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Cyberattacks on the Internet of Things (IoT) can be the source of major economic
damage. They can disrupt production lines, manufacturing processes, and supply
chains. They can adversely impact the physical safety of vehicles and transportation
systems, and damage the health of living beings both through supply chains for
food, medicines, and other vital items, as well as through direct attacks on sensors
and actuators that may be connected to vital functions. Thus, securing the IoT is
of primary importance to our societies. This paper describes the technical approach
that we adopt for IoT security in the SerIoT Research and Innovation Project that
is funded by the European Commission. We first discuss the risk scenario for the
IoT and briefly review approaches that have been developed to mitigate such risks.
Then, we discuss a policy-based lightweight approach that mitigates risks at the
level of the attachment of IoT devices to a network. We follow this with a detailed
proposal based on using a distributed Machine Learning approach to risk and attack
detection in real time, as well as suggestions for future work.
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5.1 Introduction

The IoT may extend to billions of objects and sensors connected to Clouds,
databases, decision systems, and actuators [3]. It has the potential to improve the
critical processes that are at the heart of our socio-economic systems [9, 31] com-
posing a data-driven society [42]. However, the pervasive nature of the IoT raises
risks that go way beyond the individual technologies such as the internet or wireless
networks [16] and machine-to-machine systems [44]. In addition to risks related to
system malfunctions, Quality of Service (QoS) failures, and excessive energy con-
sumption, they also include the theft and tampering of data, conventional network
attacks, and other attacks that attempt to deplete the energy of autonomous sensors
and actuators [6, 17, 20, 22, 25, 37].

In Information and Communication Technology (ICT), risk management
embraces different processes intended to deal with the identification, assessment,
and mitigation of risks, which are derived from vulnerable ICT systems or potential
cybersecurity attacks [38]. However, the scale and heterogeneity of IoT systems sets
out significant challenges for the implementation of a risk management approach.
On the one hand, IoT represents the current trend to hyperconnected systems;
therefore, risk management aspects must consider the relationships and dependen-
cies among different devices that could affect to the security level of a certain sys-
tem or deployment. On the other hand, IoT deployments are usually composed
by components with resource constraints, which are installed in uncontrolled envi-
ronments with default security configurations. These constraints also make IoT
devices and systems an attractive target for possible attacks. Furthermore, due to
the potential huge number of devices in IoT deployments, there is a real need to
consider risk management approaches with a high degree of automation to effi-
ciently identify and mitigate new risks affecting such systems. These approaches
should be able to represent the relationships among devices, vulnerabilities, and
attacks of the overall deployment.

To create a suitable risk management methodology for the IoT, holistic
approaches are required to understand the probability and impact of potential
risks affecting devices and systems. As a core process of risk management, risk
assessment has been strongly considered in recent years by IoT researchers [36].
However, assessing risk is in itself insufficient, and we must design IoT networks
that can detect and then mitigate security risks, but also mitigate other risks that
may arise regarding the overall performance of the system by preserving QoS
and offering energy efficient operation of the system [47]. Thus, a continuing
overall evaluation of the risks introduced by IoT systems and their networks
is needed, and this paper offers a view of risk identification and mitigation as
applied to IoT systems, based on our work in the SerIoT Project supported by the
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European Commission [15]. In particular, we propose a system called Autopolicy,
which is intended to enforce security profiles according to the intended commu-
nications of a certain IoT system with other devices or systems. This approach
reduces the attack surface of the system and, consequently, the probability of
cybersecurity risks. Furthermore, we complement this mechanism with a detec-
tion approach, which uses a distributed anomaly detection scheme based on deep
learning (DL) and graph networks [2, 53]. Localized anomaly detection meth-
ods at IoT ports and network routers can also be investigated [4]. The mitiga-
tion method we proposed in this paper exploits network Self-Awareness [18, 29]
centered on Software Defined Networks [11] that can achieve secure and QoS-
based routing of significant traffic flows using machine learning and adaptivity
[8, 12, 45, 50].

The structure of the chapter is as follows: Section 5.2 analyzes the main processes
composing a risk management and the challenges associated to the IoT paradigm.
Then, the description of the Autopolicy approach is described in Section 5.3. Fur-
thermore, Section 5.4 provides a detailed description of our approach for the detec-
tion of attacks and anomalies in IoT-based DL and graph networks.

5.2 Risk Management in IoT

The process of risk management is composed of different elements [38] including
risk assessment and the definition of risk mitigation solutions. In particular, accord-
ing to the definition provided by the National Institute of Standards and Technol-
ogy (NIST), the risk management includes “(i) the conduct of a risk assessment; (ii)
the implementation of a risk mitigation strategy; and (iii) employment of techniques
and procedures for the continuous monitoring of the security state of the information
system” [21]. Therefore, risk management implies the assessment, mitigation, and
monitoring of risks.

Risk assessment is defined in CNSSI-4009 [51] as the process of “identifying,
prioritizing, and estimating risks”. This includes determining the extent to which
adverse circumstances or events could affect an enterprise. However, as described
by [36, 41], risk assessment in IoT could be more difficult to implement in com-
parison to traditional ICT systems because of the pervasive connectivity of the IoT
devices and the different potential interfaces (e.g., different wireless standards or
middlewares), which can increase the attack surface. The assessment of the impact
can also be critical in specific categories of IoT devices like the cyberphysical sys-
tems (e.g., an automated vehicle) or healthcare (e.g., insulin distributor) as a cyber-
security threat can have quite damaging consequences. Another challenge of the
IoT domain for risk assessment is that IoT systems (e.g., a smart home or a smart
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vehicle) can be composed of many different devices that, in turn, could be com-
prised of several components with a different security level. This means that the risk
assessment of a certain system will depend on the security level associated to each
part of the system. For this aspect, the main challenge is related to the way in which
each risk value could be aggregated to provide a reliable value for the whole system.

A number of risk assessment methodologies have been developed in the literature
and applied in some cases to the IoT domain. For example, the Common Weakness
Scoring System (CWSS) [26] is a methodology to prioritize software weaknesses.
The main motivation is to provide means to different stakeholders (e.g., software
testers, or manufacturers) for quantifying the risks associated to a specific weak-
ness. This way, the corresponding stakeholder can prioritize the weakness to be
solved based on the estimated risk. Various metrics (i.e., Base Finding, Attack Sur-
face and Environmental metric groups, which in turn contain different metric to
quantify the CWSS score associated to a certain weakness) are used to produce a
final CWSS score between 0 and 100. The main challenge is obviously the quan-
tification process as cybersecurity risk is more difficult to quantify especially in the
IoT domain [36]. A similar approach is also used in the Common Vulnerability
Scoring System collection (CVSS) [32], which is based on three group metrics:
Base, Temporal, and Environmental. Unlike CWSS, CVSS is used in discovered
vulnerabilities (i.e., the known known). The CVSS is widely used today as it is
used in the National Vulnerability Database (NVD) created by the NIST. In the
IoT literature, CVSS and CWSS schemes are used in combination to assess the risks
in Bluetooth technology, where the authors extended the authentication metric to
include new security factors inherent to the Bluetooth technology [40]. CVSS and
CWSS have also been used as an input in the process of cybersecurity certification
of IoT devices in [27, 28]. Finally, another quantitative risk assessment scheme is
DREAD, which is used to compute a risk value associated to a certain threat or
vulnerability based on the use of five categories: Damage potential, Reproducibil-
ity, Exploitability, Affected users, and Discoverability. It was used at Microsoft, and
currently, it is used by OpenStack. In [5], DREAD is applied to the mobile health-
care domain due to its simplicity.

As already mentioned, risk identification is a core process of a risk assess-
ment approach. In this direction, threat and vulnerability assessments are usually
employed to identify risks to organizational operations, and the evaluation of those
risks in terms of likelihood of occurrence and impact if they occur. In turn, for
the identification of threats and vulnerabilities, Intrusion Detection Systems (IDS)
have been widely used [7] by monitoring and analyzing the network and/or sys-
tem events. However, previous considerations make the application of well-known
IDSs more challenging into IoT systems. Indeed, one of the popular approaches
in literature is to analyze the data produced by IoT device to identify potential
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anomalies. A potential weakness of this approach is the difficulty to anticipate the
attack as the anomaly is created when the attack is already ongoing or it is com-
pleted. Moreover, machine learning capabilities have been increasingly become
more powerful in recent times, and a complex security attack may be composed by
a sequence of attacks steps. Then, the research objective is to the detect the initials
steps in the attack.

These aspects are already highlighted by [52], which provides a comprehensive
taxonomy of IDSs for IoT. Authors classify IDSs according to different parameters,
such as the placement strategy (distributed, centralized, and hybrid) and detection
method (signature-based, anomaly based, specification-based, and hybrid). In par-
ticular, anomaly based detection techniques are used to detect new attacks by com-
paring the normal behavior of a certain system with its actual activity. This approach
could leverage the inherent nature of IoT systems, which are usually composed of
special purpose devices. This aspect is considered by the recent Manufacturer Usage
Description (MUD) standard [24], which is aimed to restrict the communication
to/from a certain IoT device. To generate such intended behavior, anomaly detec-
tion techniques have widely used machine learning techniques, and in [49], a dis-
tributed anomaly detection approach in which each node monitors its neighbors
is proposed, where monitoring nodes inform other nodes about security problems.
In [30], deep autoencoders to detect anomalous network traffic of IoT devices are
discussed and tested for different commercial IoT devices in the presence of IoT
botnets such as Mirai. In our case, we describe a risk monitoring approach based
on a multi-agent system and DL techniques for automatic feature extraction and
anomaly detection that is described in Section 5.4.

As the next step of a risk management approach, risk mitigation focuses on the
goal to mitigate the risks through different means: (a) avoiding the risk (e.g., not
using a specific interface), (b) reducing the risk by implementing specific counter-
measures (e.g., intrusion detection), or (c) transfer the risk to some other entity
(e.g., an insurance company). In the IoT domain, the mitigation of risk is more
difficult to achieve because of the limited computing capabilities of IoT devices,
which makes more difficult the implementation of sophisticated countermeasures.
The transfer of the risks is also difficult as IoT devices are often standalone systems
(e.g., a sensor). A potential approach to mitigate IoT security risks is the integra-
tion of Software-defined Networks (SDNs), in order to restrict communications
from/to IoT devices. Indeed, the application of SDN techniques into IoT scenarios
has attracted a significant interest from academia in recent years. For example, [13]
describes an architecture for managing the obtaining and enforcement of MUD
restrictions, which are enforced by SDN switches. In this direction, our approach
is based on an architecture to identify and mitigate security risks based on the com-
munication profiles of IoT devices that is described in the next section.
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5.3 Autopolicy System

The deployment of IoT scenarios requires new approaches to manage cybersecurity
risks throughout the life cycle of devices composing such scenarios. In recent years,
diverse proposals have been developed to address risk management aspects, in order
to realize the best security practices for IoT (such as those defined by the (ENISA)
[10]). In this direction, [33] proposed a system for automatically identifying the
type of IoT devices that are connected to a network and enforcing security rules to
restrict the communication of potentially vulnerable devices. Indeed, authors pro-
posed the use of SDN techniques for the enforcement of such rules. Furthermore,
[1] designed an automated approach to derive network security policies, as well as
a multi-layered policy enforcement architecture.

Based on the considerations from previous works, our approach (Autopolicy)
addresses several aspects of risk management in IoT scenarios. On the one hand, it
reduces the attack surface and, consequently, the potential security risks associated
to IoT devices by enforcing traffic profiles to be defined either by the device’s manu-
facturer, or automatically. On the other hand, it links the obtaining of such profile
to the authentication process of the IoT device, so that only traffic profiles from
legitimate devices are obtained and enforced. Furthermore, it integrates a decen-
tralized mechanism based on a Multi-agent System (MAS) for risk monitoring that
is described in the next section. This way, Autopolicy helps to identify and moni-
tor risks in a certain IoT network through traffic profiles, in order to mitigate the
impact and likelihood associated to well-known threats, such as DoS attacks.

Autopolicy follows a similar approach to the recent IETF standard Manufac-
turer Usage Description (MUD) [24], which defines an architecture and data for-
mat to obtain and define network profiles for IoT devices. Indeed, MUD has
received an increasing interest from other standardization organizations, such as the
NIST, which recently published a Cybersecurity Practice Guideline [35] describing
the advantages provided by MUD to reduce the potential harm of compromised
devices. It follows a simple data model to generate network traffic rule allowing/
denying the communication to/from a certain IoT device. In our case, we consider
additional aspects, such as the maximum number of connections or restrictions on
the message size, in order to properly react against DoS attacks.

An overview of the Autopolicy design is presented in Figure 5.1. The basic flow
of information starts when a new IoT device joins a network, and it is detected by a
switch (or controller) acting as Device Authenticator, which is responsible for grant-
ing/denying the access to such device. This initial authentication process is usually
called bootstrapping [14], and it is used to exchange the corresponding crypto-
graphic material between the IoT device and controller for authentication purposes.
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Figure 5.1. Functional diagram of Autopolicy and of its information flows.

For this purpose, there is a plethora of mechanisms that could be considered to
instantiate this process, for example, based on the use of the Extensible Authen-
tication Protocol (EAP) [48], which is widely considered in the scope of 5G net-
works. An alternative approach could be based on the OMA LwM2M specification
[43], which explicitly defines a Bootstrap Interface, so that a LwM2M Client can
be registered into the corresponding LwM2M Server. OMA defines four boot-
strapping modes (factory, smartcard, client-initiated and server-initiated), and
the use of transport layer security (i.e., TLS/DTLS) and application layer secu-
rity based on the recent Object Security for Constrained RESTful Environments
(OSCORE) [46].

After the bootstrapping process, the entity acting as Device Authenticator sends
the authenticated device identity to the Profile Manager, which uses the identity to
request the associated traffic profile. For example, following the MUD approach,
the identity could be represented by a X.509 certificate in which a URL is included
to get the traffic profile. In our case, the Profile Manager contacts the Profile Pub-
lisher, which manages the traffic profiles of IoT devices. Indeed, this entity follows
a similar role to the MUD File Server [24], which is an entity provided by the man-
ufacturer of the device. An alternative approach for sharing traffic profiles is repre-
sented by the use of blockchain as a trusted, distributed and transparent repository
of traffic profiles. This way, manufacturers are enabled to implement smart con-
tracts to manage the creation and update of traffic profiles. It should be noted that
the use of blockchain is also considered in [34] to store cybersecurity information
of IoT devices, including MUD profiles. In case there is not an associated profile
to the device, the Profile Manager contacts the Profile Builder entity to create such
profile based on IP traffic statistics and, optionally, additional information from
other repositories where that device is already deployed.
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Listing 5.1 Traffic profile example.

{ ‘ ‘ f r o m _ d e v i c e ’ ’ : {
‘ ‘ r a t e ’ ’ : 0 . 1 ,
‘ ‘ a l l o w e d _ d s t ’ ’ : [

‘ ‘ 9 1 . 2 0 0 . 1 . 0 / 2 4 t c p /80 ,443 ’ ’ ,
] ,
‘ ‘ c o n n e c t i o n s ’ ’ : ‘ ‘ 1 0 ’ ’

}
‘ ‘ t o _ d e v i c e ’ ’ : {

‘ ‘ r a t e ’ ’ : 0 . 1 ,
‘ ‘ b l o c k e d _ d s t ’ ’ : [

‘ ‘ 0 / 0 ’ ’ ,
] ,

} }

The obtained traffic profile is then sent to the Policy Enforcer, which only allows
IP traffic under strict rules defined by the profile. The role of the Policy Enforcer
could be embedded in the controller (or switch) acting as Device Authenticator.
Listing 5.1 shows a simple example of traffic profile to define restrictions on the
communications to/from the device. In particular, rate specifies the maximum
bandwidth (in Mbps); allowed_dst and blocked_dst indicate the IP address, pro-
tocol, and port of allowed/denied communications. Furthermore, connections rep-
resents the maximum number of connections allowed with a certain device.

While this represents a simple example of traffic profile, we plan to extend this
initial data model and align it with the MUD standard. The described mechanism
was designed for the needs of the SerIoT project as one of the components to pre-
vent and mitigate potential risks in IoT systems. Its role is to secure the network
from the malicious endpoints and ensure that IoT devices behave according to spe-
cific traffic rules. It should be noted that the described mechanism is intended to
reduce the attack surface by enforcing the rules associated to the intended behav-
ior of IoT devices. However, it still requires a dynamic approach to continuously
monitor the risks that can be identified through traffic analysis. For this purpose,
next section provides an overview of the risk monitoring approach that is being
implemented in the scope of the SerIoT project.

5.4 Towards Distributed Attack Detection

The recent proliferation of IoT technologies has given rise to a dramatic increase
in the number of edge devices. More devices not only introduce more security vul-
nerabilities but also greatly increase the volume of transferred data that must be
analyzed in order to detect and mitigate network anomalies. When undetected,
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such anomalies can have a great impact on the robustness and Quality of Service
(QoS) of the attacked IoT infrastructure. The main challenge for anomaly detec-
tion methods in today’s IoT network is the analysis of the big amounts of data that
arise from the growing number of IoT devices. Such large volumes of information,
as well as the distributed, large-scale, and heterogeneous nature of the IoT network,
render the goal of (near) real-time anomaly detection difficult to accomplish using
traditional centralized monitoring approaches [23].

In this respect, this work proposes the use of Multi-agent Systems (MAS) for
processing the large amounts of data exchanged by the IoT devices in a distributed
manner. The MAS allows for monitoring of the network traffic using parallel com-
putation, resulting in faster detection times, and thus, improving the security and
QoS of the IoT network. Additionally, when the agents have redundant roles (i.e.,
detection of anomalies regarding the same IoT device by different agents), the MAS
system offers robustness, since it can tolerate failures of one or multiple agents [39].
Finally, MAS also offers scalability, since due to the modular nature of the approach,
adding new agents to the network is easy and straightforward.

The main challenge when implementing MAS is how the agents will exchange
information in order to solve a problem in a cooperative manner [19]. In this
respect, this work utilizes recent advances in AI and Deep Learning (DL) in order
to enable automatic feature extraction and anomaly detection by the agents of the
MAS. Specifically, due to the graph structure of the network communication events,
where nodes represent devices and edges communication, it is natural to consider
DL approaches that deal with graph structured datasets, i.e., Graph Neural Net-
works (GNN) [53]. This work utilizes as an inspiration the more generic GNN
formulation, proposed by DeepMind [2].

The IoT network is defined as a graph G(V, E, fv, fe), where each node vi ∈ V
represents either an IoT device or a router, and each directed edge e j ∈ E represents
a directed communication between nodes. Each node and edge is augmented with a
feature vector through functions fv : V → RNv and fe : E → RNe , respectively,
where Nv and Ne, the size of node and edge feature vectors, respectively. These
features are calculated using network traffic over a specific time window 1T . The
list of utilized features is presented in Table 5.1.

The agents of the MAS are installed in a subset of the nodes V ′ ⊆ V and
exchange information using the same set of communication edges E . Each agent
comprised of two networks utilized for updating the feature representation of the
adjacent edges and the node they are installed on. These updated features are after-
wards utilized for multi-class anomaly detection through another pair of deep learn-
ing networks. An overview of this formulation for updating feature representation
through information exchange between the different agents is illustrated in Figure
5.3. Under this consideration, the role of the edge Deep Neural Network (DNN)
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Figure 5.2. The architecture of each DNN agent in the multi-agent anomaly detection

system. The edge Multi-layer Perception (MLP) takes information from the N neighboring

agents and updated the values of the edge features, while the node MLP combines the

updated edge feature values and updates the feature values of the specific node (agent).

Edge features are used for predicting anomalies in the neighborhood, while node features

are used for detecting anomalies in the specific node, using the classifier networks. The

training is performed in a supervised manner using back-propagation with cross-entropy

loss.

Table 5.1. The list of network features used for anomaly detection. The number of features

for each node is Nv = 5 and for each edge is Ne = 3.

# Target Feature description

1 edge/node Average number of packets sent

2 node Average number of packets received

3 edge/node Average number of bytes sent

4 node Average number of bytes received

5 edge/node Average connection duration

is to integrate information from adjacent nodes, as well as the corresponding edge,
and update this edge’s feature representation. These updated feature representations
for all adjacent edges are afterwards taken as input by the node DNN that updates
the feature representation of the corresponding node. The Node and Edge DNNs
are the same for all agents (i.e., have shared weights), and thus, each agent is able
to learn from events happening to other agents.

Based on the previous definitions, there are in total four DNNs, two used for
updating node and edge feature representations, namely MLPn and MLPe, and
two used for classification of neighbor nodes and the node in which the agent is
installed, namely Classifierneighbor and Classifiernode.
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Figure 5.3. The procedure for updating the feature representations of the edges and

nodes visible by each agent. The edge Deep Neural Network (DNN) takes as input the

previous edge feature values and the adjacent agent features, and updates the fea-

ture representation of each edge. The node DNN aggregates the information from the

updated edge feature values, and updates the feature representation of the specific node.

Given an agent installed in node v j , the procedure followed for updating the
features of this node and the adjacent edges, as well as detecting anomalies in the
entire neighborhood is formulated as follows:

e
′i
1T = MLPe(x j

1T , x i
1T , ei

1T )

x
′ j
1T = MLPn

(
1
N

N∑
i=1

concat(e
′i
1T , x i

1T )

)

pi = Classifierneighbor(e
′i
1T , x i

1T )

p j = Classifiernode(e
′i
1T , x i

1T )

(5.1)

where x j is the feature vector of node v j where the agent is installed, x i is the
feature of the neighboring nodes in the graph, ei is the feature vector of the adjacent
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edges, and N is the number of neighboring nodes. This computation is performed
with traffic data from a specific window 1T . The MLPn network is applied on the
average of the updated features of each adjacent edge and node. The concant (.)
function takes as input two vectors and returns a larger vector which represents
the concatenation of the two vectors. Equation (5.1) represents a single iteration of
information exchange between agents. Stacking multiple blocks of such operations,
the agents can exchange information multiple times within each time period 1T .
The architecture of this procedure is illustrated in Figure 5.2. The entire network
is trained in a supervised manner using the back-propagation algorithm with cross-
entropy as loss for multi-class classification.

In this formulation of MAS, each agent is responsible for performing anomaly
detection not only on itself but also on its neighboring nodes. This redundancy
of the role of the agents enables the system to be robust in cases where one or
multiple agents may fail, since other agents will take over the role of detecting
anomalies in neighboring nodes instead of them. The issue that arises, however,
is how to combine the overlapping decisions of the different agents into a single
decision for each node in the IoT network. This work utilizes a simple aggregation
method, where a node is considered anomalous if at least one agent reported it as
anomalous. Alternative more sophisticated aggregation schemes will be considered
in future work.

5.5 Conclusions

The implementation of a suitable risk management approach demands for holistic
approaches for the assessment, mitigation, and monitoring of security risks in IoT
systems. Toward this end, we have provided an initial description of a policy-based
system that is being defined in the scope of the EU SerIoT project. Our approach is
based on the use of network traffic profiles, which specify the intended communica-
tions of IoT devices. Such effort is aligned with the recent MUD standard, which
has received an increasing interest from academia and industry during last year.
Autopolicy defines an architecture for obtaining and enforcing traffic profiles, in
order to mitigate potential security risks in IoT systems. Furthermore, it integrates
a distributed machine learning approach for risk monitoring by analyzing the net-
work traffic. As a future work, we plan to adopt the MUD standard as the baseline
to define and extend our traffic profiles to be enforced through the components
defined in the SerIoT SDN architecture. Furthermore, we will provide an imple-
mentation and detailed description of our adaptive machine learning approach to
reroute IoT traffic according to the identification of compromised nodes of a cer-
tain network.



100 IoT Network Risk Assessment and Mitigation

Acknowledgments

This research is supported by the European Commission H2020-IOT-2016-2017
(H2020-IOT-2017) Program under Grant Agreement 780139 for the SerIoT
Research and Innovation Action.

References

[1] Barrera, D., Molloy, I., and Huang, H.: Standardizing IoT network secu-
rity policy enforcement. In: Workshop on Decentralized IoT Security and
Standards 2018 (01 2018). https://doi.org/10.14722/diss.2018.23007, http:
//wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/07/
diss2018_7_Barrera_paper.pdf

[2] Battaglia, P., Hamrick, J.B.C., Bapst, V., Sanchez, A., Zambaldi, V., Mali-
nowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., Gulcehre,
C., Song, F., Ballard, A., Gilmer, J., Dahl, G.E., Vaswani, A., Allen, K., Nash,
C., Langston, V.J., Dyer, C., Heess, N., Wierstra, D., Kohli, P., Botvinick, M.,
Vinyals, O., Li, Y., and Pascanu, R.: Relational inductive biases, deep learning,
and graph networks. arXiv (2018), https://arxiv.org/pdf/1806.01261.pdf

[3] Bera, S., Misra, S., and Vasilakos, A.V.: Software-defined networking for inter-
net of things: A survey. IEEE Internet of Things Journal 4(6), 1994–2008
(2017)

[4] Brun, O., Yin, Y., and Gelenbe, E.: Deep learning with dense random neu-
ral network for detecting attacks against IoT-connected home environments.
Procedia Computer Science 134, 458–463 (2018)

[5] Cagnazzo, M., Hertlein, M., Holz, T., and Pohlmann, N.: Threat model-
ing for mobile health systems. In: 2018 IEEE Wireless Communications
and Networking Conference Workshops (WCNCW). pp. 314–319. IEEE,
Barcelona (Apr 2018). https://doi.org/10.1109/WCNCW.2018.8369033,
https://ieeexplore.ieee.org/document/8369033/

[6] Collen, A. et al.: Ghost: Safeguarding home IoT environments with person-
alised real-time risk control. In: Recent Cybersecurity Research in Europe:
Proceedings of the 2018 ISCIS Security Workshop, Imperial College London.
vol. LNCCIS 821. Springer Verlag (2018)

[7] Debar, H., Dacier, M., and Wespi, A.: Towards a taxonomy of intrusion-
detection systems. Computer Networks 31(8), 805–822 (1999)

[8] Dobson, S. et al.: A survey of autonomic communications. ACM Transactions
on Autonomous and Adaptive Systems (TAAS) 1(2), 223–259 (2006)

https://doi.org/10.14722/diss.2018.23007
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/07/diss2018_7_Barrera_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/07/diss2018_7_Barrera_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/07/diss2018_7_Barrera_paper.pdf
https://arxiv.org/pdf/1806.01261.pdf
https://doi.org/10.1109/WCNCW.2018.8369033
https://ieeexplore.ieee.org/document/8369033/


References 101

[9] Elhammouti, H., Sabir, E., Benjillali, M., Echabbi, L., and Tembine, H.: Self-
organized connected objects: Rethinking QoS provisioning for IoT services.
IEEE Communications Magazine 55(9), 41–47 (2017)

[10] ENISA: Good Practices for Security of Internet of Things in the context
of Smart Manufacturing (2018), https://www.enisa.europa.eu/publications/
good-practices-for-security-of-IoT

[11] Francois, F. and Gelenbe, E.: Towards a cognitive routing engine for software
defined networks. In: Communications (ICC), 2016 IEEE International Con-
ference on. pp. 1–6. IEEE (2016)

[12] Galis, A., Denazis, S., Brou, C., and Klein, C.: Programmable Networks for
IP Service Deployment. Artech House Inc. (2004)

[13] García, S.N.M., Molina Zarca, A., Hernández-Ramos, J.L., Bernabé, J.B.,
and Gómez, A.S.: Enforcing behavioral profiles through software-defined net-
works in the industrial internet of things. Applied Sciences 9(21), 4576
(2019)

[14] Garcia-Morchon, O., Kumar, S.S., and Sethi, M.: Internet of Things Security:
State of the Art and Challenges (RFC 8576) (2019)

[15] Gelenbe, E., Domanska, J., Czachórski, T., Drosou, A., and Tzovaras, D.:
Security for internet of things: The SerIoT project. In: 2018 International
Symposium on Networks, Computers and Communications, ISNCC 2018,
Rome, Italy, June 19-21, 2018. pp. 1–5. IEEEXplore (2018), https://doi.org/
10.1109/ISNCC.2018.8531004

[16] Gelenbe, E., Gorbil, G., Tzovaras, D., Liebergeld, S., Garcia, D., Baltatu,
M., and Lyberopoulos, G.: Security for smart mobile networks: The nemesys
approach. In: Privacy and Security in Mobile Systems (PRISMS), 2013 Inter-
national Conference on. pp. 1–8. IEEE (2013)

[17] Gelenbe, E. and Kadioglu, Y.M.: Energy life-time of wireless nodes with and
without energy harvesting under network attacks. In: Advances in Cyber-
Security: An ISCIS International Workshop. Springer (2018)

[18] Gelenbe, E., Liu, P., and Lainé, J.: Genetic algorithms for route discovery.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
36(6), 1247–1254 (2006)

[19] Gupta, J.K., Egorov, M., and Kochenderfer, M.: Cooperative multi-agent
control using deep reinforcement learning. In: International Conference on
Autonomous Agents and Multiagent Systems. pp. 66–83. Springer (2017)

[20] He, D., Chan, S., Qiao, Y., and Guizani, N.: Imminent communication secu-
rity for smart communities. IEEE Communications Magazine 56(1), 99–103
(Jan 2018). https://doi.org/10.1109/MCOM.2018.1700587

https://www.enisa.europa.eu/publications/good-practices-for-security-of-IoT
https://www.enisa.europa.eu/publications/good-practices-for-security-of-IoT
https://doi.org/10.1109/ISNCC.2018.8531004
https://doi.org/10.1109/ISNCC.2018.8531004
https://doi.org/10.1109/MCOM.2018.1700587


102 IoT Network Risk Assessment and Mitigation

[21] Joint Task Force Transformation Initiative: Guide for applying the risk man-
agement framework to federal information systems: a security life cycle
approach. Tech. Rep. NIST SP 800-37r1, National Institute of Standards and
Technology (Jun 2014). https://doi.org/10.6028/NIST.SP.800-37r1, https:
//nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-37r1.pdf

[22] Kalkan, K. and Zeadally, S.: Securing internet of things (IoT) with software
defined networking (sdn). IEEE Communications Magazine (2017). https:
//doi.org/10.1109/MCOM.2017.1700714

[23] Khodadadi, F., Dastjerdi, A.V., and Buyya, R.: Internet of things: an overview.
In: Internet of Things, pp. 3–27. Elsevier (2016)

[24] Lear, E., Romascanu, D., and Droms, R.: Manufacturer Usage Description
Specification (RFC 8520) (2019), https://tools.ietf.org/html/rfc8520

[25] Lu, X., Spear, M., Levitt, K., Matloff, N.S., and Wu, S.F.: A synchronization
attack and defense in energy-efficient listen-sleep slotted MAC protocols. In:
Emerging Security Information, Systems and Technologies, 2008. SECUR-
WARE’08. Second International Conference on. pp. 403–411. IEEE (2008)

[26] Martin, B. and Coley, S.: Common weakness scoring system (CWSS). Inter-
net, http://cwe.mitre.org/cwss (2014)

[27] Matheu-Garcia, S.N., Hernandez-Ramos, J.L., and Skarmeta, A.F.: Test-
based risk assessment and security certification proposal for the Internet of
Things. In: 2018 IEEE 4th World Forum on Internet of Things (WF-IoT).
pp. 641–646. IEEE, Singapore (Feb 2018). https://doi.org/10.1109/WF-IoT.
2018.8355193, https://ieeexplore.ieee.org/document/8355193/

[28] Matheu-Garcia, S.N., Hernandez-Ramos, J.L., Skarmeta, A.F., and Baldini,
G.: Risk-based automated assessment and testing for the cybersecurity certi-
fication and labelling of IoT devices. Computer Standards & Interfaces 62,
64–83 (Feb 2019). https://doi.org/10.1016/j.csi.2018.08.003, https://www.
sciencedirect.com/science/article/abs/pii/S0920548918301375?via%3Dihub

[29] Mehmood, Y., Ahmad, F., Yaqoob, I., Adnane, A., Imran, M., and Guizani, S.:
Internet-of-things-based smart cities: Recent advances and challenges. IEEE
Communications Magazine 55(9), 16–24 (2017)

[30] Meidan, Y., Bohadana, M., Mathov, Y., Mirsky, Y., Shabtai, A., Breitenbacher,
D., and Elovici, Y.: N-BaIoT network-based detection of IoT botnet attacks
using deep autoencoders. IEEE Pervasive Computing 17(3), 12–22 (2018)

[31] Melcherts, H.E.: The internet of everything and beyond. Human Bond Com-
munication: The Holy Grail of Holistic Communication and Immersive
Experience p. 173 (2017)

[32] Mell, P., Scarfone, K., and Romanosky, S.: Common vulnerability scoring sys-
tem. IEEE Security & Privacy 4(6), 85–89 (2006)

https://doi.org/10.6028/NIST.SP.800-37r1
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-37r1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-37r1.pdf
https://doi.org/10.1109/MCOM.2017.1700714
https://doi.org/10.1109/MCOM.2017.1700714
https://tools.ietf.org/html/rfc8520
http://cwe.mitre.org/cwss
https://doi.org/10.1109/WF-IoT.2018.8355193
https://doi.org/10.1109/WF-IoT.2018.8355193
https://ieeexplore.ieee.org/document/8355193/
https://doi.org/10.1016/j.csi.2018.08.003
https://www.sciencedirect.com/science/article/abs/pii/S0920548918301375?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0920548918301375?via%3Dihub


References 103

[33] Miettinen, M., Marchal, S., Hafeez, I., Asokan, N., Sadeghi, A.R., and
Tarkoma, S.: IoT sentinel: Automated device-type identification for secu-
rity enforcement in IoT. In: 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS), 5–8 June 2017. pp. 2177–2184.
IEEE (2017). https://doi.org/10.1109/ICDCS.2017.284

[34] Neisse, R., Hernández-Ramos, J.L., Matheu, S.N., Baldini, G., and Skarmeta,
A.: Toward a blockchain-based platform to manage cybersecurity certification
of IoT devices. In: 2019 IEEE Conference on Standards for Communications
and Networking (CSCN). pp. 1–6. IEEE (2019)

[35] NIST: Securing Small-Business and Home Internet of Things Devices: NIST
SP 1800-15 (2019)

[36] Nurse, J.R., Creese, S., and De Roure, D.: Security risk assessment in internet
of things systems. IT Professional 19(5), 20–26 (2017)

[37] Pirretti, M., Zhu, S., Vijaykrishnan, N., McDaniel, P., Kandemir, M., and
Brooks, R.: The sleep deprivation attack in sensor networks: Analysis and
methods of defense. International Journal of Distributed Sensor Networks
2(3), 267–287 (2006)

[38] Purdy, G.: Iso 31000: 2009 — setting a new standard for risk management.
Risk Analysis: An International Journal 30(6), 881–886 (2010)

[39] Qin, J., Ma, Q., Shi, and Y., Wang, L.: Recent advances in consensus of multi-
agent systems: A brief survey. IEEE Transactions on Industrial Electronics
64(6), 4972–4983 (2016)

[40] Qu, Y. and Chan, P.: Assessing Vulnerabilities in Bluetooth Low Energy (BLE)
Wireless Network Based IoT Systems. In: 2016 IEEE 2nd International Con-
ference on Big Data Security on Cloud (BigDataSecurity), IEEE Interna-
tional Conference on High Performance and Smart Computing (HPSC),
and IEEE International Conference on Intelligent Data and Security (IDS).
pp. 42–48. IEEE, New York, NY, USA (Apr 2016). https://doi.org/10.1109/
BigDataSecurity-HPSC-IDS.2016.63, http://ieeexplore.ieee.org/document/
7502262/

[41] Radanliev, P., De Roure, D.C., Nicolescu, R., Huth, M., Montalvo, R.M.,
Cannady, S., and Burnap, P.: Future developments in cyber risk assessment
for the internet of things. Computers in Industry 102, 14–22 (2018)

[42] Ramos, J.L.H., Geneiatakis, D., Kounelis, I., Steri, G., and Fovino, I.N.:
Toward a data-driven society: A technological perspective on the development
of cybersecurity and data protection policies. IEEE Security & Privacy (2019)

[43] Rao, S., Chendanda, D., Deshpande, C., and Lakkundi, V.: Implementing
lwm2m in constrained IoT devices. In: 2015 IEEE Conference on Wireless
Sensors (ICWiSe). pp. 52–57. IEEE (2015)

https://doi.org/10.1109/ICDCS.2017.284
https://doi.org/10.1109/BigDataSecurity-HPSC-IDS.2016.63
https://doi.org/10.1109/BigDataSecurity-HPSC-IDS.2016.63
http://ieeexplore.ieee.org/document/7502262/
http://ieeexplore.ieee.org/document/7502262/


104 IoT Network Risk Assessment and Mitigation

[44] Ratasuk, R., Prasad, A., Li, Z., Ghosh, A., and Uusitalo, M.A.: Recent
advancements in M2M communications in 4G networks and evolution
towards 5G. In: Proc. 18th IEEE International Conference Intelligence in
Next Generation Networks (ICIN). pp. 52–57. Paris, France (Feb 2015).
https://doi.org/10.1109/ICIN.2015.7073806

[45] Rubio-Loyola, J., Astorga, A., Serrat, J., Chai, W.K., Mamatas, L., Galis, A.,
Clayman, S., Cheniour, A., Lefevre, L., Mornard, O., Fischer, A., Paler, A.,
and Meer, H.D.: Platforms and software systems for an autonomic internet.
In: 2010 IEEE Global Telecommunications Conference GLOBECOM. IEEE
(2010)

[46] Selander, G., Mattsson, J., Palombini, F., and Seitz, L.: Object security for
constrained restful environments (oscore) (July 2019), https://tools.ietf.org/
html/rfc8613

[47] Sen, S., Koo, J., and Bagchi, S.: Trifecta: Security, energy-efficiency, and com-
munication capacity comparison for wireless IoT devices. IEEE Internet Com-
puting 22(1), 74–81 (2018)

[48] Simon, D., Ph.D., D.B.D.A., and Eronen, P.: Extensible Authentication Pro-
tocol (EAP) Key Management Framework. RFC 5247 (Aug 2008). https:
//doi.org/10.17487/RFC5247, https://rfc-editor.org/rfc/rfc5247.txt

[49] Thanigaivelan, N.K., Nigussie, E., Kanth, R.K., Virtanen, S., and Isoaho, J.:
Distributed internal anomaly detection system for internet-of-things. In: 2016
13th IEEE Annual Consumer Communications & Networking Conference
(CCNC). pp. 319–320. IEEE (2016)

[50] Tsarouchis, C., Denazis, S., Kitahara, C., Vivero, J., Salamanca, E., Magana,
E., Galis, A., Manas, J.L., Carlinet, L., Mathieu, B., and Koufopavlou, O.: A
policy-based management architecture for active and programmable networks.
IEEE Network 17(3), 22–28 (2003)

[51] USC, S.: 3502. CNSSI-4009
[52] Zarpelao, B.B., Miani, R.S., Kawakani, C.T., and de Alvarenga, S.C.: A survey

of intrusion detection in internet of things. Journal of Network and Computer
Applications 84, 25–37 (2017)

[53] Zhang, Z., Cui, P., and Zhu, W.: Deep learning on graphs: A survey. arXiv
preprint arXiv:1812.04202 (2018)

https://doi.org/10.1109/ICIN.2015.7073806
https://tools.ietf.org/html/rfc8613
https://tools.ietf.org/html/rfc8613
https://doi.org/10.17487/RFC5247
https://doi.org/10.17487/RFC5247
https://rfc-editor.org/rfc/rfc5247.txt

	5.1 Introduction
	5.2 Risk Management in IoT
	5.3 Autopolicy System
	5.4 Towards Distributed Attack Detection
	5.5 Conclusions
	Acknowledgments
	References

