurst function (Fig. 6) ensures that
this last slot-channel pair that is allocated has a capacity as
close as possible (among the remaining set of slot-channel
pairs that could be allocated) to the remaining number of bits
in the current burst that is being scheduled in this slot-channel
pair. The fact that a high g is achieved in all of these subplots
is due to the relatively high spread of channel capacities that
exists in this general case.

Second, we see in Fig. 7 that as P increases, in general,
g slightly decreases across all N . The reason is that as P
increases, on average, the capacity of the last slot-channel
pair that is filled by a burst increases. Since the set of traffic
bursts across all P are identical in our simulations, this results
in a slight decrease, on average, in g. Third, we see that this
decrease, as a function of P, is faster for MC-LAPAL under
MLP forecasting compared with that under perfect forecasts.
Our examination of the forecast traffic generation patterns
under MLP forecasting has revealed that small bursts exist in
these forecast traffic generation patterns at instances where

44Since we focus on a particular scheduling window, the number of
devices whose bursts fall in this window depends on the particular realization
of bursts. Hence, the values of N for which each of the plots displays
measurements have irregular spacing.

45We shall demonstrate the network performance under varying percent-
ages of devices from each device class in our future work.

46Recall that no more than one burst is allowed to be scheduled on any
given slot-channel pair.
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FIGURE 7. Average fraction of allocation of the capacity of a slot-channel pair.

no such burst occurs under perfect forecasts (i.e. in reality).
These instances of burst overestimation result in the allo-
cation of slot-channel pairs such that each such forecast
burst fills only a small fraction of a slot-channel pair, thus
reducing g. However, the overall conclusion of Fig. 7 is that
MC-LAPAL, on average, almost fills each slot-channel pair
that it allocates.

We define the ‘‘slot-channel pair utilization’’ of a schedul-
ing scheme as the fraction of slot-channel pairs, on each of
which an actual transmission of bits47 occurs over the entire
slot-channel grid.48 Fig. 8 displays the fraction of utilization
of the entire slot-channel grid.49 We shall analyze the utiliza-
tion ofMC-LAPAL completely before wemove onto those of
the reactive protocols. In all of the four subplots of this figure,
we see that the utilization of MC-LAPAL under both perfect
forecasts and MLP forecasting increases approximately lin-
early until a point at which saturation occurs (i.e. the graph
becomes approximately constant). We shall call the N at

47Whenever an actual transmission of bits of a burst occurs on a given
slot-channel pair, we consider that slot-channel pair to have been utilized
without regard to whether the delay deadline for that burst has expired or
not. That is, utilization, in this sense, is a low-level metric that does not
incorporate the Quality-of-Service (QoS) requirements. These requirements
are incorporated into throughput η, which shall be shown in Fig. 10.

48Note that we measure utilization via the actual transmission of bits
after the network traffic has been realized rather than by the fraction of
slot-channel pairs that are allocated for transmission. For MC-LAPAL,
in order for a slot-channel pair to be utilized, it must have been allocated
in advance.

49Recall that this grid has M channels, which appear as rows, and
Tsch/τMAC slots, which appear as columns, and hence contains a total of
MTsch/τMAC slot-channel pairs over one scheduling window.

which this saturation occurs as the ‘‘point of saturation’’ and
the approximate value of the utilization after the point of
saturation the ‘‘saturation level.’’ Across all four subplots,
we see that the saturation level is lower forMC-LAPAL under
MLP forecasting than under perfects forecasts. Furthermore,
we see that the point of saturation shifts to the right as P
increases.

We shall now focus on a particular subplot, Fig. 8(a),
explain the trends there, and subsequently generalize the
arguments to the remaining subplots. Recall that as the num-
ber of devices N increases, the percentage of devices from
each of the four device classes remains at 25%. Forming
the traffic generation patterns via bootstrapping, to which
we referred in Section V-A, produces an approximately lin-
ear growth of the total traffic load as a function of N .
In Fig. 8(a), this linear growth of the traffic load results in
the approximately linear increase of the slot-channel pair
utilization ofMC-LAPALunder perfect forecasts until almost
full utilization has been achieved at N = 660 devices.50

In contrast, we see that MC-LAPAL under MLP forecasting
does not achieve full utilization for any N . The reason is that
MLP overestimates the amount of traffic that is generated
over the scheduling window. As a result of this overesti-
mation, MC-LAPAL overallocates slot-channel pairs in the
slot-channel grid; however, not all of these slot-channel pairs
are utilized by the actual traffic. Due to the fact that almost

50The reason that MC-LAPAL under perfect forecasts does not achieve
exactly full utilization at N = 660 is that the traffic generation times of
distinct devices may coincide; that is, the distribution of the generated traffic
load over the scheduling window is not perfectly homogeneous.
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FIGURE 8. Fraction of utilization of the slot-channel grid.

all of the slot-channel pairs have been reserved, the utilization
of MC-LAPAL under MLP forecasting saturates at approxi-
mately 0.75 beyond N = 660 devices.
We see a similar trend in the utilization of MC-LAPAL

in Fig. 8(b), (c), and (d). As the maximum transmit power
P per device increases, we see that saturation occurs at
increasingly larger N . We also see that the saturation level for
MC-LAPAL under MLP forecasting remains approximately
the same across all P in this figure.

We now analyze the utilization of the reactive protocols
in Fig. 8. First, even though MC-RAB is a reactive protocol,
in our simulations, because the processing times are typically
much greater than 1 slot, whenever a device i is able to access
a given channel m for burst j, the remaining slots for the
residual of that burst j are reserved for device i. Since the
other devices transition to the waiting state during this reser-
vation, MC-RAB is able to achieve a relatively high channel
utilization that is competitive with the proactive protocol
MC-LAPAL. Furthermore, we see that there exists a point
of saturation for MC-RAB as well. This point of saturation
shifts to the right (in N ) as P increases.

Second, regarding the utilization of MC-ERAB in Fig. 8,
recall that in addition to the mechanism of MC-RAB,
MC-ERAB stipulates the extra condition that the total capac-
ity (in bits) available across all of the selected channels is not
less than the number of bits of residual j̃. If this condition
is not satisfied, in the next time slot, device i repeats the
entire process that begins with the selection of the set of
channels anew until either the extra condition is satisfied or

the delay deadline of residual j̃ has expired. That is, whenever
MC-ERAB realizes that there is not sufficient total capacity
to send the current residual, it re-attempts to randomly select a
new set of channels until it encounters a set that has sufficient
capacity for that residual. Due to the channel selection proce-
dure of MC-ERAB, this protocol tends to arrive at a selection
of channels that have capacities that are typically larger than
those of the channels selected by MC-RAB. This leads to a
lower utilization of the slot-channel grid for MC-ERAB than
for MC-RAB. That is, MC-ERAB is able to utilize a fewer
number of slot-channel pairs and achieves a higher average
capacity per slot-channel pair than MC-RAB.

We see that the gap between the utilization of MC-RAB
and that of MC-ERAB widens as P increases across
Fig. 8(a), (b), (c) and (d). The reason is that the slot capacities
are larger for higher values of P, and MC-ERAB is able to
select these larger slot capacities as P increases.

Now, for each protocol, we define the ‘‘total allo-
cated capacity’’ as the sum of the capacities of all of
the slot-channel pairs that are allocated51 by the protocol
on the slot-channel grid (over a single scheduling window)
for the entire set of devices. In Fig. 9, we display the total
allocated capacity. First, we see that for all of the proto-
cols under examination, the total allocated capacity grows
approximately linearly until a point of saturation is reached

51In particular, for MC-RAB and MC-ERAB, in addition to the reserved
slot-channel pairs, the slot-channel pairs onwhich a device accesses Gateway
G without any collisions are also considered to have been allocated.
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FIGURE 9. Total allocated capacity for all devices over the slot-channel grid.

and retains this saturation level beyond that point.52 We see
that for each of these protocols, the point of saturation shifts
to the right as P increases. Furthermore, the saturation level
also increases with P; however, the increase is faster for
MC-LAPAL (under both perfect forecasts and MLP fore-
casting) than for the reactive protocols. Second, we see that
MC-LAPAL under MLP forecasting overallocates the total
capacity compared with that under perfect forecasts. We also
see that this overallocation increases with P.
We see in Fig. 9(a) that the total allocated capacity for

MC-RAB grows until N = 416 devices and saturates for
largerN . A similar trend is observed across all of the subplots
in this figure for MC-RAB, where the point of saturation
shifts to the right and the saturation level rises as P increases.
The reason that MC-LAPAL achieves a higher saturation
level than MC-RAB for large P is that the small gap in
channel utilization between MC-LAPAL and MC-RAB that
appears in Fig. 8 is magnified in Fig. 9 due to the fact that the
slot capacities grow larger as P increases.

We are now in a position to discuss our first high-level per-
formance metric η, namely, the uplink cross-layer throughput
(Section III-A), which we shall call ‘‘throughput’’ for short.
The throughput performance appears in Fig. 10. In this figure,
first, we see that the throughput for MC-LAPAL under MLP
forecasting remains close to that under perfect forecasts as
P increases. This implies that MLP forecasting serves as an
effective forecasting scheme for MC-JFS.

52In this regard, we apply the same terminology as we did for Fig. 8.

Second, we see in Fig. 10 that MC-LAPAL outperforms
both MC-RAB and MC-ERAB with respect to η. The per-
formance difference between our MC-JFS heuristic, namely
MC-LAPAL, and those of the reactive protocols, namely
MC-RAB and MC-ERAB, increases as P increases. The
main reason for this gap in throughput performance is that
MC-LAPAL successfully uses the forecasts in scheduling the
traffic in advance, whereas the reactive protocols can at best
make reservations based on the traffic load that occurs at each
time instant.

Third, in each of the four subplots of Fig. 10, we see that
throughput begins its decline at an N that is smaller than the
corresponding point of saturation in Fig. 8. By examining the
resulting schedules, we have confirmed that the reason that
its decline does not begin exactly at the point of saturation
of utilization is as follows: Due to the existence of delay
constraints on a sufficiently large fraction of devices that are
less than the scheduling window, as N increases, the burst
generation instances of distinct devices fall in closer proxim-
ity. For devices whose delay constraints are short, this causes
a fraction of the bursts of these devices not to be scheduled,
even though the utilization across the slot-channel grid has
not yet saturated.

In Fig. 10(a), we see that the throughput of MC-ERAB is
slightly lower than but comparable to those of MC-LAPAL
under perfect forecasts. Furthermore, we see that the through-
put of MC-ERAB is competitive with that of MC-LAPAL
under MLP forecasting; however, MC-LAPAL significantly
outperforms MC-ERAB as P increases. The reason is that
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FIGURE 10. Uplink cross-layer throughput η.

MC-LAPAL orders the channels with respect to their capac-
ities for the uplink from every device and selects the chan-
nels that have a larger capacity. In contrast, the channels in
MC-ERAB are selected randomly. In addition, MC-LAPAL
selects to transmit those bursts that have larger γ ’s, thereby
giving priority to delivering those bursts with a larger number
of bits before their delay deadlines. In contrast, MC-ERAB
merely reacts to the actual bursts in the order in which they are
generated and has no ability to prioritize bursts across distinct
devices in advance.

Across all of the four subplots of Fig. 10, the reason that
MC-ERAB outperforms MC-RAB by a significant margin is
that due to the extra condition by which MC-ERAB enhances
MC-RAB, MC-ERAB knows in advance whether the total
capacity of the selected channels is sufficient for the current
residual at hand. By repeating the channel selection procedure
whenever MC-ERAB sees that the entire residual cannot
be transmitted over the currently selected set of channels,
it ensures that the only time that the residual is not delivered
completely is due to the presence of a collision on at least
one of the selected channels. In contrast, MC-RAB suffers
a throughput decrease whenever the selected set of chan-
nels does not have sufficient capacity to deliver the current
residual.

Fig. 11 displays the η-optimal values of the pRAB and the
pERAB parameters of MC-RAB and MC-ERAB protocols,
respectively. First, we note that in general, these optimal
values decreasewithN in order to allow an increasing number
of devices to access the IoT Gateway. Fig. 12 displays the
η-optimal value of 1/λ, where λ is the exponential back-off

parameter that is common to both MC-RAB and MC-ERAB.
We see that as N grows, the optimal number of MAC-layer
slots for which a device that runs either of these protocols
should back off is, on average, 1 to 4 slots for all P.

Fig. 13 displays the fraction of slot-channel pairs that
experience collision in the slot-channel grid forMC-RAB and
MC-ERAB. In this figure, we see that this fraction is less than
0.06 for both of these protocols. The reason that this fraction
remains below this threshold for all N is that the parameters
pRAB and pERAB for MC-RAB and MC-ERAB respectively
as well as λ for both of these protocols have been selected
optimally via exhaustive search for each value ofN , as shown
in Fig. 11 and Fig. 12.

Fig. 14 displays the fraction of idle slot-channel pairs.
For MC-LAPAL, this fraction plus the fraction of utilization
in Fig. 8 equals 1.53 In contrast, for each of MC-RAB and
MC-ERAB, the fraction of idle slot-channel pairs, the frac-
tion of utilization (Fig. 8) and the fraction of slot-channel
pairs that experience collision (Fig. 13) sum to 1.

In Fig. 14(a), for MC-RAB, we see that the fraction of
idle slot-channel pairs falls until N = 416, as the utiliza-
tion (in Fig. 8) increases and the fraction of collisions in
the slot-channel grid (in Fig. 13) remains below 0.04. This
behavior is due to the fact that the traffic load is relatively light
for small N , which leaves many of the slot-channel pairs idle.
BeyondN = 416, we see that the fraction of idle slot-channel

53Note that utilization, which occurs after the realization of the actual
traffic, rather than allocation is used in determining which slot-channel pairs
remain idle.
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FIGURE 11. The optimal values of the pRAB and pERAB parameters for the MC-RAB and MC-ERAB protocols, respectively.

FIGURE 12. The optimal values of 1/λ for the MC-RAB and MC-ERAB protocols.

pairs is low as the utilization of MC-RAB saturates. We see
that a similar trend for MC-RAB holds across all P. Further-
more, as P increases, the point of saturation for utilization

shifts to the right. Concurrently, the point at which the fraction
of idle slots falls to a constant value shifts to the right as
P increases. In this figure, we also see that the fraction of
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FIGURE 13. Fraction of slot-channel pairs that experience collision in the slot-channel grid.

FIGURE 14. Fraction of idle slot-channel pairs in the slot-channel grid.

idle slot-channel pairs under MC-ERAB is comparable to but
slightly larger, on average, than under MC-RAB for allN and
all P.

We shall now present the results on our second high-level
network performancemetric, which relates to transmit energy
consumption. Note that each device spends P/M Watts of
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FIGURE 15. The metric E , which is defined as the ratio of the total transmit energy consumption of all of the IoT devices in the network to the total
number of bits in successfully delivered bursts.

transmit power whenever it transmits on any one of the
slot-channel pairs. We define E as the ratio of the total
transmit energy consumption of all devices in N to the total
number of bits in successfully delivered bursts on the entire
slot-channel grid.

The performance of all of the protocols with respect to
E is displayed in Fig. 15. We now focus on Fig. 15(a).
First, even though the throughput of MC-ERAB is close to
that of MC-LAPAL in Fig 10(a), E for MC-ERAB is at
least one order of magnitude larger than that of MC-LAPAL
in Fig. 15(a). The reason is that MC-LAPAL orders the
channels with respect to their capacities and successively uses
the channel with the largest capacity among all channels that
have not yet been used in scheduling the delivery of a forecast
burst.54 In contrast, MC-ERAB is not able to order all of
the channels and select the channels with respect to their
capacities in advance. As a consequence, MC-LAPAL is able
to deliver the same traffic with much fewer slot-channel pairs
than MC-ERAB. Since a fixed transmit energy is incurred
per device per such slot-channel pair, MC-LAPAL achieves a
much lower E than MC-ERAB.

Second, by zooming into Fig. 15 as shown in Fig. 16,
we see that MC-LAPAL under MLP forecasting achieves a
lower E than that under perfect forecasts. Third, in Fig. 15(a),
we see that the energy consumption of MC-RAB is larger

54The only exception is the last channel selected for a forecast burst, which
is set as on Line 27 of the ScheduleBurst function in Fig. 6 in order to keep
g close to 1 in Fig. 7.

than that of MC-ERAB for N > 311. The reason for
this result is two-fold: The primary reason is that since the
throughput of MC-RAB is significantly lower than that of
MC-ERAB beyond N = 311 devices, the denominator in
the definition of E , namely the number of bits in successfully
delivered bursts, is smaller forMC-RAB than forMC-ERAB,
which results in a larger value of E for MC-RAB. The sec-
ondary reason is that even though MC-ERAB is not able
to order all of the channels with respect to their capacities,
due to the extra condition imposed by MC-ERAB, it has
the ability to reject a randomly selected set of channels if
they do not possess a sufficiently large capacity to deliver
the current burst. As a result, compared with MC-RAB,
MC-ERAB arrives at a selection of channels that tend to have
larger capacities compared with those selected by MC-RAB.
When channels with larger capacities are selected, for the
same traffic load, the number of slot-channel pairs on which
devices transmit is reduced, thereby reducing E . Due to
these primary and secondary reasons, MC-RAB incurs the
largest E for sufficiently large N , followed by MC-ERAB,
which is, in turn, followed by MC-LAPAL. This trend is
observed in all of the subplots of Fig. 15, across which
P increases.

2) PERFORMANCE COMPARISON FOR THE SPECIAL CASE
OF IDENTICAL CHANNELS
For the case of identical channels, for brevity, we shall present
the results only for the high-level network performance
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FIGURE 16. Zoom-in to Fig. 15 in order to compare E for MC-LAPAL under perfect forecasts versus under MLP forecasting.

FIGURE 17. Throughput in the case of identical channel capacities for the uplink of each of the IoT devices.

metrics rather than the full set of low-level metrics that were
presented for the general case. However, in our explanations,
we shall draw upon the differences that we have observed in
regard to the low-level metrics between the general case and
the case of identical channels.

In Fig. 17, we display the throughput achieved by opti-
mal scheduling55 (under both perfect forecasts and MLP

55Note that the results for optimal scheduling were obtained for the
special case of identical channels by virtue of the Reduced Two-Step Algo-
rithm described in Section IV-B.
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FIGURE 18. The ratio of the total transmit energy consumption of all devices to the total number of bits successfully delivered bursts in the case of
identical channel capacities for the uplink of each of the IoT devices.

forecasting) in addition to those of MC-LAPAL, MC-ERAB
and MC-RAB for the case of identical channels. First,
in Fig. 17(a), we see that the gap between the through-
put of optimal scheduling and that of MC-LAPAL widens
beyond N = 660 devices. Furthermore, the performance
of MC-LAPAL is close to those of the reactive proto-
cols MC-RAB and MC-ERAB. However, we see that as P
increases across the four subplots in Fig. 17, the throughput
of MC-LAPAL approaches that of optimal scheduling while
the gap between the throughput of MC-LAPAL and those of
the reactive protocols widens.

Second, recalling that the capacity of a single uplink chan-
nel of any given IoT device was taken (Section V-A) to be the
numerical average of the capacities of theM uplink channels
of the same device, we see in Fig. 17 that the throughput
differences among MC-LAPAL, MC-ERAB and MC-RAB
are smaller than those obtained for the corresponding plots
in Fig. 10 for the general case. The reason is that in the
case of identical channels, the spread in capacities exists only
across the uplink channels of distinct IoT devices, whereas
in the general case, the capacity of each of the M uplink
channels seen by an IoT device has a positive standard devi-
ation around the mean capacity calculated for the case of
identical channels. This fact reduces the throughput gains that
both MC-LAPAL and MC-ERAB are able to attain against
MC-RAB because the former protocols are not able to cap-
italize as much on the spread in these channel capacities for
the case of identical channels as they do for the general case.

In Fig. 18, we display E for the case of identical channels.
First, since the schedules produced by the optimal solver

and by MC-LAPAL are collision-free, no transmit energy is
spent except on successful transmissions. Hence, for all N ,
the E for each of these is approximately constant.56 Sec-
ond, in Fig. 18(a), we see that the values of E are simi-
lar for MC-RAB, MC-ERAB, MC-LAPAL and for optimal
scheduling (under both perfect forecasts andMLP forecasting
for the latter two schemes) across all N . However, as P
grows across the four subplots in Fig. 18, the values of E for
MC-RAB and MC-ERAB become increasingly larger than
those of MC-LAPAL and optimal scheduling below approx-
imately N = 660 in Fig. 18(b), N = 1085 in Fig. 18(c),
and N = 1597 in Fig. 18(d). However, for values of N that
are larger than these approximate thresholds, the values of E
achieved by MC-RAB and MC-ERAB remain close to those
attained by MC-LAPAL and optimal scheduling.

C. COMPUTATION TIME
In this subsection, our goal is two-fold: (1) We present our
results on the computation time57 of MC-LAPAL for the
general case. In addition, we compare the computation time
of optimal scheduling, which utilizes the Reduced Two-Step
Algorithm, against that of MC-LAPAL for the special case
of identical channels. (2) We discuss the real-time operation
of JFS and show that the computation time of scheduling

56For these proactive scheduling protocols, the reason that E is not exactly
constant for all N is that the average fraction of the total allocated capacity
of a slot-channel pair varies as a function of N .

57In this paper, the term ‘‘computation time’’ refers to the execution time
of the algorithm in question.
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FIGURE 19. Computation time of MC-LAPAL for the general case.

empirically dominates over that of forecasting in our simu-
lations on MC-JFS.

1) RESULTS ON THE COMPUTATION TIME
In Fig. 19, we display the computation time of MC-LAPAL
for the general case. First, across all P, we see that the
computation time increases very slowly in N in that regime
in which the throughput in Fig. 10 has not yet begun its
visible decline to below 1. For each P, beyond this point,
the computation time grows approximately linearly in N .
Second, we see that for fixed N , the computation time grows
smaller as P increases.

In Fig. 20, we display the computation time of opti-
mal scheduling that uses the Reduced Two-Step Algo-
rithm (Section IV-B) and that of MC-LAPAL for the special
case of identical channels. We see that the computation time
for optimal scheduling grows slowly in N up to the point at
which the throughput in Fig. 17 begins its visible decline to
below 1. Beyond this point, the computation time of optimal
scheduling grows significantly in N . In contrast, while the
same trend is observed for MC-LAPAL, its computation time
remains at least two orders of magnitude smaller than that of
optimal scheduling for those values of N beyond the point at
which the throughput begins to fall visibly below 1.

The empirical results shown in Fig. 19, which were not
obtained for the worst-case scanerio (that maximizes the time
complexity), have trends that are similar to those derived
in Theorem 3 in Section IV-C3 on the worst-case time
complexity of MC-LAPAL. Noting that V and M in the

statement of Theorem 3 are fixed in our simulation set-up,
Theorem 3 implies that for large J , the upper bound obtained
on the worst-case time complexity grows asymptotically as
J log J . In our simulations, due to the bootstrapping of the
traffic generation patterns from a representative set of IoT
devices, the total number of bursts J to be scheduled over a
single scheduling window grows approximately linearly with
the total number of devicesN . Thus, the approximately linear
asymptotic growth of the computation time ofMC-LAPAL in
all of the subplots of Fig. 19 suggests that the empirical time
complexity is close to that obtained analytically for the worst
case.58

2) REAL-TIME OPERATION OF JFS
The execution time T JFS of a JFS system at an IoTGateway is
the sum of the execution time T FM of the Forecasting Mod-
ule and the execution time T SM of the Scheduling Module
in Fig. 1; that is, T JFS = T FM + T SM . The reason is that
the Scheduling Module must wait for all of the forecasters
in the Forecasting Module to finish their forecasts before
the forecast traffic can be scheduled. We let T fci denote the
execution time of the forecaster of device i. Since all of the
forecasters run in parallel, the forecaster that finishes last
determines the execution time of the ForecastingModule; that
is, T FM = maxi∈N T fci .

58Although not visible on the scale of the plots in Fig. 20, the same
approximately linear asymptotic growth in J for MC-LAPAL also holds for
the empirical results in the case of identical channels.
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FIGURE 20. Computation time of optimal scheduling and MC-LAPAL for the special case of identical channels.

In order for a JFS system to operate in real time, the sched-
ule for all of the devices on a given scheduling window must
be ready (and communicated to the devices on the downlink)
by the beginning of the scheduling window. This implies that
for each scheduling window, the JFS computation must begin
at least a duration T JFS before the beginning of the schedul-
ing window. Thus, for real-time operation, the Forecasting
Module cannot use the past samples of the traffic generation
patterns of the devices that accumulate within a duration
T JFS before the beginning of the scheduling window. That
is, for the real-time operation of a JFS system, the feature
selection at the forecaster must be performed in a manner
such that no past input samples are selected as features within
a duration of T JFS before the scheduling window begins.
We shall undertake a complete examination of the impact of
the execution time T JFS on network performance in our future
work.

We now discuss the contributions of T FM and T SM to
T JFS in our simulations: As stated in Section V-A1, since the
same data set is used as in [22], we utilize Table 3 in [22]
to form a conservative estimate of maxi∈N T fci as the sum
of the mean and two standard deviations measured over the
set of MLP-based forecasters. As can be seen in Table 3
of that work, the largest such quantity holds for the VBP
class in the data set for which the mean is 0.004 s and the
standard deviation is 0.001 s; hence, T FM = 0.006 s serves
as our approximation. Compared with the computation time
for multi-channel scheduling in Fig. 19 and 20, we see that
for N > 1597 devices, across all P, T SM is at least several

orders of magnitude larger than T FM .59 Hence, we see that
empirically, the execution time for scheduling dominates over
that of forecasting in the total execution time T JFS . Hence,
all of the results on the computation time of scheduling that
appear in Fig. 19 and 20 can be practically taken as the value
of T JFS for each simulation.

VI. CONCLUSION
In Multi-Channel Joint Forecasting-Scheduling (MC-JFS),
an IoTGateway forecasts the future traffic generation patterns
of individual IoT devices in its coverage area and schedules
the future traffic of these devices in advance on multiple
channels over a scheduling window. This approach to the
solution of the massive access problem of IoT stands in sharp
contrast with reactive protocols in which the IoT Gateway
merely reacts to the current traffic demand.

In this paper, we have focused on the development of
MAC-layer scheduling schemes for MC-JFS. First, we devel-
oped a proactive scheduling heuristic, named MC-LAPAL,
for the general case. Second, for the special case in which the
uplink channel capacities seen by an individual IoT device are
identical, we developed a reduction of this problem by virtue
of which an optimal scheduling solution can be obtained in
real time.

59Since we used the same computational platform (stated in
Section V-A3 for both forecasting and scheduling, we expect the ratio
of T SM to TFM to remain approximately the same if we scale the
computational resources available.
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For the general case, we compared the network perfor-
mance of MC-LAPAL against those of two multi-channel
reactive protocols, namely MC-RAB and MC-ERAB.
We showed that the combination of MLP for forecasting and
MC-LAPAL for multi-channel scheduling outperforms both
MC-RAB andMC-ERAB. Furthermore, the performance gap
widens as the maximum transmit power of an IoT device
increases and the number of IoT devices in the coverage
area grows. For the special case in which the uplink channel
capacities from an IoT device to the IoT Gateway are identi-
cal, we showed that the combination of MLP forecasting and
our MC-LAPAL heuristic provides a network performance
that is close to that of optimal scheduling under perfect
forecasts. Furthermore, we showed that the computation time
of MC-LAPAL scales approximately linearly with the num-
ber of devices. These results jointly imply that MC-LAPAL
serves as an effective multi-channel scheduling heuristic for
MC-JFS.

In our future work, first, we plan to generalize MC-JFS
from the single-gateway setting in this paper to one with mul-
tiple gateways in order to accommodate mobile IoT devices
that change coverage areas. Second, we shall investigate new
scheduling heuristics targeted at IoT devices with tighter
delay constraints. Third, we plan to apply the general frame-
work that we have developed in this paper to Multiple Input
Multiple Output (MIMO) systems in the presence of spatial
channels. Finally, we plan to develop novel methodologies to
simulate tens of thousands of IoT devices in a given coverage
area, as are expected to be found in smart cities of the near
future.

APPENDIX
In this appendix, we present the proofs of all of the theorems
in this article.
Proof of Theorem 1 (Optimality via the Two-Step Algo-

rithm): Let W denote the 3D matrix of wmjt ’s, W̃ the 3D
matrix of w̃mjt ’s, u the vector of uj’s, and Q the 3D matrix of
Qmjt ’s in all of the programs in which these variables appear.
We shall show the following two facts: (I) A feasible solution
of (1)-(5) is a feasible solution of (6)-(8). (II) The (W,u)
produced by the Two-Step Algorithm is an optimal solution
of (6)-(8) and a feasible solution of (1)-(5). These two facts
then imply that the Two-Step algorithm returns an optimal
solution of (1)-(5).

Now, in order to show (I), consider a feasible solution of
(1)-(5). Then, under the substitution of wmjt for each w̃mjt
in (6)-(8), we note that (2) is identical to (7), and that (3)
and (5) imply (8). Thus, all of the constraints in (6)-(8) are
implied by the constraints in (1)-(5). Thus, every feasible
solution of the former is a feasible solution of the latter
program.

In order to show (II), we note that the tightening procedure
performed on the optimal solution of (6)-(8) produces a solu-
tion that satisfies the constraints (7) and (8) while retaining
the same value of the objective function in (6). Hence, theW

produced at the end of Step 2 is an optimal solution of (6)-(8)
(under the substitution of wmjt for w̃mjt ). Now, we augment
the (W,u) obtained at the end of Step 2 by computing the
corresponding matrix Q under the definition of Qmjt as the
number of bits of burst j scheduled on channel m in slot t .
Based on this augmentation, we let p∗ denote the (W,u,Q)
found by the Two-Step Algorithm. Then, p∗ satisfies (2)
since it satisfies (7). Now, note the following facts: First,
p∗ satisfies (3) due to the tightening procedure in Step 2.
Second, p∗ satisfies (4) by the fact that the construction in
Step 2 tightens those bursts with uj = 1 and does not schedule
the bursts with uj = 0. Third, p∗ satisfies (5) by the definition
of Q and the tightening procedure in Step 2. Hence, p∗ is a
feasible solution of (1)-(5).

Thus, (I) and (II) above imply that the Two-Step algorithm
returns an optimal solution of (1)-(5).
Proof of Theorem 2 (Reduction for Identical Channels): In

Step 1, since yjt =
∑

m∈M wmjt and Rmj = Rj for identical
channels, (11) and (14) are equivalent. Summing (10) over
m shows that it implies (13). Now, since the objective func-
tions (9) and (12) are identical, this implies that every optimal
3Dmatrix ofwmjt ’s in (9)-(11) has associated with it, a unique
optimal solution of yjt ’s in (12)-(14). Now, given any optimal
solution y∗ ≡ {{yjt }} of (12)-(14), the 3D matrix of wmjt ’s
produced by Step 2 of the Reduced Two-StepAlgorithm satis-
fies (10) by construction and is an optimal solution of (9)-(11)
that is associated with y∗.
Proof of Theorem 3 (Time Complexity of MC-LAPAL): For

brevity, (1) a programming statement in the pseudo-codes
in Fig. 5 and 6 shall be said to ‘‘be O(F)’’ (where F is any
mathematical expression of the parameters V , J and M ) if
and only if that programming statement has worst-case time
complexity O(F), and (2) any such programming statement
that is not mentioned explicitly in the rest of this proof has
been evaluated to be O(1).
In Fig. 5, Lines 4 and 5 areO(J ) andO(MV ), respectively.

Now, we shall divide the computation of the worst-case time
complexity of the rest of the MC-LAPAL function (includ-
ing60 its subroutine ComputeSchedule) into two parts, which
are labeled (I) and (II) below.

(I) We shall evaluate the worst-case time complexity of
the collection of statements in ComputeSchedule except
the call to the ScheduleBurst function that appears on
Line 20 of Fig. 5. To this end, note that each of the
Lines 13 and 15 is O(J ), and Line 16 is O(J log J ). Thus,
the sequence of programming statements on Lines 12-18
is O(J log J ). Now, on Line 6, the number of subgrids,
namely length(〈D〉), is O(min(J ,V )). Thus, the worst-case
time complexity incurred by calling Lines 12-18 in the for
loop on Line 6 is O((J log J ) min(J ,V )), which corresponds

60For the purposes of this proof, we encourage the reader to think of the
ComputeSchedule function, not as a separate function (as shown in Fig. 5)
but rather as if the pseudo-code of ComputeSchedule were written directly
into Line 7, thereby eliminating the function call.
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to the first term of the sum in the statement of this
theorem.61

(II) We shall evaluate the worst-case time complexity
incurred over the entire scheduling window by all of those
programming statements (in the functions MC-LAPAL and
in ComputeSchedule) that lead to a call to the ScheduleBurst
function. To this end, let H denote the total number of calls
to the ScheduleBurst function over the entire scheduling win-
dow. The worst-case time complexity of this part will be
computed as that of the product of H with the worst-case
time complexity of the ScheduleBurst function. To this end,
in (II.1) below, we shall show thatH isO(J ). Second, in (II.2)
below, we shall show that the ScheduleBurst function is
O(M logM +MV ). The product of O(J ) and O(M logM +
MV ) will then give the second and third terms in the sum that
appears in the statement of this theorem. We now show these
results:

(II.1) For subgrid k , let lk , sk and ck denote the number
of times that the ScheduleBurst function returns the status
leftOver, skipped, and completed, respectively, on Line 20 of
Fig. 5. Thus, H =

∑
k lk +

∑
k sk +

∑
k ck , where each

sum is performed over all of the subgrids over the scheduling
window. Now, since there can be at most one left-over burst
in each subgrid, lk ≤ 1. Thus,

∑
k lk ≤ min(J ,V ). Now,∑

k sk +
∑

k ck isO(J ). Thus, H isO(min(J ,V )+ J ). Since
min(J ,V )+ J ≤ 2J , H is O(J ).
(II.2) In Fig. 6, each of the Lines 9 to 12, 15 and 20 is

O(MV ).62 On Line 21, computing the capacities that corre-
spond to all of the channels isO(M ), and sorting the channel
capacities isO(M logM ); hence, Line 21 isO(M logM ). The
number of times that the for loop that begins on Line 22 iter-
ates is O(M ). Furthermore, Line 24 is O(V ) since it iterates
over the time slots for a given channel. The number of times
that the for loop that begins on Line 25 iterates isO(V ). Note
that Lines 27 to 32 are called only once due to the break
statement on Line 32. Line 27 isO(M ), and Line 28 isO(V ).
Thus, Lines 27 and 28 areO(M + V ).63 Putting these results
together, we see that Lines 22-40 are O(MV + (M + V )).
In this expression, the first term is due to the multiplication
of the number of times that the outer (Line 22) and inner
(Line 25) for loops are iterated through any of theO(1) state-
ments that appear in this double for loop. The second term
is due to Lines 27 and 28. Since MV ≥ M + V for integers
M ≥ 2 and V ≥ 2, we see that Lines 22-40 are O(MV ).
Adding the time complexity incurred on Line 21, namely

61Intuitively, this first term corresponds to the following facts: Sorting the
channels on Line 16 of Fig. 5, which isO(J log J ), is the dominant term in the
programming statements on Lines 12-18 that appear in theComputeSchedule
function. This dominant term is multiplied by the number of times for which
the for loop iterates on Line 6, which is O(min(J ,V )).

62On Lines 11 and 12, we compute the total capacity within each subgrid
and that up to the deadline by summing the capacities of the slot-channel
pairs. That is, in placing the bound on the time complexity of this step, we use
this more efficient implementation, which does not usematrixmultiplication.

63Due to the break statement on Line 32, this term is not multiplied by the
number of iterations in the outer and the inner for loops.

O(M logM ), to that incurred on Lines 22-40, we obtain the
result that the ScheduleBurst function is O(M logM +MV ).
The time complexity of MC-LAPAL is the sum of the

time complexities of Lines 4 and 5 in Fig. 5, namely O(J )
and O(MV ), respectively, and the results of (I) and (II)
above. That is, the time complexity of MC-LAPAL isO(J )+
O(MV )+O((J log J ) min(J ,V ))+O(JM logM + JMV ) =
O((J log J ) min(J ,V )+ JM logM + JMV ).
Proof of Theorem 4 (Space Complexity of MC-LAPAL): For

brevity, we utilize the same two conventions that appear in the
first paragraph of the proof of Theorem 3, except that each
reference to complexity is to space complexity (rather than to
time complexity).

First, each of the globally available parameters rj, dj,
aj, and 1j, which ranges over J , is O(J ). Furthermore, C
is O(MJ ), and M is O(M ). Hence, the worst-case space
complexity incurred due to the representation of the global
parameters is O(J )+O(MJ )+O(M ) = O(MJ ).

Second, in Fig. 5, on Line 2, 〈Jactive〉 is O(J ). On Line 4,
〈D〉 is O(min(J ,V )). On Line 5, S is O(MV ). Each of the
〈J̃ 〉, 〈J ′〉, 〈γ [tinit]〉, and 〈Jsorted 〉 is O(J ) on Lines 13, 14,
15 and 17, respectively. As a result, the worst-case space
complexity incurred within the MC-LAPAL and the Com-
puteSchedule functions in Fig. 5 is O(J ) + O(min(J ,V )) +
O(MV )+O(J ) = O(J +MV ).

Third, in Fig. 6, each of the SemptyWithinSubgrid and
SemptyUpToDeadline on Lines 9 and 10 is O(MV ), respectively.
Each of the 〈M+〉 and 〈Msorted

+ 〉 on Lines 20 and 21 is
O(M ), respectively. Furthermore, each of the 〈T m

+ 〉 and 〈T m∗
+ 〉

on Lines 24 and 28 is O(V ), respectively. As a result,
the worst-case space complexity incurred within the Sched-
uleBurst function in Fig. 6 is O(MV ) + O(M ) + O(V ) =
O(MV ).
Summing over the worst-case space complexities obtained

in all of the three parts above, we haveO(MJ )+O(J+MV )+
O(MV ) = O(MJ +MV ) = O(M (J + V )).
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